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Abstract: - The design of fault diagnosis and detection devices for the input and output sensors of
dynamic systems requires the knowledge of an accurate mathematical model of the process since
modeling uncertainty affects the sensitivity to the faults and increases the false-alarm probability. For
this reason, the technique used in this paper gives weight to the identification procedure which exploits
equation error and errors—in—variables models in connection with the values of the signal to noise
ratios concerning the input and output measurements. The fault detection is performed by analyzing
residuals, which are generated by a bank of dynamic observers and unknown input observers or, when
the measurement noises are not negligible, by a bank of classical Kalman filters and Kalman filters with
unknown inputs. The effectiveness of the procedure has been tested on real data acquired from the

120MW power plant of Pont sur Sambre.
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1 Introduction

In order to ensure reliable operations of an in-
dustrial process and safety of the plant, it is nec-
essary to use correct measurements from actual
system inputs and outputs. This requires the use
of fault diagnosis and detection (FDD) techniques
to recognize the failures regarding the sensors of
the system under investigation.

The design of FDD devices for the input and
output sensors of dynamic systems has received
great attention during the last two decades and a
wide variety of model-based approaches have been
proposed [1].

These different methods are principally based
on the parity space approach [2, 3], the state es-
timation approach [4, 5, 6, 7], the fault detection
filter approach [7, 8, 9] and the parameter identi-
fication approach [4, 6, 10]. In every case, mathe-
matical models of the process under investigation
are required, either in state space or input—output
form.

Frequency domain representations are typically

analytical redundancy; residuals generation; dy-

applied when the effects of faults have frequency
characteristics which differ from each other and
thus the frequency spectra serve as criterion to
distinguish faults [11, 12].

In recent years, there is also a clear trend
towards an enlarged involvement of knowledge-
based and artificial intelligence methods, includ-
ing qualitative models concerning the residual
generation, fuzzy logic and neural networks for the
evaluation of the residuals [7, 10, 13].

Owing to the generality of the problem formula-
tion and the mathematical rigor of the treatment,
the state estimation approach shows considerable
advantages for residual generation which may be
used in sensor FDD of industrial systems, both
for the deterministic case (the state observer) and
the stochastic case (the Kalman filter).

This paper concerns the design of FDD devices
for the input and output sensors of an industrial
power plant.

An accurate mathematical model of the pro-
cess is obtained by using an identification proce-
dure which exploits equation error and errors—in—
variables models in connection with the values of
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output measurements.

The input sensor FDD uses unknown input ob-
servers (UIO) or, when the measurement noises
are not negligible, Kalman filters with unknown
inputs (UIKF). The i-th device is designed to be
insensitive to the i—th input of the system. On the
other hand, output sensor faults affecting a single
residual are detected by means of Luenberger ob-
servers [14] or classical Kalman filters [15] driven
by a single output and all the inputs of the system.

These diagnostic tools have been already ap-
plied to a simulated model of an single-shaft in-
dustrial gas turbine [16, 17, 13]. In this work the
effectiveness of these procedures have been sim-
ulated on real data acquired from the 120MW
power plant of Pont sur Sambre proposed in [18].

The remainder of this paper is organized as
follows. In Section (2) the problem statement
is given and the structure of the measurement
process is described from a mathematical point
of view. The design of dynamic observers and
Kalman filters is illustrated in Section (3). In
Section (4) the characteristics of the power plant
of Pont sur Sambre are shown and some examples
illustrate the FDD of the input—output sensors
by processing measured data. Finally, some
concluding remarks are included in Section (5).

2 Problem Formulation

In the following the process under observation de-
picted in Figure (1) is represented as a discrete—
time, time—invariant linear dynamic system of the

type

where z(t) € R™ is the system state vector,
7(t) € R™ the output vector of the system and
4(t) € R" the input vector. A, B and C are con-
stant matrices of appropriate dimensions obtained
by means of modeling techniques or identification

procedures.

In real situations, the input—output sensors may
be affected by noise and faults which degrade their
reliability. The variables 4(t) and (t) acquired
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Figure 1: The structure of the plant sensors.

from sensors can be expressed as

u(t) = a(t) +alt) + fut)
(2)
y(@) = 9() +9) + f,(t)

in which the sequences «(t) and gy(t) are usu-
ally described as white, zero—mean, uncorrelated
Gaussian noises. fy(t) = [fu,(t)... fu,(t)]T and
fo@®) = [fu @) ... fy,.()]T are additive signals
which assume values different from zero only in
the presence of faults. Usually these signals are
described by step and ramp functions representing
abrupt and incipient faults (bias or drift), respec-
tively. Figure (1) also shows the configuration of
the input—output measurement sensors.

Descriptions of types (1) and (2) when f,(t) =
fy(t) = 0 are known as errors-in-variables (EIV)
models.

