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Abstract: In this paper, a technique for H∞-PI controller tuning, is applied for controlling an
uncertain fertigation process, whose purpose is to supply water with nutrients, having a specific
conductivity, to a different number or type of irrigation lines. The effectiveness of the proposed
technique is demonstrated by several simulation results, which show that, the PI controller
designed in the context of H∞, can effectively face large changes in model parameters, and retains
a satisfactory performance in cases of load disturbances as well as set point changes.
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1  Introduction
Simple linear plant models are commonly used

to design and analyze process control systems. Such
models are obtained through linearization and simp-
lification of the highly nonlinear and complex mo-
dels, describing the true behavior of the process.
Therefore, uncertainties naturally arise in the redu-
ced models. In addition to the simplification as-
pects, model uncertainty may also arise from the
behavior of the plant itself, which changes with
time.

Fertigation processes which contain a nutrients
mixing process, are very common in agricultural
applications [1], [2]. In hydroponics systems, in
order to supply water with nutrients, having a spe-
cific conductivity, a number of irrigation lines are
switched in sequence, each line very often sup-
plying water to a different number of plants. There-
fore, different flow rates are a common demand in
irrigation systems. This is presented to the feedback
control loop as a load (nutrients rate) step change.
The control loop has a large time delay (usually
defined at the design stage by the maximum
demand) which vary with time and depends on the
hydraulics system parameters. The mixing process
can then adequately be described by a first order
plus dead time (FOPDT) transfer function model,
relating the electrical conductivity of the water
(process output) with the nutrients supply (process
input). However, this simple model is appropriate
for control purposes, only in cases where high pre-
cision analog dosing valves are used. In practice,
on/off non-corrosive valves are used instead, opera-
ted in PWM mode, to execute the control com-
mands of a closed loop control system. PWM has a
bad effect on the process output. To avoid this

effect, a hydraulic filter for the valve doses is intro-
duced by adding a pre-filtering tank of small capa-
city, thus producing a continuous flow of nutrients
supply, which however raises the order and the
dead time of the system [1], [2]. In particular, in
this case, the overall mixing process can be des-
cribed by a second order plus dead time (SOPDT)
model, whose delay time is greater than the delay
time of the FOPDT description.

From the above analysis, it becomes clear that
the facing of model uncertainties is a common task
in fertigation process control. The designer must
ultimately insure stability and performance of the
actual closed-loop system and the designed con-
troller must be robust to the model uncertainty.
This reveals that, in order to control the water con-
ductivity in fertigation processes, robust control
techniques must be applied. During the last decade
several techniques have been developed to deal with
model uncertainty and robust control (for an
overview, see [3]-[6]). In this paper, a powerful
controller synthesis methodology, known as the

H ∞ -control design method, which is based on
unstructured uncertainty description of a plant, is
applied to the analysis of a control system, com-
posed either of a FOPDT model or a SOPDT
model of the water’s electrical conductivity change
of the fertigation process and a PI controller. Note
that, the reasons for studying such a control scheme
is mainly due to the wide use of PI controllers in
process control [7], as well as to the wide variation
of the fertigation models parameters.

2  The Robust Performance Criterion
Performance as well as robustness objectives

can effectively be posed in the context of modern
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H∞ theory. Some of the fundamental results of H∞

theory, which are useful in the sequel, will be
summarized.

Robust Stability [4]. Consider the family Ð of
plants
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where GP is the nominal plant and the last two
equations are referred to as the multiplicative
uncertainty description with a given bound. Assume
that all plants in the family Ð have the same
number of right half plane poles and that a
particular controller GC stabilizes the nominal plant
GP. Then the system is «robustly stable» with the
controller GC if and only if the complementary
sensitivity function (for the nominal plant) T(s),
defined by
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satisfies the following bound

T ml
∞

< 1 (4)

Robust Performance [4]. Assume that all plants
in the family Ð have the same number of RHP
poles. Then the closed loop system will meet the
performance specification
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and W(s) is the performance weight, if and only if
the nominal system is closed loop stable and the
sensitivity and complementary sensitivity function
of the nominal plant satisfy

