Optimization of the Parallel Matrix Multiplication

GREGOR PAPA, JURIJ SILC
Computer Systems Department
“Jozef Stefan” Institute
Jamova 39, 1000 Ljubljana
SLOVENIA

Abstract: - Many frequently met problems of linear algebra, such as the solution of linear systems and matrix
multiplication, are computationally expansive. Those problems need to be solved with parallel structures, such
as systolic arrays, where many processors are used concurrently to compute the result. The parallelism
decreases the computing time. In the case of matrix multiplication it is very appropriate to use two-
dimensional array of processors, that reflects the real situation of computing the coefficients. But, since two-
dimensional array of processors is very space- and resource-consumptive, it is better to use one-dimensional
array of processors. Although this leads to the problem of operation reallocation and unequal utilization of the
processors, it is easier to implement since there is only one straight line of processors. Beside the simplicity of
implementation the utilization of processors is also higher. This paper presents the evaluation of different

approaches to the linearization of the two-dimensional multiplication array.

Key-Words: - optimization, matrix, multiplication, parallel, systolic, linearization

1 Introduction

Many problems in science can be solved by linear
algebraic computation, but even some basic
problems are computationally expansive. To shorten
the computing time, new structure has to be build,
which enables synchronous data computing.
According to the nature of the problem, where
matrix transformation is the main goal, parallel
systolic structure is very appropriate. With the group
of processors it enables more data to be processed
synchronously. Detailed structure and function of
systolic structure will be presented in the next
section.

Beside the advantages of this approach (shorter
execution time) there are also some disadvantages. It
is difficult to compose a net of processors, since
there is a lot of connections and it is difficult to
monitor all of them and finally to read data out of
them at the end. They are also poorly utilized, since
they mostly wait for their input data.

It is possible to compose the structure with higher
utilization, economic justification, time suitability
and lower complexity, which would remove
disadvantages mentioned in the previous paragraph.
Namely, some processors can be merged, so that one
processor performs tasks of more processors, and
also their access is easier since there is just one
straight array of the processors [4].

This work presents different approaches to the
matrix multiplication and the comparison of two-
dimensional and linear processor arrays is given.

2 Systolic arrays
Systolic solving is presented by the processor
structure, where data is flowing through the
processors. Systolic array is a net of specialized
processors, which are locally connected and work
synchronized. Its use is appropriate when solving
time-consuming problems. The characteristics of
this array are:

- synchronization (computing and data-flow are
performed rhythmically),

- modularity and regularity (consists of modular and
connected elements, which can be illimitable
added),

- area and time localization (between processors
there are local connections with delays),

- speed-up factor (faster execution when performed
OVer many processors).

To get a perfect systolic array a convenient
approach is needed. One of them is graph-based
design methodology [3, 1]. It is based on the graph
representation and consists of three steps:

- dependency graph design; a suitable algorithm for
the problem has to be identified and dependency
graph is made. Since this graph affects the final



design, some changes are possible to improve the
result,

- signal flow graph design; according to the
projection of the algorithm, there is more types of
this kind of a graph,

- array processors design; signal flow graph is
mapped into the processor array.

Dependency graph describes dependencies
between data in different processors. If there is no
data dependency between two operations they can
be executed concurrently. Very important step in the
design is scheduling, while it affects the processor
utilization [6, 5].

Nodes of the graph represent arithmetic or logic
operation without delay, and connections represent
time delays and data dependencies. Mapping is
performed in more steps. First, processors are
determined to perform single operations with
minimal communications, and then the execution
order is made to minimize total execution time.
Basic steps:

- determination of the basic operation modules;
systolic array is more effective (faster), if the
algorithm is broken into small pieces,

- use of time rules; the graph is time-limited,

- combination of delays and operation modules;
basic systolic element is made of delay and
operation module.

Signal flow graph is mapped into systolic array,
where operation modules are mapped into
processors and their connections are mapped into
processor connections.

2.1 The use of systolic arrays
Systolic arrays can be used when performing matrix
multiplication [2] of the form

C=AB~+(Cy.

Array of processors for multiplication of two
square matrices is presented in Fig. 1 [7]. Inputs of
the structure are matrices’ coefficients (a;; in b;;) and
at the end there are coefficients c; inside the
structure. According to the matrix size nxn the
number of required processors n* is:

n*=n".

Shape [] represents a processor and []
represents a delay 7.

b,
42 D5

b.

b.

214213212214
82482382231

93483383,

Fig. 1: Square systolic array (n=4)

All processors in square array in Fig. 1 perform
the same operations [7]:

X4

l.x,=x;,"x;+r
2.r=1x,

X2

XO

Next chapters present some transformations of
two-dimensional arrays into linear arrays. There is
also the comparison of data flow, utilization of
processors and complexity of needed operations.

