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Abstract:- This paper presents a new approach on localization for a team of mobile agents. This approach
is based on the cooperative use of each agent as a landmark by its partner(s). The proposed technique is
applied to the exploration problem.
We present an algorithmic solution, simulation results, as well as a cost analysis and experimental data.

In this approach a pair of robots observe one another’s behaviour, thus greatly reducing odometry errors.
We assume the robots can both directly sense nearby obstacles and see one another. We have implemented
both these capabilities with actual robots in our lab. By exploiting the ability of the robots to see one an-
other, we can detect opaque obstacles in the environment independent of their surface reflectance properties.

Key-Words:- Localization, Multi-Agent, Intelligent Collaboration, Exploration, Uncertainty Reduction.

1 Introduction
In this paper we discuss the benefits of cooperative
localization during the exploration of a large envi-
ronment. A new sensing modality is used in order
to improve the accuracy of the position estimation of
each robot. The robots explore the environment in
teams of two; each robot is using the position of its
partner in order to update the estimate of its posi-
tion. Our approach is sufficiently robust to be able
to cope with environments that may have uneven or
slippery terrains, or whose surface reflectance prop-
erties are not well suited to conventional sensors.
This paper builds on previous work in which

we have examined algorithms for multi-robot explo-
ration in a theoretical context [16]. In this paper,
we consider how to realistically implement a low-cost
multi-robot position tracker and evaluate its perfor-
mance. Moreover, we examine the empirical perfor-
mance of multi-robot localization and exploration in
a simulation context.
Observe that conventional approaches to robotic

mapping and navigation are typically applied to test

environments of rather limited size. Further, the
sensing techniques used to both explore the envi-
ronment and position the robot often make rather
optimistic assumptions about the environment: dif-
fuse visual reflectors, substantial reflectivity, etc.
In practice, some surfaces may either be specular
(mirror-like) reflectors or be hard to detect due to
low reflectance, and some parts of the environment
may have frictional properties that make large-scale
odometry difficult.

We deal with these issues in two ways, both based
on a polygonal approximation to the environment
and the detection of convex (reflex) vertices. The
presence of reflex vertices is critical since it is these
reflex vertices that determine the occlusion of regions
of the environment with respect to one another. We
use a pair of robots observing one another to build
a map and circumvent problems of object visibility.
The exploration process is based on triangulation us-
ing an environment decomposition attached to reflex
vertices.



In the next subsection, we will briefly discuss rel-
evant background research. In Section 2 we discuss
multi-robot localization and exploration including, in
Subsection 2.1, an example of a visual “tracker” that
we have used to implement the algorithm described
in the paper. Section 3 contains a brief overview of
the exploration algorithm. In Section 4 we present
experimental results from simulations and from lab-
oratory experiments.

1.1 Background
There are two major approaches regarding the lo-
calization of a mobile robot. The first approach to
localization is to use landmarks in the environment
in order to localize frequently and thus reduce the
odometry error [4]. A common technique is to se-
lect a collection of landmarks in known positions and
inform the robot beforehand [8, 10, 9]. Another tech-
nique is to let the robot select its own landmarks [18]
according to a set of criteria that optimise its ability
to localize, and then use that landmarks to correct
its position [3]. The second approach to localization
is to perform a matching of the sensor data collected
at the current location to an existing model of the en-
vironment. Sonar, and laser range finder data have
been matched to geometrical models [18, 11, 13, 14],
and images have been matched to higher order con-
figuration space models [1, 7] in order to extract the
position of the robot.
The existence of clearly identifiable landmarks is

a strong assumption for an unknown environment.
Even in man-made environments the cost of main-
taining labels in prearranged position has been pro-
hibitive in the past. Moreover, in large scale ex-
plorations it is quite possible that the robot would
have to travel a large distance (larger than its sensor
range) before locating a distinct landmark.
Several authors have examined the issue of ex-

ploring space with one or more robots [15, 12, 5].
In general, multi-robot exploration techniques have
tended to focus on models with limited coordination
or communication between the robots [2]. In con-
trast, we consider a tight coupling between the ex-
ploring robots in the interest of greater accuracy of
more efficient behaviour. Related work deals with
exploring spaces large enough that the robots can-
not see one another across the environment [16]. In
this work, we consider the case where the robots do
not lose visual contact as long as their view of one
another is not occluded.