S W T + < ∀ωlm    1, (7)

It can proven easily that the following is an equi-
valent condition
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There is a variety of design specifications in the
frequency domain, which can be viewed as particu-
lar cases of the performance specification (5). In
particular, in the case where the design require-
ments are:
(a)  Maximum of the sensitivity function over all

frequencies, less than M. (9a)

(b)  Bandwidth equal to ω B W
*  (9b)

(c)  Steady-state error less than A. (9c)
then, these requirements can be incorporated to the
following weighting transfer function
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Clearly, when s → 0 , then 1 / ( )W s A→ , while

when s → ∞ , then 1 / ( )W s M→ . Finally, as

ω ω→ B W
* , then W ( )ω → 1 . That is, the satisfac-

tion of (5), subject to the weighting function (10),
satisfies also the design requirements (9a)-(9c).

3 Unstructured Uncertainty and Dead
Time Models
The parametric uncertainty of FOPDT systems

can be described by the following model

G s
K

s
t sd( ) exp( )=

+
−

τ 1
(11a)

where

[ ]K K K∈ min max,   ,  [ ]τ τ τ∈ min max, (11b)

[ ]t t td d d∈ ,min ,max, (11c)

or equivalently

[ ]G s
K K

s
t t sd d( )

( )

( )
exp ( ),=

+
+ +

− +0

0

0
1

δ
τ δτ

δ

where

K
K K

t t
K K K K

t t t t

d

d d d d

0 0

0

0 0

2 2

2

=
+ +

+
≤ − =

≤ − = ≤ − =

min max min max

,max
max

max ,max ,

,

,

   =

t =  ,  

    

d,0
d,min

τ
τ τ

δ

δτ τ τ δ

∆

∆τ ∆

From the above parametric uncertainty, the res-
pective multiplicative uncertainty can be deduced.
This multiplicative uncertainty can be described by
the family Ð of transfer functions, of the form (1),
where [3]
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It has been proven in [3] that an upper bound for
the multiplicative uncertainty of the above FOPDT
model can be expressed according to the following
relations
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∀ω ≥ ω * , where the frequency ù* is computed as
the solution of the equation
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For controller synthesis, the following approxi-
mation can effectively be used
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where

T =
4

t td d,max ,min−

It is worth noticing that, this approximation can
be obtained by using the well-known first order
Pade approximant of the term including the dead
time, which has the form
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Following a similar analysis, in the case of a
SOPDT model with parametric uncertainty of the
form
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with a fixed parameter á, and with Ê, ô and td as in
(11b), (11c), we can easily obtain the following un-
structured uncertainty description
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where, l m s( )  is the same as in the case of the

FOPDT model. In this case, an upper bound for
l m s( )  is given by (12).

4  Hydroponics System Model
Fertigation processes, whose purpose is to sup-

ply water with nutrients, having a specific conducti-
vity, to a different number or type of plants, contain
a mixing process, which is schematically depicted
in Figure 1. The flow of a liquid at the rate of QW

into a mixing tank of volume VT, in which mixing
of fertilizers takes place, results in a residence time
of Tr= VT/QW. Mixing of liquids may appear in two
distinct modes; plug flow and perfectly stirred flow.
Plug flow produces a zero order system with trans-

portation delay (dead time) equal to the residence
time Tr. Perfectly mixed flow produces a first order
system of time constant equal to the residence time
Tr. In real systems, more or less, the two modes
coexist and a mixing tank may be modeled as a first
order system with dead time. In such cases, the
residence time is apportioned to the two characte-
ristic times, depending on the amount of stirring. In
addition, dead times are introduced in real systems
by transportation delays in pipe flow. On the basis
of the above analysis, a first order plus dead time
(FOPDT) model of a single tank mixing process has
the form:
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where, CE(s) is the electrical conductivity of the
water corresponding to a particular concentration of
nutrients and considered as the process output and
QNS(s) is the nutrient supply, considered as the
process input. In (1), K is the process gain defined
as K1=1/QW, TT is the process time constant defined
as TT =ãTr and td,1 is the dead time which, as
already mentioned, stems from hydraulics system
factors, i.e. transportation delay in pipe flow and
imperfect mixing, and has the form td=(1-ã)Tr, and
ã=0, for plug flow and ã=1, for perfect mixing.

