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Abstract

In this paper we discuss the existence and uniqueness of solution in the neighborhood of an ideal one for

driftless system.

This problem is very important, since generally the model used for the control design was deduced from some

approximation. The objective of this paper is to show that some particular inputs and quadratic terms may

render the control problem ill posed, in the sense that the real solution may be not unique or does not exist in

the neighborhood of the expected one.
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1 Introduction

In control theory, the type of bifurcation studies is gen-
erally with respect to stability [1] or controllability [7].
Here, we propose a work preliminary to these problems,
we discuss the existence and uniqueness of solution in
the neighborhood of an ideal one and this for driftless
system. Generally the model used for the control de-
sign was deduced from some approximation. So, some
forgotten terms give, for particular inputs, dynamical so-
lution \very fare" to the expected one. Roughly speak-
ing, we design our control law on the base of an approxi-
mated model which gives an expected solution and unfor-
tunately, for some particular inputs and quadratic terms,

the real solution may be not unique or does not exist in
the neighborhood of the expected one. Obviously, this
preliminary work is very important in control theory, be-
cause stability, controllability, an analyze based on the
expected solution may be totally irrelevant. Thus, our
approach is based on bifurcation theory [6, 10, 12] and so
in the neighborhood of the dominant order terms 1 \lin-
ear" solution of the problem 2, we discuss the number of
solutions to our nonlinear control problem.

In section two, we state the problem of the existence
and number of solutions to the integration for driftless
systems. In section three we reformulate the problem ab-
stractedly. In the next section, we analyze the existence

and the uniqueness of the solution. We end this section
with our main result which highlights the fact that we
may have no solution, one solution or two solutions, in the
neighborhood of the expected (\linear") solution, in func-
tion of the system structure and the input choice. Thus,
we exhibit a bifurcation phenomenon from a nontrivial
solution associated with the \linear" dynamics. We con-
clude by some comments and perspectives related to the
necessity of such a preliminary discussion before the anal-
ysis of the analyze system stability, controllability, etc.

2 Problem statement

Let us consider the following driftless system form

_x = g1(x)�u1 + g2(x)u2 (1)

where x 2 Rn, �u1, u2 2 Rand g1(x), g2(x) are C
k vec-

tor �elds for some su�ciently large k and t 2 I = [0; T ],
where T > 0 is �xed.

We suppose, that the following assumption is always
veri�ed:

Hypothesis (H.1)

Rankfspanfg1; g2; adg1g2; : : : ; ad
n�2
g1

g2gg = n

1Here, we use the extension of Poincar�e forms to controlled dynamics [8, 7].
2linear with respect only to a subpart of the state and input



The assumption (H.1), implies that Rank(g1(0); g2(0)) =
2. Consequently there exist (see [2]) a di�eomorphism
and a prefeedback on �u1 = �(x; u1), � 2 Ck with respect
to x and u1. Moreover, as @�

@u1
6= 0, the system (1) is

equivalent to

_z1 = u1 (2a)

_~z = A(z1)~zu1 + O(~z)2u1 + B(z1)u2 +O(~z)u2(2b)

where ~z = (z2; :::; zn), A(z1); B(z1) 2 R
n�1, A(z1), B(z1)

are continuous on I, O(~z) is at least linear on ~z and O(~z)2

is at least quadratic on ~z.

Moreover, as our purpose here is not to study the
stabilizability of (2) (for this, see for example [5]) we
assume that the control law takes the following form :

C-1 u1 = f(z1; t), f is continuous and z1(0) is �xed.

Remark: As u1 is continuous with respect to both vari-
ables and moreover z1 is continuous with respect to t, u1
is obviously continuous-time function and this assump-
tion is enough for our purpose.