3 Matrix multiplication

3.1 Horizontal array

Horizontal array is made when all processors of the
first column are merged into processor A, processors
of the second column into processor B, etc, as
presented in Fig. 2. Processors perform the same
operations, as before the transformation, beside
there is an additional input from one of its outputs.

Fig. 2: Transformation into the horizontal array



Occupation of the processors is presented in
Table 1, where shadowed field represents the time
frame when the processor is occupied.

A B C D
1 1
2 5 2
3 9 6 3
4| 13 10 7 4
5 1 14 11 8
6 5 2 15 12
7 9 6 3 16
17 14 11 8
18 15 12
19 16

Table 1: Occupation of processors in horizontal array

Due to the processor merging the data inputs are
changed as presented in Fig. 3.

843833823813 842 852 822 812 8131 821 A4

Fig. 3: Data inputs in horizontal array

3.2 Vertical array

Vertical array is made when merging processors of
the first row into processor A, processors of the
second row into processor B, etc, as presented in
Fig. 4. Processors perform the same operations as
when transformed into horizontal array.

Fig. 4: Transformation into vertical array

Occupation of processors is presented in Table 2
and data inputs are changed as presented in Fig. 5.

A B C D
1 1
2 2 5
3 3 6 9
4 4 7 10 13
5 1 8 11 14
6 2 5 12 15
7 3 6 9 16
17 8 11 14
18 12 15
19 16

Table 2: Occupation of processors in vertical array

NONONN
P ER

T 0000000
N ow s

Fig. 5: Data inputs in vertical array

Actually there is no difference between
horizontal and vertical transformation, since all
processors in two-dimensional array perform the
same operations. Thus, it is insignificant what the
contraction direction is, but we can choose which
coefficients are delayed when entering the array.

3.3 Diagonal array

Because of the array structure (square), diagonal
transformation is a bit more complicated. According
to the merging process, there can be different linear
solutions.

If there is an even (n=4) number of processors in
a two-dimensional array, we can choose between
two possibilities.

In the first one, as presented in Fig. 6, the
processor array is transformed as follows:
processors 9, 13 and 14 are merged into processor
A, processors 1, 5,10,11 and 15 are merged into
processor B, processors 2, 6, 7, 12 and 16 are
merged into processor C and processors 3, 4 and 8



are merged into processor D. So there is an even
(n*=4) number of processor in linear processor
array.

Fig. 6: Transformation into diagonal array

Table 3 represents the occupation of the
processors, while data inputs are changed as
presented in Fig. 7.

A B C D
1 1
2 5 2
3 9 1 6 3
4 13 5 2 4
5 9 1 6 3
6 10 2
7 14 5 7
8 13 1 6 8
9 9 10 2 4
10| 14 5 7 3
11] 13 11 6 8
12 9 10 12 4
13 15 7 3
14 11 16
15| 14 10 12 8
6] 13 15 7 4
17 14 11 16 8
18 15 12
19 11 16
20 15 12
21 16

Table 3: Processor occupation (n=4, n*=4)

Fig. 7: Data inputs in diagonal array n=4, (n*=4)

In the second case, there is an odd (rn*=))
number of processors in the linear array. According
to Fig. 6, processors are merged as follows:
processors 9, 13 and 14 are merged into processor
A, processors 5,10 and 15 are merged into processor
B, processors 1, 6, 11 and 16 are merged into
processor C, processors 2, 7 and 12 are merged into
processor D and processors 3, 4 and 8 are merged
into processor E.

A B C D E
1 1
2 5 1 2
3 9 5 6 2 3
4 13 10 1 7 4
5 9 5 6 2 3
6 14 10 1 7 8
7 13 5 11 2 4
8 9 6 3
9 14 11 8
10] 13 15 6 12 4
11 9 10 16 7 3
12| 14 15 11 12 8
3] 13 10 16 7 4
4] 14 15 11 12 8
15 15 16 12
16 16

Table 4: Processor occupation (n=4, n*=35)

Processor occupation is shown in Table 4, while
Fig. 8 presents the data inputs.

But when there is an odd (#=5) number of
processors in the two-dimensional array, the linear
array consists of odd (#*=5) number of processors.
The situation is presented in Table 5.