The problem treated in this work regards the
FDD of the input—output sensors on the basis of
the knowledge of the measured sequences u(t) and
y(t). Moreover, it is assumed that only a single
fault may occur in the input or output sensors.

The structure of the FDD device is depicted
in Figure (2). The symptom generation is imple-
mented by means of dynamic observers or Kalman
filters. The symptom evaluation refers to the logic
device which processes the redundant signals gen-
erated by the first block in order to estimate when
a fault occurs and to univocally detect the faulty
Sensor.

The design of a FDD device requires the knowl-
edge of a state—space model (1) of the system un-
der investigation and of the statistics of the noises
affecting the data. In this work an identification
approach has been considered.

If the measurement noises are negligible, equa-
tion error identification can be exploited and, in
particular, different equation error models can be
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Figure 2: Logic diagram of the fault detection sys-
tem.

extracted from the data, e.g. ARX or ARMAX
discrete-time models.

In case the measurement noises are significant,
the Frisch scheme [19] can be applied to perform
the dynamic system identification [20]. Such a
scheme allows to determine the linear discrete sys-
tem which has generated the noisy sequences as
well as the variances of the noises 4(t) and y(t)
affecting the data.

The next step is the transformation of linear
input-output discrete-time models into state—
space representations. The state—space systems
obtained by the equation errors models are useful
to design dynamic observers, whilst the ones
coming from the Frisch scheme can be used in
order to build Kalman filters.

3 Residual generation
In this work, the observer—based method is used
to estimate the outputs of the system from the
input and output measurements.

In particular, to univocally isolate a fault con-
cerning one of the input sensors, under the as-
sumption that output sensors are fault—free, a
bank of UIO is used. The number of these de-
vices is equal to the number r of control inputs.
The i-th device is driven by all but the ¢-th input
sensor and all outputs of the system and generates
a residual function which is sensitive to all but the
i-th input sensor fault. In this way the detection
of single input measurement sensor faults is pos-
sible, since a fault on the i-th input sensor affects
all the residual functions except that of the device
which is insensitive to the ¢-th input.

The structure of the UIO bank concerning the
FDD for the input sensors is shown in Figure (3).
Note that the output sensors are not depicted
since attention is focused on the input sensor
FDD. In such a case, output measurements are
assumed fault—free.

The i-th UIO residual (symptom) generator is
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Figure 3: Scheme for input sensor FDI.

thus described as [21]

2(t+1) = N2't) + Liy(t) + Glu(t)
ye(t) = C(2'(t) = D'y(1)) (3)
ri(t) = y(t) —yi(t)

where 2!(t) € R" denotes the i—th observer state
vector, % (t) is the estimate of the output y(t) of
the system (1), whilst r;(¢) € R™ is the residual
vector. A design procedure is used for finding suit-
able matrices N*, L, G* and D? with appropriate
dimension.

Under the hypotheses of observability of the
system (1) and in the absence of sensor faults and
noise, fy(t) = f,(¢t) =0 and a(t) = g(t) = 0, with
the choices

D' = —Bi(CB),
P = I+ D'C,
NPt = P'A-L'C (4)
G' = P'B
L' = P'AD;,

where T denotes the pseudoinverse operator and
B; the i-th column of the matrix B, y.(¢) will
asymptotically approach y(t) and r;(t) — 0.

On the other hand, to univocally isolate a fault
concerning one of the output sensors, under the
hypothesis that input sensors are fault—free, a
bank of classical dynamic observers or Kalman
filters is used. The number of these estimators
is equal to the number m of system outputs, and
each device is driven by a single output and all the
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1—th output sensor affects only the residual func-
tion of the output observer or filter driven by the
1—th output.

The basic principle of output sensor FDD by
using state estimation is illustrated in Figure (4).
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Figure 4: Bank of estimators for output residual
generation.

The input sensors are not sketched because the
output sensor FDD is emphasized. In this case
input measurements are supposed fault—free.

With reference to Figure (4), when the measure-
ment noises are negligible, (a(t) = 0, g(t) = 0)
and f,(t) = 0, the structure of the i-th observer
to diagnose a fault on the i-th output sensor
(1=1,2,... ,m) has the form

'(t+1) = Alw'(t) + Blu(t) + (5)
+K'(y;(t) — C'2'(t)).

z'(t) is the observer state vector, y;(¢) the i—th
component of the output vector y(t), fy,(t) repre-
sents a fault on the i-th output sensor and the
triple (A%, B*,C%) is a minimal state-space rep-
resentation (completely observable) of the link
among the inputs of the process and its i-th out-
put 9;(¢). Such a triple can be obtained by means
of a realization procedure, starting from a multi—
input single-output (MISO) identified model.