2 Cooperative Localization
Since sensing is being used to correct position esti-
mation errors, the sole source of error in the selec-
tive localization of the robots is the inaccuracy of the
“robot tracker” sensor that is used to update/correct
the position of the moving robot relative to the po-
sition of the stationary one. Therefore, if the two
robots start with one stationary robot in an initial
position Porigin, then the moving robot could local-
ize itself with respect to that position (see Fig. 1).
Note that information from both sensing and odome-
try could be combined using either extended Kalman
filtering or optimal multiscan alignment [11].
There are three potential sources of information

for the localization of the moving robot. First, the
odometry measurements X̂odom(t) provide a base es-
timate of the moving robot’s position (with high un-
certainty σo. Second, the different objects in the
environment, when sensed from different positions,
could provide updates in the robot position [13, 18].
Finally, the robot tracker X̂track(t) provides mea-
surements relative to the position of the stationary
robot X̂stat(t). In practice over large scale environ-
ments, the position of different objects drifts over
time and they cannot provide safe position updates.
On the other hand the estimate of the robot tracker
is influenced by the uncertainty in the position of
the stationary robot σs plus the error of the tracker
X̂track(t). The accumulation of uncertainty on the
position of the stationary robot depends only on the
number of role exchanges the two robots had. Conse-
quently, over large open spaces where the odometry
error grows unbounded the moving robot could al-
ways reference back to a stationary landmark (played
by the second robot).

X̂(t) =
σs(X̂track(t) + X̂stat(t))

σs + σo
+
σoX̂odom(t)

σs + σo
(1)

2.1 Tracker implementation
There are many sensors that could be used for the
robot tracker. Our preliminary implementation is
based on visual observation of a geometric target on
the robot [6]. (Alternative possible implementations
use retroreflectors or laser light striping – our actual
robot is equipped with alternative such technologies.)
Each robot is equipped with a camera that allows it
to observe its partner. The robots are both marked
with a special pattern for pose estimation. The first
part of the pattern is a series of horizontal circles



Figure 1: The visual robot tracker system (camera
mounted on one robot, helix target pattern mounted
on the second robot.

(a) (b)

Figure 2: Robot Tracker: (a) The raw image of the
moving robot as observed by the robot tracker. (b)
The helical and cylindrical pattern detected in the
image.

(that project into an almost linear pattern in the
image) which allows the robot to be discriminated
from background objects: the ratio of spacing be-
tween the circles is extremely unlikely to occur in
the background by chance. Thus, the presence of the
robot is established by a set of lines (curves) with the
appropriate length-to-width ratio and the appropri-
ate inter-line ratios, as well as the correct position.
The second component of the pattern is a helix that
wraps once around the robot. The elevation of the
center of the helix allows the relative orientation of
the robot to be inferred (see Figure 2). In practice,
this allows the robot’s pose to be inferred with an
accuracy of a few centimeters and 3 to 5 degrees.

3 Outline of the exploration algo-

rithm
In [16] we presented an algorithm1 for mapping the
interior of an environment. The size of the area
should be small enough to be covered by the range of
the tracker sensor. Two mobile robots equipped with
two different types of sensors are used in close cooper-
ation to completely map the free space. Both robots
use a traditional range finder in order to detect obsta-
cles that are very close to them and, subsequently, to
follow the object perimeter during the exploration.
In addition, each robot has a robot tracker sensor
that provides the pose of the other robot if the line
of visual contact is uninterrupted, or a signal that an
obstacle exists between the two robots.
The exploration algorithm is based on the follow-

