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Abstract: - In this paper the inference capabilities of three Fuzzy Cognitive Map (FCM) systems are compared.
The FCMs are a combination of fuzzy logic and artificial neural networks that have been introduced by Kosko
[1], [2] and are mainly used for predictions. The conclusions that are drawn from them come from the study of
the dynamical behaviour of the systems. The three FCMs systems that are compared here  are : a) the trivalent
FCM, b) the sigmoid FCM and c) the Certainty Neuron FCM (CNFCM). The comparison is based on the
results that came from computer simulations. Two sets of simulations were run and from the results the
following conclusions were drawn:
a)  Trivalent FCM, Sigmoid FCM and CNFCM qualitatively draw almost the same conclusions.
b)  Sigmoid FCM exhibits sudden changes at the activation of the concepts because it does not possess memory

capabilities. On the contrary CNFCM possesses memory capabilities and this is the reason it evolves  more
smoothly and in a continues manner, bringing it close to reality.

c)  Sigmoid FCMs have problems with the linguistic background of their transfer function. Although sigmoid
function has background on the physiological level of the human brain, there is not similarity with the
linguistic lever of human mind. On the contrary, CNFCMs use a transfer function with strong linguistic
background since it is used by many systems for the aggregation of qualitative values.

d)  Sigmoid FCM tends to find equilibrium at levels close to -1 and 1 which are the saturation levels of the
sigmoid function, instead of using the whole interval [-1,1]. CNFCM on the other hand, finds equilibrium at
levels from the  whole interval [-1,1].

e)  CNFCM is much more reliable in the predictions it makes, since it uses a much better transfer function with
strong linguistic background. On the other hand the degrees of increase or decrease predicted by a Sigmoid
FCM are not reliable due its weak linguistic background and its tension to find equilibrium close to -1 and 1.

From the above, the advantages of using CNFCM are apparent. We conclude that CNFCM has better structure
and should be preferred instead of using sigmoid FCM or trivalent FCM.
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Decision Making

1   Introduction
Fuzzy Cognitive Maps (FCMs) are a combination of
fuzzy logic and artificial neural networks that have
been introduced by Kosko [1], [2] based on Axelord's
work on Cognitive Maps [3]. Further developments
of FCMs have been discussed by several researchers
(see for example [4]-[9]). An example of an FCM,
concerning the freeway congestion of a city at rush
hours, is given in Figure 1.  FCMs are used to create
models as collections of concepts and the various
causal relations that exist between these concepts.

The concepts are represented by nodes and the causal
relationships by directed arcs between the nodes.
Each arc is accompanied by a weight that defines the
type of causal relation  between the two nodes.
Positive (negative) causal relation between two
concepts C i  and C j  means that an increase of the

activation level of concept C i  will increase

(decrease) C j  and also a decrease of concept C i

will decrease (increase) C j .

Each concept C i  is accompanied by a number A i



that represents its level of activation. If n is the
number of concepts of an FCM, at time step t the

vector A t = [A ,A ,...,A ]1
t

2
t

n
t  gives the state of the

FCM, where A i
t  is the activation level of concept C i

at time step t. W is also defined as an n×n matrix
where w ij  is the weight of the arc that connects C i

and C j  (it is taken that w ii =0, i=1,...,n because no

loop from a concept to itself is allowed). The
activation level of all concepts is updated
simultaneously (synchronous updating). This means

that A t+1 = [A ,A ,...,A ]1
t+1
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t +1 ,

i=1,...,n is calculated by the following formula

A =  f( A w )i
t+1

j
t

j=1

n

ji∑                  (1)

   Bad
  Weather

      Freeway
Congestion

           Auto
   Accident

  Driver
  Caution

  Level

 Driving
   Speed

    Patrol
  Frequency

+0.4

+0.4

+0.1

+1.0

+0.6

+0.8

+1.0

-0.9

-0.5

-0.9

C1

C3

C2

C4

C6

C5

-0.2

Figure 1: An FCM for the behaviour of freeway
congestion at rush hour [10]

The non-linear function f() allows the activation to
take a value among the distinct values that are
allowed. Using matrix notation, eq. (1) can be written

as A A Wt+1 t= f( ) .

2   The three FCM systems
The dynamical behaviour of the FCM depends
heavily on the choice of the transfer function f()  that
the neurons of the FCM will use. The three most
common transfer functions are:
i)  The trivalent transfer function

f xT ( ) =








1   if x > 0

0  if x = 0

-1 if x < 0

(2)
Using this transfer function, the trivalent FCM is
created.
ii)  The sigmoid transfer function

f x xS ( ) tanh( )= (3)
having saturation levels at -1 and 1. Using this
transfer function, the sigmoid FCM is created.
iii)  The transfer function used by Certainty Neurons

f x y f x y dxCN M( , ) ( , )= − (4)
 where d is a decay factor and f M  is given by the

following formula:
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                 if  x, y > 0

                 if x,y < 0      x

   else

Function f M  is the function used by MYCIN Expert

System for the aggregation of the certainty factors
[11]. The use of this transfer function has been
proposed and studied in [12] and leads to the creation
of the Certainty Neuron FCM (CNFCM).

In FCM systems, the conclusions are drawn by the
study of their dynamical behaviour. The dynamical
behaviour of each of the three FCM systems
described above is different. The simplest is that of
the trivalent FCM because the systems can move
only at the edges, corners and centers of the sides of

the hypercube [ , ]−11 n

 that an n-concept trivalent

FCM creates. The system has only 3n  different
states. On the other hand, sigmoid FCM can move in

the whole space [ , ]−11 n  having an infinite number of

states. It has been also shown that sigmoid FCMs
can also exhibits chaotic behaviour [13]. CNFCM

systems  move also in the whole space [ , ]−11 n  and

have an infinite number of states.