The entries of K* must be designed in order to
assign to the (A’ — K'C%) matrix stable eigenval-
ues chosen suitably within the unit circle. The
output equation of the observer is described by
the expression

y'(t) = C'a'(t) (6)

where y'(t) is the estimate of the i-th component
y;i(t) of the output vector y(t).
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verified that the steady—state solution

lim ri(t) = lim (i(t) —9'(0)) (D)

t—o00 t—o00

D A

is equal to zero and the rate of convergence de-
pends on the position of the eigenvalues of the
(A" — K'C") matrix inside the unit circle. In the
presence of a fault (step or ramp signal) of the
1-th output sensor only the i-th output residual
reaches a value different from zero and this situa-
tion leads to a complete failure diagnosis.

In case of significant measurement noises, resid-
uals are generated by exploiting classical Kalman
filter and Kalman filters with unknown inputs
(UIKF). Such a solution improves the perfor-
mance of the FDD system with respect to the one
using dynamic observers and UIO. In particular,
in this situation, the mathematical formulation of
the UIKF follows from Egs. (3) with conditions
similar to the ones described by Eqgs. (4) [22, 23].
Moreover, the filter design must now satisfy a Ric-
cati equation [24]. The solution of this equation
requires the knowledge of the covariance matrices
of the input and the output noises which can be
identified by means of the dynamic Frisch scheme.

Note how multiple faults in the output sensors
can be isolated since a fault on the i—th output
sensor affects only the residual function r;(¢) of
the output observer or Kalman filters driven by
the +—th output. On the other hand, multiple
faults on the input sensors can not be isolated
by means of this technique since all the UIO or
UIKF residual functions r;(¢) are sensitive to
faults regarding the different inputs.

4 Fault diagnosis of the plant sen-
SOors
The techniques for input—output sensor FDD was
applied to a 120MW power plant of Pont sur Sam-
bre. It consists in a double-shaft industrial gas
turbine working in parallel with electrical mains.
The block-diagram of the plant is shown in Fig-
ure (5) where the numbers refer to: 1 - super
heater (radiation), 2 - super heater (convection),
3 - super heater, 4 - reheater, 5 - dampers, 6 - con-
denser, 7 - drum, 8 - water pump and 9 - burner.
The available input data were 2200 samples from
normal operating records of Cj, (gas flow), Oy (tur-
bine valves opening), Q4 (super heater spray flow),
R, (gas dampers) and @, (air flow). The output
data were the corresponding values of P, (steam



Figure 5: The structure of the power plant.

pressure), Ty (main steam temperature) and T
(reheat steam temperature). The sampling time
was of 10 seconds and since this value is very little
with respect to the time constants of the plant, it
has been increased to 60 seconds. The number of
samples has thus been reduced to 367.

The computational steps which have been per-
formed on the data are the identification of the
triple (A,B,C) from the ARX model as well as
the identification of the triple (A,B,C) from the
EIV model and the estimation of the input-output
noise variances.

The design of the UIO (3) requires, in fact,
the knowledge of a minimal form model (A, B, C)
for the system (1). The matrices A, B and C
were obtained by grouping the A;, B; and Cj
(1 =1,...,m) corresponding to the MISO subsys-
tem which links each output with the five (r = 5)
inputs. Three subsystems (m = 3) with order two
have thus been considered.

The determination of the order of every subsys-
tem has been performed by considering the FPE,
AIC and MDL identification criteria [25].

Faults in single input—output sensors were gen-
erated by adding variations (step and ramp func-
tions of different amplitudes) in the input—output
signals. A fault occurring respectively at the in-
stant of the minimum and maximum values of
the observer and filter residuals were chosen since
these conditions represent the worst case in failure
detection. Moreover, it was decided to consider
a fault during a transient since, in this case, the

et S S
imum and therefore it represents the most critical
case [26, 16].

The fault occurring on the single sensor causes
alteration of the sensor signal and of the residu-
als given by observers and filters using this sig-
nal as input. These residuals indicate fault occur-
rence according to whether their values are lower
or higher than the thresholds fixed in fault—free
conditions.

In order to determine the thresholds above
which the faults are detectable, the simulation of
different amplitude faults in the sensor signals was
performed. The threshold value depends on the
residual error amount due to the model approxi-
mation and on the measurement noises () and
g(t). These thresholds were settled on the basis of
fault-free residuals. A margin of 10% between the
thresholds and the residual values was imposed.

In Figures (6) and (7) an example of the residu-
als given by UIO (3) for the diagnosis of Oy input
sensor is shown.

In particular, Figure (6) shows the fault-free
residual generated by the input observer driven
by the signal of O, input sensor uy(t) and insensi-
tive to the signal of Cj, input sensor u;(¢). In this
condition, it is possible to determine the thresh-
olds above which the fault on the O4 sensor can
be detected.
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Figure 6: Fault-free residual function of the UIO
driven by the O signal with minimum positive
(‘+") and negative (*-’) thresholds.

