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Abstract

In this paper we study the problem of stabilization of nonlinear systems with uncontrollable linearization.

The use of normal forms, permit to �nd conditions on controllability and stabilizability.

We remark that conditions on controllability and stabilizability are intimately related to a set of quadratic

invariants.
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1 Introduction

In this paper, we analyze nonlinear discrete time con-
trol systems with one uncontrollable mode, with a single
input. For that we use normal forms which permits to
transform the systems into its simplest form, and hence
the study becomes easier.

The problem is to study controllability and local sta-
bilizability for systems whose dynamics are described by

�+ = f(�; v) (1)

where �+ = �(k + 1), � 2 IRn is the state, v 2 IR is the
input and � 2 IR is a parameter. Let us suppose that the
systems is not linearly controllable and that there exists
only one uncontrollable mode, i.e.

rank( B AB A2B � � � An�1B ) = n� 1 (2)

where A =
@f
@�

(0; 0), B =
@g
@v

(0; 0).

Let us expand (1) in Taylor series and transform its
linear part to the Brunovsk�y form

z+ = ("+�)z+f
[2]

1
(z;x)+g

[1]

1
(z;x)u+h

[0]

1
u2+O(x;u;z)3 (3)

x+ = (Id+A2)x+B2u+f
[2]

2
(z;x)+g

[1]

2
(z;x)u+h

[0]

2
u2+O(x;u;z)3

with z is the linearly uncontrollable state, x represents
the linearly controllable part. � being the uncontrollable

mode of the linearization at (z; x) = (0; 0) and " = �1
representing the limit of stability of linear discrete time

systems, and u is the new input. f
[j]
i and g

[j]
i are poly-

nomials of degree j.

As shown in [9], the quadratic normal forms of such
systems are given by

� If � =2 f�"; 1� "g

z+=(�+")z+
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i=1

xixix

2
i
+
zx1 zx1+h

[0]
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u2+O(x;z;u)3

x+=(Id+A2)x+B2u+ ~f [2] (x)+�h
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u2+O(x;z;u)3

(4)

� If � = 1� "
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xixix
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zzz
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zx1 zx1+h
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x+=(Id+A2)x+B2u+ ~f [2] (x)+�h
[0]

2
u2+O(x;z;u)3

(5)

� If � = �"
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xixix

2
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zzz

2+�zu+h
[0]

1
u2+O(x;z;u)3

x+=(Id+A2)x+B2u+~�zu+ ~f [2](x)+�h
[0]

2
u2+O(x;z;u)3

(6)
with:

~f [2](x) = [ ~f
[2]
1 (x) ~f

[2]
2 (x) : : : ~f

[2]
n�1(x)]

T (7)

~f
[2]
i (x) =

8><
>:

nX
j=i+2

aijx
2
j i = 1; n� 2;

0 i = n � 1:

(8)



and
�h
[0]
2 = [h

[0]
2;1 � � �h

[0]
2;n�2 0]

T

The matrices A2 2 IR(n�1)�(n�1) and B2 2 IR(n�1)�1 are
given by:

A2 =

2
666664

0 1 0 � � � 0
0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1
0 0 0 � � � 0

3
777775 ; B2 =

2
6664

0
...
0
1

3
7775

Now, we recall theorems in [9] which gives the
parametrization for the equilibrium set of systems sat-
isfying assumption (2). Let us recall that an equilibrium
set of (1) is given by

E = f�j9u0 such that � � f(�; u0) = 0g

Theorem 1.1 Consider the system (3). If � 6= 1 � ",

then, there exists an open U in the neighborhood of

(z; x) = (0; 0), such that the points in �E \ U satisfy:

x1 = �

z = O(�)2 (9)

xi = O(�)2; i = 2; n� 1:

�

Remark: This Theorem shows that, in a neighborhood of
the origin, the equilibrium set is reduced to the origin for
a given value of x1, and so there is no bifurcation.

The topology of the equilibrium set for systems with
� = 1 � ", depends on the quadratic part of its normal
form. This part will be associated to the matrix:

Q =

�

zz

1
2
zx1

1
2
zx1 
x1x1

�

The term of intercorrelation between x1 and z, can be
canceled by rotation of the quadratic surface which ap-

proximates the equilibrium set, i.e., by diagonalization of
the matrix Q. Let T be the diagonalization matrix, sup-
pose that it is orthogonal, i.e. Q = TTDT , D being the
diagonal form.