CE pH

QW

QF

QNS

VT

VF

Figure 1. Dual tank mixing process.

On-line mixing of stack solutions with water to
prepare a solution of a specific concentration
requires high precision analog dosing pumps or
valves and a very fast, but robust control system.
To avoid associated high cost, on/off non-corrosive
valves are used instead, operated in PWM mode, to
execute the control commands of a closed loop
control system. This requires a mixing tank, for the
solution to present an average fertilizer concen-
tration, CE, at the exit. The tank volume must be
big enough to dilute the injected fertilizer doses,
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without experiencing much variation in concen-
tration. However, big tanks do cause problems
when the desired CE must undergo a step change for
a different irrigation line, and also produces a very
undesired inflexible device. For example, a
minimum cycle of TC=5s for a dosing valve must be
a constraint, to avoid wear and failure. Assume the
stack solution has a concentration 100CE , and flow
rate QNS, and each injection must be less than 5% of
the tank fertilizer to avoid high CE excursions. The
constraint at low QW loads is:

Constrain1: 100CE*QNS*5s ≤ 0.05*CE*VT

At high QW loads or low concentrations CE, the
limitation of 5% variation must hold true for TC =5s
valve pause. Therefore an alternate constraint is:

Constrain2: CE*Qw*5s ≤ 0.05*CE*VT

To match the two constraints, the hardware
design should work around solutions for QNS ≈
0.01QW and VT≥QW*100s. For example, if QW

=1L/s or QNS =0.01L/s the tank must have a
capacity of 100L. This is the order of the size used
by most commercial systems, but is considered an
undesirable feature. One way to reduce the size of
the tank is to introduce a hydraulic filter for the
valve doses by adding a pre-filtering tank of
capacity VF, thus producing a continuous flow of
NS, which however raises the order and the dead
time of the system. In the case where a pre-filtering
tank is used, the overall mixing process can be
adequately described by a second order plus dead
time (SOPDT) model of the form
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where, K2=1/(QF+QW), TF=VF/QF and td,2 is the new
dead time (assume QNS<<QF <QW).

5  H ∞ -PI Controller Tuning for the
Fertigation Process
Controller tuning in the context of H∞ for the

FOPDT or the SOPDT models of the electrical
conductivity variations of the fertigation process
will be based on the solution of the problem (7),
with a multiplicative uncertainty of the form (12).
The particular controller considered here, has the
form

C s
p p s

p s
( )

( )
=

+1 2

2

1
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This form, obviously represent a PI-controller,
with proportional gain p 1  and integral time cons-

tant p1/p2.

The approach that is used for the tuning of the

parameters of the H ∞ -PI controller consists in the
following steps:
• Determination of the parametric uncertainty of

the water’s electrical conductivity model, for
each particular model used (FOPDT or
SOPDT).

• Selection, according to the results of Section 3,
of an upper bound lm ( )ω , for the multiplica-

tive uncertainty l m s( )  of the water’s electrical

conductivity model.
• Selection of the performance weighting function

W(s), of the form (10).
• Numerical solution of the robust performance

problem of the form
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It is worth noticing that, for every value of any
of the parameters p 1 , p 2 , it is possible to find a

value of the remaining parameter, for which the
above equality is satisfied. Therefore, the problem
has an infinite number of solutions. A way to sim-
plify its solution is to set p 2 0= τ , and solve the

problem at hand, with respect to p1 . This simplifi-

cation will be used in the sequel.
In what follows, the technique presented above

for H ∞ -PI controller tuning will be applied to a
particular fertigation process model. To this end,
we consider a FOPDT model of the mixing process
with parameters VT=44L, QW [ ]∈ 1L s ,/  8L / s ,

td,1 [ ]∈ 7s ,  9s , and a SOPDT model with VF=4L,

QF=0.5L/s, VT=40L, QW [ ]∈ 1L s ,/  8L / s , td,2

[ ]∈ 8s ,  10s . It is worth noticing at this point that in

all simulations that follow, conductivity of the
water is considered as a deviation variable.