The eigenvalues of the state distribution matrix
(matrix N* in Equations (3) with i = 1) of the
input observer are placed with a trial and error
procedure near to 0.2 in order to maximize the
fault detection sensibility and promptness and to



Figure (7) shows how a fault of 25% on the mean
value of Oy signal at the sample T' = 150 causes
an abrupt change of the residual.

0.5

B e i | B i A e

r,()

_0.5,

0 50 100 150 200 250 300 350
Samples

Figure 7: Residual function of the UIO driven by
the Og signal in the presence of a failure.

Figures (8) and (9) illustrate an example of the
diagnostic technique for output sensor fault re-
garding the T} signal.

Figure (8) shows the fault-free residual (Eq. 7)
obtained from the difference between the values
computed by the observer of the output y3(t) (T}
signal) and the one given by the sensor y*(¢). Ob-
viously, the non zero value of the residual is due
to the ARX model approximation and actual mea-
surement noise.

B e SE R R

0.15

0 50 100 150 200 250 300 350
Samples

Figure 8: Fault-free residual function of output
observer driven by T, signal with minimum pos-
itive (‘+’) and negative (‘-’) thresholds.

The eigenvalues of the state distribution matrix
(matrix (A" — K'C") in Eq. (5) with ¢ = 3) of out-
put state observer are placed with a trial and error

P

the fault detection sensibility and promptness and
to minimize the occurrence of false alarms.

In Figure (9) the abrupt change of T, residual
caused by a fault of 10% on the mean value of
T, signal occurring at the instant of 7' = 150 is
shown.
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Figure 9: Residual function of output observer
driven by 7,4 signal with a failure.

The instantaneous peaks which appear in Fig-
ures (7) and (9) are generated by the abrupt
change related to the fault occurrence and may
be used as incipient detector of anomalous behav-
ior of the sensors.

To summarize the performance of the FDD
technique using classical observers and UIO, the
minimal detectable failures on the various sensors
referred to the mean signal values are collected in
Table (1), in case of step and ramp faults.

Sensor Cy Os Quq R,
Step 30% | 25% | 20% | 40%
Ramp 40% | 30% | 35% | 55%
Sensor Qa P, Ts Trs
Step 45% | 15% 5% 10%
Ramp || 50% | 40% | 20% | 30%

Table 1: Minimal detectable step and ramp faults
with classical observers and UIO.

Finally, Table (2) reports the mean square values
of the output estimation errors corresponding to
the state—space systems obtained by the equation
errors models in deterministic case.

An improvement on the performance of the
FDD device was obtained by using classical
Kalman filters and UIKF. The noises affecting the
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ing the Frisch scheme method.
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| Output | P | T. | T |
| Equation error [ 0.0146 | 0.0273 | 0.0051 |

Table 2: The three output estimation errors with
equation error models.

Also in this case, the comparison of the residuals
with the thresholds fixed under no fault conditions
remains the detection rule.

Table (3) shows the minimal detectable faults
in stochastic case.

| Sensor || Cy | Os | Qa | Ry |
Step 25% | 15% | 12% | 35%
Ramp || 35% | 20% | 20% | 45%
[Sensor | Qo | P, | T. [ Tws |
Step 35% | 10% | 3% 5%
Ramp || 40% | 30% | 5% | 8%

Table 3: Minimal detectable step and ramp faults
with classical Kalman filters and UIKF.

Table (4) reports the mean square values of the
output estimation errors when EIV models iden-
tified by the dynamic Frisch scheme are used.

[Outpwt | P, | T. | T |
| EIV_ ] 0.0026 [ 0.0018 | 0.0012 |

Table 4: The three output estimation errors with
EIV models.

Compared with the ones concerning the determin-
istic case, the output estimation errors with EIV
models are smaller because the noise rejection is
achieved by means of the dynamic Frisch scheme.
Consequently, the residuals obtained by Kalman
filters are more sensitive to a fault occurring on
the sensors. Moreover, smaller thresholds can
be placed on the residual signals to declare the
occurrence of faults.

5 Conclusion
This work addressed the problem of the design of
FDD devices for the input and output sensors of
an industrial power plant.

The technique presented gives weight to the
identification procedure which exploits equation
error and errors—in—variables models in connection

oM Ml I = e

cerning the input and output measurements.

The fault detection was performed by analyz-
ing residuals, which are generated by a bank of
dynamic observers and UIO or, when the mea-
surement noises are not negligible, by a bank of
Kalman filters and UIKF.

The effectiveness of these procedures were
tested on real data acquired from the 120MW
power plant of Pont sur Sambre.

The results obtained indicate that the minimal
detectable faults on the various sensors are of in-
terest for industrial diagnostic applications.
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