C-2 u2 = h(z1; ~z) is C
2 in ~z and h(z1; 0) = 0

Remark: Control constraints imply that there exist two
matrices F (z1) and G(z1) of dimension n� n, such that:

u2 = F (z1)~z + ~zTG(z1)~z +O(~z)3 (3)

Consequently, we rewrite (2) as follows :

8<
:

_z1 = f(z1; t)
�
= u1

_~z = A(z1)~zu1 +O(~z)2u1
+ (B(z1) +O(~z))(F (z1)~z + ~zTG(z1)~z)

Moreover, by convention we have ~z(0)
�
= ~z0 and ~z0 is in

the neighborhood of zero in Rn�1.

In the paper, the main key point is to characterize the
in
uences of the quadratic terms in ~z (and this in function
of u1) with respect to the existence and the uniqueness
of the solution for system (2) . Thus, we note by 
 the
C2 function with respect to ~z de�ned from Rn�1�R� I

to Rn�1 which is equal to


(~z; u1; t) = O(~z)2u1 +B(z1)~z
TG(z1)~z

+ O(~z)(F (z1)~z + ~zTG(z1)~z)

Thanks to 
, hereafter we will formulated abstractedly
the problem, this greatly simpli�es our discussions.

3 Abstractedly problem formula-

tion

First, it is important to note that we discuss and partic-
ularize with respect to system (2) the result obtained in
[3] in a more general context.

Let Y = C(I;Rn�1) be the set of continuous functions
de�ned on time interval I, having values in a subspace
R
n�1,taking the uniform convergence norm given by:

y 2 Y : jjyjj1
�
= sup

t2I

jjy(t)jj0where jj:jj0 is a norm onRn�1

(Y; jj:jj1) is a Banach space ([6]).
Moreover, takingX = C1(I;Rn�1) the set ofC1 func-

tions de�ned on the time interval I having values in sub-
space Rn�1, we set the norm for X as follows:

x 2 X jjxjj= jjxjj1+ jj _xjj1

and thus (X;Rn�1) is also a Banach space .
Let U � C(I;R) be the set of continuous controls on

u1, we de�ne the linear operator L by:

L : X � U ! Y

(~z; u1) ! LA(z1);B(z1);F (z1)(~z; u1)(t) = ~z � �(t)~z(0)

where �(t) is the fundamental matrix (
ow matrix) asso-
ciated with the linear subsystem 3 :�

_~z = (A(z1)u1 + B(z1)F (z1))~z
~z(0) = ~z0

(4)

and we de�ne the nonlinear operator N by:

N : X � U ! Y (~(z); u1)
(~z; u1) ! NG(z1);B(z1);F (z1)(t)

=
R t
0
�(t)��1(s)
(~z(s); u1(s); s)ds

Remarks:

� In the de�nition of N , ��1(s) always exists and this
is the 
ow solution at time �s.

� For the sake of simplicity, we note L in
stead of LA(z1);B(z1);F (z1) and N instead of
NG(z1);B(z1);F (z1). 4

From this, we immediately obtain :

Proposition 3.1 Problem (2) is equivalent to:

L(~z; u1) = N (~z; u1)where ~z 2 X and u1 2 U (5)

in the sense that each solution of (2) is solution of

problem (5) and inversely.

The proof follows immediately expressing in (5) the
two operators thanks to the De�nition. Thus deriving (5)
we obtain (2) and we have the same solution on X, for
all �xed u1 2 U .

3In the Poincar�e form the order 1 with respect to ~z and z1, u1 considered as order zero term.



4 The existence and uniqueness

of solutions

4.1 The case of ~z0 = 0

As L is invertible on Y for u1 being �xed
4 , thus equation

(5) is equivalent to:

~z �N (~z; u1) = 0

We note :

M : X � U ! X � U

(~z; u1) ! M (~z; u1) = ~z �N (~z; u1)

M veri�es :

i) M (~z; u1) = 0
ii) M (0; 0) = 0
iii) D~zM (:; 0)j0 = IdjX ;

(6)

where D~z is the Frechet partial derivative of M in rela-
tion with to ~z.