ing idea. At any single time one robot is positioned
at a vertex (corner) of the environment operating as
an intelligent landmark, while the other robot moves
across the perimeter of the environment maintaining
visual contact with the stationary robot. More pre-
cisely, as the moving robot follows one wall of the
environment, it “sweeps” the line of visual contact
across the triangle defined by the corner where the
stationary robot is positioned and the two ends of
the wall. Thus, the robot establishes the position of
the wall and the occupancy of the swept free space
inside the triangle.
Figure 3 illustrates the algorithm (simulation re-

sults). Figures 3 (a-i) present snapshots of the ex-
ploration as perceived by Robot 0, Robot 1, and the
resulting map, respectively, at different instances of
the exploration. The two robots exchange roles when
the line of visual contact breaks. In the first row an
early phase of the exploration is presented. The two
robots have exchanged roles twice and Robot 0 ex-
plores five new triangles. Consequently, in the second
row Robot 1 is exploring again, while Robot 0 presents
a portable landmark for localization. The third row
illustrates the final stages of the exploration where
Robot 1 explores the final parts of the environment
using Robot 0 as a reference.

4 Experimental results
Different sets of experiments have been conducted in
order to validate our approach. Experiments in a sim-

1Appendix A contains a formal description of the algorithm.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Number of Triangles

E
rr

or
 in

 P
os

iti
on

 (
cm

)

Average Error Estimations

Cooperation

No Cooperation

(l)

Figure 3: First three rows: Exploring an unknown environment, (a,d,g) The first column illustrates the
trajectory of Robot 0. (b,e,h) The second column illustrates the trajectory of Robot 1. (c,f,i) Finally the
third column presents the map up to that point. Last row: Close-up on the build up of the uncertainty when
only odometry was used. The solid line is the odometry based estimation of the robots while the dashed
line is the real position of the robots. (l) Taking the average error during the exploration of 50 triangle (over
100 experiments).



Figure 4: The paths of the two robots after the com-
pletion of the exploration.

ulated environment (using the RoboDaemon pack-
age, see Figure 4) provided verification in a variety
of model worlds. In addition, laboratory experiments
with the real robots helped us estimate realistic val-
ues for the uncertainty of the sensors and the odom-
etry.

4.1 Simulation
Extensive experiments have been contacted using the
robotic simulation package Robodaemon. The simu-
lations allowed us to specify different parameters such
as odometry error, robot-tracker uncertainty and the
complexity of the explored environments. Figure 4
presents a typical environment used in the simula-
tions and the path the two robots followed (144 m2).
As seen earlier (see Figure 3(a-i)) the two robots suc-
cessfully mapped this model world. In Figure 3, in
the last row, the early phase of the exploration is
presented, using pure odometry for positioning. The
dashed line depicts the real path of the robot and
the solid line the odometry based paths. As can be
seen in Figure 3(j,k) the accumulation of uncertainty,
gradually distorts the map while maintaining local
consistency. These distortions could lead over time
to a map that is not even topologically sound.
The accumulation of uncertainty over time can be

seen in Figure 3(l). The same experiment of explor-
ing fifty triangles was performed one hundred times
and the accumulated error was recorded. The dash-
dotted line represents the average error when only
odometry was used and the solid line when the tracker
was used.
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Figure 5: The different paths as they were perceived
with the different localization methods.

4.2 Physical Validation
In order to demonstrate the effectiveness of the pro-
posed approach, several preliminary exploration tests
were carried out in our laboratory in workspaces of
roughly 16 m2. This comparatively small testbed al-
lowed us to control various factors such as inhomo-
geneities in the terrain as a function of trajectory
and obtain ground truth data. Using this testbed
we compared the time, accuracy, and robustness of
different exploration strategies. In our experimental
arrangement the role of the Nomad robot is played
by a tripod mounted camera at the same height as
the Nomad. This allowed us to more reliably and
repeatably verify ground truth.
A laser pointer has been placed on top of the mov-

ing robot in order to accurately mark its current po-
sition on the floor. This setup allowed us to measure
the displacement from the initial position after the
completion of the tour.
In Fig. 5 the path of the robot is marked with a

solid line, the odometry based estimates of position
are marked by the dotted line, while the tracker es-
timates are illustrated with in a dashed-dotted line.
The ouside solid lines mark the position of the walls
the moving robot followed.
The final displacement from pure odometry es-

timates is approximately 15cm with an orientation
error of 15◦. The tracker estimate has approximately
1.3cm error. This corroborates our assumption that
joint exploration and localization using a “tracker”
can lead to much more robust modelling than odom-
etry alone.