In the case of the FOPDT model (Case I), the
parametric uncertainty results to a multiplicative
uncertainty of the form

l m s
s

s
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s
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Our design requirements for the closed-loop sys-
tem, consisting of the uncertain process model and
the PI-controller, are:
(a)  Maximum of the sensitivity function over all

frequencies, less than M=3.
(b)  Closed-loop system bandwidth equal to

ω B W
* = 0.002 rad/sec

(c)  Zero steady-state error (A=0).
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Therefore, according to (10) the performance weig-
hting function W(s) has the form

W s
s

s
( )

.= + 0 006

3
Solution of the problem (17), for p 2 0 24 75= =τ .

yields p1=0.6229. The graphical representation of
its solution is depicted in Figure 2.

Simulation results, regarding the application of

the above designed H ∞ -PI controller, to the uncer-
tain FOPDT model of the fertigation process are
given in Figures 3-5. In these Figures, the output of
the controller u(t), the response of the closed-loop
system to input changes of the set point and the
response of the closed-loop system to step load
disturbances, are depicted, when system parameters
take several values in the ranges mentioned above.
In particular, in Figures 3-5, continuous, dotted and
dashed lines are used to depict characteristics of the
closed-loop system for the cases where Qw=1L/s
and td=9 s, Qw=4L/s and td=8 s, Qw=6L/s and td=7
s, respectively.

In the case of a SOPDT model (Case II), with
the same design requirements and with the multipli-
cative uncertainty of the form (18), the solution of
the problem (17), yields p1=1.1 and p1/p2=0.0244.
The graphical representation of its solution is depi-
cted in Figure 6. Simulation results for this case are
given in Figures 7 and 8, wherein the controller
output, as well as the output of the closed-loop sys-
tem, are depicted for several values of the parame-
ters of the system. It is worth noticing that, in order
to obtain the above simulation results, the limits of
the control actuator are 0 (off valve) and 10 (fully
on valve), while the PWM used has a period 5 sec.

From the above simulation results, it can be
easily seen that the designed H∞-PI controllers have
a quite satisfactory performance for a wide uncer-
tainty of the fertigation process model.

6  Conclusions
In the present paper, the H∞  control design me-

thod, has been applied to the analysis of a control
system composed either of a FOPDT model or a
SOPDT model of the water’s electrical condu-
ctivity change of a fertigation process and a PI con-
troller. As it can be seen from the simulation results
and in particular from Figures 3-5, 7 and 8, the PI
controller designed in the context of H∞ can effe-
ctively face large changes in model parameters, and
retains a satisfactory performance in cases of load
disturbances as well as set point changes.
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Figure 2. Solution of problem (17) in Case I.

Figure 3. Controller output u(t), in Case I, for
several cases of the system parameters.

Figure 4. Closed-loop system response to a set
point step change, in Case I, for several cases of the

system parameters.
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Figure 5. Closed-loop system response to step load
disturbances, in Case I, for several cases of system

parameters.
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Figure 6. Solution of problem (17) in Case II.

Figure 7. Controller output u(t), in Case II, for
several cases of the system parameters.

Figure 8. Closed-loop system response to a set
point step change, in Case II, for several cases of

the system parameters.

The present technique provides a systematic tool
for tuning of low level controllers, which is in com-
mon use in Agriculture, and which can be seen as
part of hybrid systems that combine conventional
applications with knowledge based systems. Such
hybrid systems are currently a strong demand in
agricultural process control.
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