Theorem 1.2 Given a system (3), with � = 1� ".

i. If

det(Q) > 0; (10)

then, there is no equilibrium point other than

(z,x)=(0,0) near the origin.

ii. If

det(Q) < 0; (11)

then, the equilibrium set has the following parametri-

zation1:

xi = O(�)2; for i = 2; n� 1:�
z

x1

�
= T

"
1

�
q
��1

�2

#
� +O(�)2 (12)

�

2 Main Results

2.1 The Controllability

In this section we study the controllability of the system
at the equilibrium points in E. Let us note that the con-
trollability we are speaking about is the one associated
to the linearization.

De�nition 2.1 Let (~x0; �0) be in E. The system

~x+ = f(~x; �; u)

is linearly controllable at (~x0; �0) if its linearization

(A~x0�0; B~x0�0) is controllable.

The study of controllability of the points in the neigh-
borhood of the origin depends on the quadratic part. Let
us begin with the case where � =2 f�"; 1� "g, for that we
have the following theorem:

Theorem 2.1 Consider the system (3), with

� =2 f�"; 1�"g. If 
x1x1 6= 0, then there exists a neighbor-

hood U of (z; x) = (0; 0) such that the system is control-

lable for all equilibrium points in U except at the origin.

�

Proof of Theorem 2.1. Since (3) with � =2 f�"; 1� "g
can be transformed into its normal form (4), and since a
change of coordinates and a feedback does not a�ect the
controllability of the linearization (since the linear part is
invariant), then it is su�cient to study the controllability
of the normal form. Let us note the linearization of the
normal form (4) around an equilibrium point (9), by:

(A� ; B�)

1where 2; n� 1 denotes that i is an integer which varies from 2 to n� 1.



using (4) and (9), we �nd:

A� =

�
�+ " 0
0 Id +A2

�

+

2
6664


zx1� 2
x1x1� 0 � � � 0
0 0 0 � � � 0
...

...
...

...
0 0 0 � � � 0

3
7775+ O(�)2

and

B� =

�
0
B2

�
+ O(�)2 (13)

It can be proved that the i � th line of Ak
�B� , noted

fAk
�B�gi, equals to, for k = 0; � � � ; n� 1

fAk
�B�gi = 2k�i;n�k + O(�)2 (14)

and

An�1
� B� =

�
2n
x1x1� 0 � � � 0

�
+O(�)2 (15)

using (14) and (15) the matrix of controllability have full
rank for small variations of � if 
x1x1 6= 0.

Remark: The same theorem is valid for the case where
� = �". The proof is slightly di�erent, since the normal
form changes. For the sake of brevity, We omit it.

For � = 1 � ", the topology of the equilibrium set
change. The following Theorem permits the study of the
controllability of such systems.

Theorem 2.2 Consider the system (3), with � = 1 � "

and suppose the inequality (11) satis�ed. If the coe�-

cients of the resonant terms of the system satisfy:

[
zx1 2
x1x1 ]T

"
1

�
q
��1

�2

#
6= 0 (16)

then, the system is linearly controllable for the equi-

librium points in the neighborhood of the origin in

E�nf(0; 0)g. �

Proof of Theorem 2.2. As in the precedent theorems
we use (5), its linearization around an equilibrium point
(z; x) 2 E is:

A� =

�
1 0
0 Id +A2

�
(17)

+

2
6664

�1 �2 0 � � � 0
0 0 0 � � � 0
...

...
...

...
0 0 0 � � � 0

3
7775+O(�)2

with �1 = 
zx1x1+2
zzz and �2 = 2
x1x1x1+
zx1z, and
B� is given by (13).

It can be proved, that the i� th component of Ak
�B�

is given by (14).

Moreover:

An�1
� B� =

2
6664

2n�1(2
x1x1x1 + 
zx1z)
0
...
0

3
7775+O(�)2 (18)

Consequently for an equilibrium point de�ned by (12)
and with (18) we obtain:

An�1
� B� =

2
6664

2n�1$

0
...
0

3
7775+ O(�)2 (19)

with $ = [
zx1 2
x1x1 ]T

"
1

�
q
��1

�2

#
.

We �nd from (14) and (19) that the controllability
matrix [B�; A�B� ; � � � ; A

n�1
� B� ] has a full rank for small

values of � if $ 6= 0.