5 Conclusions
In this paper, we have described an approach to ex-
ploring and navigating in large scale spaces where po-
sitioning and sensing might be difficult. In fact, such
difficulties are likely to arise in many real-world en-
vironments.
Our approach is based on exploiting a line-of-

sight constraint between two robots to achieve explo-
ration with reduced odometric error. This approach
can also cope with obstacles with hard-to-sense re-
flectance characteristics.
We are currently planning large-scale experiments

of this strategy in a real physical environment.
One issue in this context is that it is difficult to

obtain accurate ground-truth to validate the perfor-
mance of our approach over a large terrain. A stan-
dard practice is to simply observe the “clean-ness” of
the resulting map and use this as a performance met-
ric [18]. However we expect that the triangulation-
based mapping we perform will yield results whose
accuracy may be too great in polyhedral environment
for such qualitative evaluation methods to be satis-
factory.
In prior work, we have considered alternative strate-

gies for environments where the distance is too large
to permit reliable operation of the tracker across the
workspace [16]. An open issue is how to automati-
cally detect such situations efficiently during explo-
ration and switch strategies, or switch back-and-forth
between strategies based on local properties of the
environment.
We are also considering combining this approach

with more traditional localization methods (such as
landmarks [17]) where they can be used effectively.
Doing this efficiently appears feasible but remains un-
resolved.
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6 Appendix A

Explored
Reflex 
Vertex

Moving 
Robot

(a)

Explored

Moving Robot

Reflex 
Vertex

Reflex 
Vertex

(b)

Figure 6: (a) Case 1: The stationary robot is at a
non-reflex vertex and the moving robot encounters a
reflex vertex that would interrupt the line of visual
contact (b) Case 2: Both robots are placed at reflex
vertex such that any further exploration would break
the line of visual contact.
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Figure 7: (a) Case 3: Occluding Vertex between the
two robots. (b) Case 4: Occluding Edge next to the
stationary robot.

A sketch of the exploration algorithm is presented
next. Both robots run the same exploration algo-
rithm, taking turns moving thus mapping the free
space and being stationary thus providing a fixed lo-
calization reference for the moving robot. In the fol-
lowing we assume no three points are co-linear if they
are, it would involve a minor but tedious change to
the algorithm. There are four different cases where
the line of visual contact is interrupted (Fig. 6a,b
and Fig. 7a,b), in these cases the moving robot can
not continue its previous course and it has to make a
decision where to move next in order to maintain vi-

sual contact with the stationary robot. The environ-
ment is explored in regions of free space composed by
neighbouring triangles. The algorithm is summarised
below.

While Unexplored Areas Do

{

Cover Nearest Unexplored Area

{

While No Occlusion Do

Explore the next triangle of

free space

If Occlusion Then

If Case 1 Then

The two robots exchange roles.

Else If Case 2 Then

The Moving Robot goes to

the Stationary Robot. Marking

the reflex vertex as an opening to

an Unexplored Area.

Else If Case 3 Then

The Moving Robot marks its position

as a temporary vertex and moves

towards the Stationary Robot until

it encounters the occluding

Reflex Vertex. The line

between the occluding vertex and

the temporary vertex is an

opening to an Unexplored Area.

Else If Case 4 Then

The two robots exchange roles

The new Moving Robot follows

the occluding edge to the next

corner, then the two robots

exchange roles again.

Continue The Exploration.

}

If No Triangle of free space Then

Move to the closest Unexplored

Area.

}