The theorem of implicit functions is applied and con-
sequently equation (6) admits a unique solution ~z� =
~z�(u1) such that z

�(0) = 0 and ~z�(u1)�N (~z�(u1); u1) = 0
for each u in a neighborhood of 0 in R where ~z� is con-
tinuous with respect to u1.

We resume this result in the following theorem:

Theorem 4.1 For ~z0 = 0, the problem (2) admits a

unique solution ~z�, locally in the neighborhood of 0 in

X, with ~z�(0) = 0, ~z� is continuous in u1, u1 being in a

neighborhood of 0 in U .

Remark: This case corresponds, for example, to a case
which has only its velocity di�erent from zero. This is not
the most important case and obviously, in this solution
the bifurcation does not appear.

Consequently, we focus our attention now to the other
case (i.e. z0 6= 0).

4.2 The case of ~z0 6= 0 : Bifurcation Anal-

ysis

When ~z0 6= 0, the linear problem (4) obviously admits
a nontrivial solution noted ~Z0, and such that ~Z0(t) =
�(t)~z0.

Thus, operator L veri�es the following proposition:

Proposition 4.1 The operator L veri�es

i L is a linear operator, continuous and bounded in

~z.

ii dim KerL = codim Im L = 1.

iii L is a Fredholm ([6, 10]) operator of index 0 such

that :

8~z 2 X; 9 � 2 R; 9v 2 KerL?; ~z = � ~Z0 + v

and

8h 2 Y; 9 h1 2 ImL; 9 h2 2 KerL?; h = h1 + h2

Remark: By de�nition, index L = dimfKerLg �
codimfImLg.

Proof :

i. results from the de�nition of L.

ii. Ker L is spanned by ~Z0(t), thus dimKer L = 1,
and from the Fredholm Alternative, problem L~z =
h admits a solution if and only if:

Z T

0

< h(t); ~Z0(t) > dt = 0; (7)

where < :; : > represents the inner product inRn�1.
So codim Im L = 1 and Indix L = 0.

iii. As Ker L and Im L have, respectively, �nite di-
mension and �nite codimension, knowing that they
are closed, we can de�ne continuous projections on
each one, thus considering:

P0 : X ! Ker L

~z ! (P0~z)(t) = c(

Z T

0

< ~z(s); ~Z0(s) > ds) ~Z0(t)

where c =
� R T

0
jj ~Z0(s)jj

2
0ds

��2
, is chosen in order

to normalize P0~z .

P0 is a projection on Ker L, and therefore:

8~z 2 X ~z = ~z1 + ~z2

where ~z1 2 Ker L and ~z2 2 Ker L? and ~z2 is such
that Z T

0

< ~z2(s); ~Z0(s) > ds = 0

4.

Now, we de�ne the projection:

P1 : Y ! Im L

y ! (P1y)(t)

= y(t) � (
R T
0
< y(s); ~Z0(s) > ds) ~Z0(t)

(8)
and K : P1Y = Im L! (I � P0)X is continuous

We obtain the following lemmas:

4L�1 is equal to the identity function in this case



Lemma 4.1 Problem (2) is equivalent to:

L(� ~Z0 + v; u1) = N (� ~Z0 + v; u1) (9)

in the sense that each solution of (2) is a solution of (9)

and inversely.

Remark : The proof follows immediately from (5)
and the previously de�ned projection.

Lemma 4.2 ~z is a solution of Problem (2) if and only if

~z = � ~Z0 + v, where (�; v) 2 R� (I � P0)X is a solution

of :

�
v = KP1N (� ~Z0 + v; u1)

0 = (I � P1)N (� ~Z0 + v; u1)
(10)

Proof : From the Fredholm alternative, a solution
to problem (9) exists if and only if

(I � P0)N = 0

So, there exists ~z = ~z(N ) which is a solution of (9) such
that P0~z(N ) = 0, and the proof follows. 4

Remark : The �rst equation of (10) is called the
auxiliary equation and the second is the well known bi-
furcation equation. In fact, this formulation of our prob-
lem permits us to transform the resolution of the problem
(2) in an in�nite dimension to the resolution of two equa-
tions : the �rst one the auxiliary equation are in in�nite
dimension but with an unique solution v� and the second
one are resolved on < thus in �nite dimension.