Hence:

1. if [
zx1 2
x1x1 ]T

"
1q
��1

�2

#
6= 0, then the system

is linearly controllable in E+nf0; 0g.

2. if [
zx1 2
x1x1 ]T

"
1

�
q
��1

�2

#
6= 0, then the system

is linearly controllable in E�nf0; 0g.

Remark: if det(Q) > 0, the system is not linearly con-
trollable, since the equilibrium set is reduced to (z; x) =
(0; 0), which is not linearly controllable.

2.2 The Stabilizability

Now, we �nd su�cient conditions for the stabilizability
of controlled systems using the coe�cients of resonant
terms in the normal forms. Starting from (3), and for
j� + "j > 1, the system is not stabilizable by a class C1

feedback. On the other hand for j�+ "j < 1, the system
is stabilizable.

The case j� + "j = 1 is critical. This case is treated
using Poincar�e analysis and the theorem of center mani-
fold.

Theorem 2.3 Consider the system (3), with j�+"j = 1.
If 
zx1 6= 0, then there exists a quadratic controller which

asymptotically stabilizes the origin. �



Proof of Theorem 2.3 . At �rst, we remark that the case
j�+ "j = 1 is subdivided into :

1. � + " = �1, this case corresponds to the normal
form (4).

2. � + " = 1, this case corresponds to the normal
form(5).

then, according to (4) and (5) we see that there is only
one term which distinguishes the two cases, it is 
zzz

2.
By combining the two normal forms, we see that z+ in
(4) and (5) can be written as

z+ = (� + ") z +

n�1X
i=1


xixi x
2
i + 
zx1z x1

+
�+ " + 1

2

zz z

2 + h
[0]
1 u2 +O(z; x; u)3 (20)

The x�part is common and equals to

x+ = (Id+A2)x+B2u+ ~f [2](x)+�h
[0]
2 u2+O(x; z; u)3 (21)

Since normalization does not a�ect linear controllabil-
ity, then we will prove the theorem for the normal form
Consider the feedback law:

u(z; x1) = F1x1+F2x2+ � � �+Fn�1xn�1+�z+�z2 (22)

with F = [F1; F2; � � � ; Fn�1]
T stabilizing the linearly con-

trollable part, i.e. A2 + B2F is Hurwitz, and F1 6= 0.

From the previous argument, and since the z-part
have a critical eigenvalue. Hence, to analyze this case,
it is su�cient to use the center manifold theorem [7].

The center manifold of the closed loop system is given
by:

x = �(z) =

2
64

�1(z)
...

�n�1(z)

3
75 = �z + �z2 + O(z3) (23)

with � = [�1; : : : ; �n�1]
T and � = [�1; : : : ; �n�1]

T . The
coe�cients being unknown, we should �nd equations that
they satisfy. Injecting the expression (23) in (22), we ob-
tain

u = (F�+ �)z + (F� + �)z2 +O(z3) (24)

Injecting (24) in (20) , we obtain

z+ = (� + ")z +
hn�1X
i=1


xixi�
2
i + 
zx1�1 (25)

+ h
[0]
1 (� + F�)2 +

� + " + 1

2

zz

i
z2 + O(z3)

Moreover, since we are on the center manifold x = �(z),
then using (23) and (25)

�(z+) = (�+ ")�z +
h
(

n�1X
i=1


xixi�
2
i + 
zx1�1 + �

+ h
[0]
1 (� + F�)2 +

�+ "+ 1

2

zz)�

i
z2 +O(z3)

(26)

Replacing (24) in (21), we obtain:

x+ =
n
(Id + A2)�+B2(F�+ �)

o
z +

n
(Id +A2)�

+ (F� + �)B2 + h
[0]
2 (F�+ �)2

o
z2 + O(z3) (27)

Since x+ = �(z+), and using (26), (27), we obtain the
following system of equations:

[((1� �� ") Id +A2) + B2F ]�+B2� = 0

(A2 + B2F )�+B2�+ h
[0]
2 (F�+ �)2 =hn=1X

i=1


xixi�
2
i + 
zx1�1 + h

[0]
1 (� + F�)2 +

� + "

2

zz

i
�

Hence, to �nd �i and �i for i = 1; n� 1, it is su�cient
to resolve the precedent system of equations.

1. Determination of the �i; i = 1; n� 1:

Using (2.2), and the expressions of A2 and B2,
we obtain the following system of equations:

(1� �� ")�1 + �2 = 0
...