44

Fig. 8: Data inputs in diagonal array (n=4, n*=5)

A B C D E
1 1
2 6 1 2
3 11 6 1 2 3
4 11 6 7 2 3
5 16 12 1 8 4
6 11 6 7 2 3
7 16 12 1 8 4
S8 21 17 7 9 5
9 11 6 13 2 3
10] 16 12 7 8 4
11] 21 17 13 9 5
12 22 18 14 10
3] 11 3
4] 16 12 7 8 4
5] 21 17 13 9 5
16| 22 18 19 14 10
17| 23 15
18] 16 12 8 4
19| 21 17 13 9 5
20| 22 18 19 14 10
21| 23 24 13 20 15
22| 21 17 19 9 5
23| 22 18 25 14 10
24| 23 24 19 20 15
25| 22 18 25 14 10
26| 23 24 19 20 15
27| 23 24 25 20 15
28 24 25 20
29 25

Table 5: Processor occupation (n=3, n*=3)

Transformation is obtained by merging
processors 11, 16, 21, 22 and 23 into processor A,

processors 6, 12, 17, 18 and 24 into processor B,
processors 1, 7, 13, 19 and 25 into processor C,
processors 2, 8, 9, 14 and 20 into processor D and
processors 3, 4, 5, 10 and 15 into processor E.

Data has to be set according to the new processor
utilization, as presented in Fig. 9.

b55

gl ]

o o of
o x W
S E&

IR
(< g ]

Wy
&R o

N
NN

b
b
b
b
b
b
b
b,
b

by

Fig. 9: Data inputs in diagonal array (n=>5, n*=5)

4 Conclusion

According to the results, there are important gains
when transforming two-dimensional array in
different directions. The difference is in execution
time and processor utilization.

Table 6 represents the characteristics of n=4 and
n=>5 arrays. Different transformations are considered
(horizontal, vertical, and diagonal). Number of steps
is the number of systolic cycles needed to perform
the algorithm. Number of processors is the number
of needed processors, and utilization is their use
according to the number of steps.

The number of steps, to execute the algorithm,
increases with the transformation, but the number of
processors decreases significantly.

When  transforming square arrays any
transformation is better than initial array. Since all
processors perform the same operations it is
irrelevant in which direction we contract the array.
But according to the simplicity of the
implementation horizontal and vertical linear arrays
are better than any diagonal array (Figs. 3, 5, 7, 8,
9). Data inputs are simpler and the utilization of the
processors is much higher in horizontal or vertical



array.

number |number of| processors

of steps |processors| utilization
square (n=4) 10 16 40.0%
- horizontal 19 4 84.2%
- vertical 19 4 84.2%
- diagonal (n*=4)| 21 4 76.2%
- diagonal (n*=5)| 16 5 80.0%
square (n=5) 13 25 38.5%
- horizontal 29 5 86.2%
- vertical 29 5 86.2%
- diagonal (n*=5)| 29 5 86.2%

Table 6: Efficiency of the arrays

With the transformation the number of control
steps is increased, but the number of processors is
significantly decreased and their utilization is
increased. Thus, when the number of processors and
other components is constrained, linearization of the
processor array is very appropriate.

References:

[1] P.Blaznik, Parallel Algorithms on Systolic Array
(in Slovene), M.Sc. Thesis, Faculty of
Electrotechnical and Computer Science,
University of Ljubljana, Slovenia, 1991.

[2] P.Blaznik, J.Tasi¢, D.J.Evans, Parallel Solving
the Updated Linear Systems of Equations, Proc.
2" Electrotechnical and Computer Science
Conference ERK'93, Volume B, 1993, pp. 115-
118.

[3] S.Y.Kung, VLSI Array Processors, Prentice
Hall, Englewood Cliffs, New Jersey, 1988.

[4] J.G.Nash, C.Petrozolin, VLSI Implementation of
a Linear Systolic Array, Proc. 1985 Int. Conf.
Acoust., Speech, Signal Processing, Tampa, FL,
pp. 1392-1395.

[5] J.J.Navarro, J.M.Llaberia, M.Valero,
FPartitioning: An Essential Step in Mapping
Algorithms Into Systolic Array processors,
Computer, Vol. 20, No. 7, July 1987, pp. 77-90.

[6] G.Papa, ] Sile,  F.Bratkovi, Scheduling
Algorithms in High-Level Synthesis — overview
and evaluation, Electrotechnical Review, Vol.
65, No. 4, 1998, pp. 153-165.

[7] P.Quinton, Y.Robert, Systolic Algorithms &
Architectures, Prentice-Hall, UK, 1989.

[8] R.Wyrzykowski, Y.Kanevski, S.Ovramenko,
Dependence Graph Transformations in the
Design of Processors Arrays for Matrix
Multiplications, Microprocessing and
Microprogramming, No. 35, 1992, pp. 539-544.