4.2.1 Study of the auxiliary equation :

In order to discuss solution of the �rst part of (10) we
introduce a new operator. Let :

H : (I � P0)X �R� U ! (I � P0)X

be de�ned by

H(v; �; u1) = v �KP1N (� ~Z0 + v; u1) = 0 (11)

Moreover, H veri�es the following assumption :
i) H(0; 0; 0) = 0.

ii)H is C2 with respect to v

iii)DvH(:; 0; 0)jv=0 = Idj(I�P0)X where Dv is the Frechet
partial derivative of H relative to v.

In this case the implicit function theorem ensures that
equation (11) admits a unique solution v�(�; u1) on a
neighborhood Vv in (I �P0)X, where � 2 V�, with V� is
a neighborhood of � close to 0 in R. Moreover, u1 2 Vu1
where Vu1 is a neighborhood of u1 close to 0 in U . We
also have v�(0; 0) = 0 and v� is continuous and relative

to � and u1 and v� is de�ned from V� � Vu1 �! Vv.
Moreover v� belongs to class C2 with respect to �. Thus,
we can write v� as :

v�(�; u1) = a(u1) + b(u1)�+
1

2
c(u1)�

2 + d(�; u1)

where a(u1), b(u1) and c(u1) are functions de�ned
from Vu1 to Vv and d(�; u1) is on O(j�j

2).

Remark : As v� is uniquely determined in Vv, the
number of solutions to problem (2) is exactly determined
by the number of � solutions in the bifurcation equation,
because each solution will be written as :

~z = � ~Z0 + v�(�; u1)

4.2.2 Bifurcation equation analysis

Now the second equation of (10) the so called Bifurcation
equation is equivalent to :

Z T

0

< N (� ~Z0 + v�(�; u1); u1); ~Z0 > dt = 0 (12)

Rewriting (12) , we have:

�I := V� � Vu1 ! <

�I(�; u1) =
R T
0
<
� R t

0
�(t)�(s)�1
(� ~Z0(s)

+ v�(�; u1(s)); u1(s); s)ds
�
; ~Z0(t) > dt

= 0

As �I is a C2-function in �, we can write :

�I(�; u1) = â(u1) + b̂(u1)�+
1

2
ĉ(u1)�

2 + ~d(�; u1) (13)

where â, b̂ and ĉ are functions de�ned from Vu1 to R
and ~d(�; u1) = O(j�j2) when �! 0.

First consideration

Suppose that : 9u�1 2 Vu1 such that @ �I
@�

(�; u�1) 6= 0 for

� 2 V̂� where V̂� � V�. In this case, the Implicit func-
tion theorem ensures that there exists a unique solution

��
�
= ��(u1) for each u1 2 V̂u1 where V̂u1 is a neigh-

borhood of u�1 such that u�1 2 V̂u1 � Vu1 , and equation
�I(��; u�1) = 0. Thus, we also �nd that ��(0) = 0 and
�� is continuous on Vu1 . So we have no bifurcation here
and the nonlinear problem (2) has a unique solution
~z� = �� ~Z0 + v�(��; u1) where �� 2 V̂�, u

�
1 2 V̂u1 and

v� 2 Vv in (I � P0)X. This solution is the continuous

extension of the ~Z0(t), which is the solution of the asso-
ciated linear problem.



Second consideration

@ �I

@�
(�; u1) = 0; � 2 V�; u1 2 Vu1

knowing that:

@2 �I

@�2
(0; u1) 6= 0; 8u1 2 Vu1 (
 being quadratic in ~z).

Thus, the Implicit Functions theorem is applied for
@�I
@�

(�; u1) = 0 and therefore there exists a unique so-

lution ��� = ���(u1) such that @�I
@�

(���; u1) = 0 with
���(0) = 0 and ��� is continuous and relative to u1, u1
being de�ned on a neighborhood ~Vu1 � Vu1 and ��� de-
�ned from ~Vu1 to V̂� � V�, where ~V� is a neighborhood
such that ~V� � V�.