(1� �� ")�n�2 + �n�1 = 0

(Fn�1 + (1� �� "))�n�1 +

n�2X
i=1

Fi�i = ��

(28)

Using the �rst n� 2 equations of (28), we obtain:

�i = (� + " � 1)i�1�1 i = 2; n� 1

�1 is obtained by replacing this expression in (28):

�1 = �
�

(� + " � 1)n�1 +
Pn�1

i=1 (�+ "� 1)i�1Fi
(29)

if (� + " � 1)n�1 +

n�1X
i=1

(� + " � 1)i�1Fi = 0, then

� = 0 and �1 can take any real value.



2. Determination of the �i; i = 1; n� 1:

Using (28), the expressions of A2 and B2, we ob-
tain:

�1 =
1

F1

n
� ��

n�1X
i=2

Fi�i � h
[0]
2;n�1(F�+ �)2

+ [

n�1X
i=1


xixi�
2
i + 
zx1�1 + h

[0]
1 (� + F�)2

+
� + " + 1

2

zz ]�n�1

o

�i = �h
[0]
2;i�1(F�+ �)2 +

n n�1X
i=1


xixi�
2
i + 
zx1�1

+ h
[0]
1 (� + F�)2 +

�+ "+ 1

2

zz

o
�i�1

for i = 2; � � � ; n� 1.

Using the expressions of �i and �i for i = 1; n� 1, we
can write the projection of the closed loop system on the
center manifold:

z+ = (�+")z+
P

n�1

i=1

xixix

2
i
+
zx1 zx1+h

[0]

1
u2+O(x;z;u)3

= (�+")z+

h
�+"+1

2

zz+

P
n�1

i=1

xixi�

2
i
+
zx1�1

+ h
[0]

1
(�+F�)2

i
z2+

hP
n�1

i=1

xixi�i�i+

1
2
�1
zx1

+ h
[0]

1
(�+F�)(F�+�)

i
z3+O(z4) (30)

To have asymptotic stability of (30), we choose � and
� such that

� + " + 1

2

zz +

n�1X
i=1


xixi�
2
i + 
zx1�1 + h

[0]
1 (�+ F�)2 = 0

(31)
and:

(�+")

n
1
2
�1
zx1+

P
n�1

i=1

xixi�i�i+h

[0]

1
(F�+�)(F�+�)

o
< 0 (32)

Let us note the left hand side of (31) by �(�). Then,

�(�) = 
zx1 �1 +
nn�1X

i=1


xixi(�+ "� 1)2i�2

+ h01(� + " � 1)2n
o
�2
1 +

� + " + 1

2

zz (33)

Using (33), the set of solutions of �(�) = 0, noted as
��, will be given by:

� If �+ " = �1,

� 2

(
0;

4 
zx1Pn�1
i=1 
xixi4

i +
Pn�1

j;k=1FjFk(�2)
j+k

)
(34)

� If �+ " = 1, then

� =

zz


zx1
F1 if 
x1x1 = 0

� =

zx1 �

p

2zx1 � 4
x1x1
zz

2
x1x1
F1 if 
x1x1 6= 0

(35)

For � we use (32),(31),(30) and (30), to obtain :

1

F1

(
1

2

zx1 + 
x1x1�1)� >

n 1

F1

(
1

2

zx1 + 
x1x1�1) �1

+

n�1X
i=2


xixi�i�i � h
[0]
1 h

[0]
2;n�1(F�+ �)3

o
(36)

with �1 =
Pn�1

i=2 Fi�i + h
[0]
2;n�1(F� + �)2 We conclude

that choosing � as in(34) or (35) and � given by (36),
guarantees the existence of controllers such that projec-
tion of the closed loop dynamics on the center manifold is
asymptotically stable. Hence, using the center manifold
theorem the global closed loop system is asymptotically
stable.

3 Conclusion

In this paper, the analysis and the control of nonlinear
discrete time systems with one dimensional uncontrol-
lable mode, was done. We used normal forms to study
the controllability and the stabilizability in the neighbor-
hood of equilibrium sets. The study of the stabilizability
of the system, permitted to propose a quadratic stabiliz-
ing controller.

Another relevant topic concerns the analysis and
the control of the same class of systems when it is
parametrized. In this case we will have two sources of
bifurcations. The �rst is due to the fact that the system
is not linearly controllable, as shown in [9] and in this pa-
per. The second source is due to parameters. This work
will be presented in another paper.
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