Therefore, we can write :

�I(�; u1) = �I(���; u1) +
1

2

@2 �I

@�2
(���; u1)(� � ���)2

+ O(j�� ���j2) (14)

= 0

when � �! ���.

@2�I
@�2

(���; u1) has the same sign as @2�I
@�2

(0; u1) for �
�� 2

~V� and u1 2 ~Vu1 being su�ciently small.

We know that @2�I
@�2

(0; u1) 6= 0, so without loss of

generality, we can suppose that @2 �I
@�2

(0; u1) > 0. In this
case ��� is a minimum for �I(:; u1), and inversely when
@2�I
@�2

(0; u1) < 0, in that case, ��� is a maximum for
�I(:; u1).

Remark As @2 �I
@�2

(0; u1) 6= 0, this implied four pos-
sibilities :

i- When @2�I
@�2

(0; u1) > 0 and �I(���; u1) < 0 then equa-
tion (14) has two solutions in the neighborhood of ���

ii- When @2 �I
@�2

(0; u1) < 0 and �I(���; u1) > 0 then equa-
tion (14) has two solutions in the neighborhood of ���

iii- When @2�I
@�2

(0; u1) > 0 and �I(���; u1) > 0 then
equation (14) has a unique solutions in the neighborhood
of ���

iv- When @2�I
@�2

(0; u1) < 0 and �I(���; u1) < 0 then
equation (14) has a unique solutions in the neighborhood
of ���.

Thus, if we denote by :

C(u1) = �I(���(u1); u1):
@2 �I

@�2
(0; u1)

where the function C is de�ned from ~Vu1 �! R and

W 0 = fu1 2 ~Vu1=C(U1) < 0g

W 00 = fu1 2 ~Vu1=C(U1) = 0g

W 000 = fu1 2 ~Vu1=C(U1) > 0g

We then obtain, with respect to control set
W 0;W";W 0" for the second consideration :

Theorem 4.2 There exist, a neighborhood Vv of v = 0
in X, a neighborhood ~V� of � = 0 in <, a neighborhood
~Vu1 of u1 = 0 in U and a control u1 2 ~Vu1 such that if :

1. u1 2 W 0, then problem (2) admits two distinct so-

lutions which bifurcate from ~Z0.

2. u1 2 W 00, then problem (2) admits a unique solu-

tion in the neighborhood of ~Z0.

3. u1 2 W 000, then problem (2) has no solution in the

neighborhood of ~Z0.

Remark : Obviously, if u1 2W" (case 2 of the previ-
ous theorem) the problem 2 verify the Cauchy- Lipschitz
Conditions [9] or at least the Carath�eodory conditions.

5 Conclusion

Our main result, Theorem 4.2, highlights the fact that
with respect to the u1 choice, the driftless integrability
of the nonlinear system (2) has di�erent possibilities :
one unique solution, two solutions or no solution in the
neighborhood of the linear one. The linear solution is
generally the one known and computed by the engineer,
but it is \pertinent" solution with respect to quadratic
uncertainties only if u1 2W". In the other case, we show
a bifurcation with respect to the existence and uniqueness
of the solution in the neighborhood of linear one. This
type of bifurcation is, to our knowledge, not currently
studied in control theory [3] and in control application
[4]. In fact, for our system, there exists no solution (in
the neighborhood of the linear one) in the case where u1
is inW 000 and consequently u1 must be taken outsideW 000.
We think that, in the case where u1 is inW

0 as both solu-
tions stay close to the linear one, this may be enough for
some control purposes. Thus in this paper, we want just
said for system (2) \linearly" approximated, take care
to the u1 choice and this not only with respect to sta-
bility or controllability bifurcation but also for existence
and uniqueness of real solution close to the approximated
one.
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