3 Comparing the Inference Capabilities
using one Weight Matrix

To compare the inference capabilities of the three
FCM systems, the differences in their dynamical
behaviour should be compared. To achieve that a
number of simulations of the FCMs systems have
been made. The FCM model that was used is that of
figure 1, concerning the freeway congestion at rush



hour.

Different simulations have been run for each of the
three FCM systems. In all of them, the “steady
values” technique was applied, keeping the value of
the concept “Bad Weather” steady. In this way, the
consequences of the “bad weather” to the other
concepts of the model  were predicted, according to
the three systems.

The simulation program works in the following way:
At the beginning, 1000 random initial states of the
FCM system are created. For each of these states, the
FCM evolves using the transfer function of the
corresponding FCM system. After some initial steps
of the evolution that correspond to the transition
stage, the system reaches an equilibrium that is
recorded. After that the next initial state is introduce
to the system and the system evolves once again. The
simulation stops only after all 1000 initial states are
introduced to the system.

The above simulation program was used for the
simulation of the trivalent FCM, the sigmoid FCM
and the CNFCM. Only the results from five initial
states are presented in Appendix A but the
conclusions are drawn from the study of all 1000
random initial states.

In the four of the five cases presented in Appendix A,
the system reached an equilibrium point. This
actually applies to 822 of the 1000 random initial
states. Moreover, when in the trivalent FCM a
concept is positive which means that its increase is
predicted, the concept is also positive in the sigmoid
FCM and the CNFCM. Similarly, when a concept in
the trivalent FCM is negative that means that its
decrease is predicted, it is also negative in the
sigmoid FCM and the CNFCM. We conclude that the
inferred conclusions are qualitatively the same.

Sigmoid FCMs and CNFCMs can also predict the
size of the increase or decrease of the concepts. The
simulations show that the degree of increase/decrease
that is predicted by the two types of FCM is
different. It is also shown that sigmoid FCM tend to
find equilibrium at activation levels close to -1 or
1which are the saturation levels of the sigmoid
function. This fact, together with the fact that there is
no linguistic background to the use of the sigmoid
function for the aggregation of influences, lead us to
the conclusion that the sigmoid FCM can not

efficiently calculate the degree of the increase or
decrease of an FCM concept. On the other hand, we
should notice that if the concepts of the FCM are
sorted based on their activation level at the
equilibrium point, the order of the concepts is the
same for sigmoid FCM and CNFCM.

Checking the last 122 cases where no equilibrium
point was reached for sigmoid FCM, we found out
that the sigmoid FCMs reach a limit cycle behaviour,
whereas trivalent FCMs and CNFCMs reach an
equilibrium point. Studying these cases we conclude
that this happens because the activation level for the
concept “Bad Weather” is kept steady at quite low
levels. In this way this concept was not strong enough
to lead the other concepts to a steady activation but
led the systems to a limit cycle behaviour among two
opposite states. In the same cases, CNFCM reached
an equilibrium point. This was made after a long
transition stage as shown in figure 2. CNFCM can
still make inference. This better behaviour of
CNFCM is due to the memory capabilities that it
possesses, remembering its previous activation level.
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Figure 2 : Long transition stage to equilibrium of an
                 CNFCM

4 Comparing the Inference Capabilities
using many Weight Matrices

The conclusion drawn by the above simulations
should be check for other weight matrices. To draw
conclusions independent from the specific Cognitive
Map, another series of simulations was run with the
weight matrix of the Cognitive Map to change. The
simulation program has the following structure.
Change randomly a weight of the weight matrix.

Create randomly an initial state.
Evolution of trivalent FCM until an
equilibrium is reached.
Evolution of sigmoid FCM until an



equilibrium is reached.
Evolution of CNFCM until an equilibrium is
reached.

Return for a new random initial state (30 times)
Return for a new change of the weight matrix (30
times).

The above program initially changes a weight from
the weight matrix and then initializes the three FCM
systems with a random initial state. After that, the
three systems are free to evolve and reach an
equilibrium. The three equilibrium states are recorded
and compared. The comparison between the
equilibrium states of the trivalent FCM and the
sigmoid FCM or the CNFCM is made based on the
signs of the activation levels at equilibrium. Between
the sigmoid FCM and the CNFCM two comparisons
are made. One based on the signs of the concepts at
equilibrium and the other based on the Euclidean
distance between the two equilibrium points. After 30
comparisons for 30 different initial states, the weight
matrix changes. This happens 30 times giving a total
of 30×30=900 different equilibrium points for each
system. The results from the comparison are given
the following table.

Table 1
No

Difference
 in signs

One
Difference
 in signs

Two
Differences

 in signs

Three
Differences

 in signs
Trivalent FCM -
 Sigmoid FCM

776 118 6 0

Trivalent FCM -
CNFCM

697 169 34 0

Sigmoid FCM -
 CNFCM

583 287 30 0

The results are also graphically presented to figure 3.
We can see that the conclusions are almost the same
for the three systems. The predictions are the same at
a level 98% if we assume same two predictions
having only one concept with different sign. The
cases where two systems have two concepts with
different signs are very few.

5   Conclusions
The conclusions that can be drawn from the above
simulations are the following:
a)  Trivalent FCM, Sigmoid FCM and CNFCM

qualitatively draw almost the same conclusions.
By qualitatively we mean that when a system
predicts the increase (decrease) of a concept, then
the other systems will also predict increase

(decrease) of the same concept.
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Figure 3 : The results from the comparison of the
three FCM systems

b)  Sigmoid FCM is based on classical neurons and
does not possess memory capabilities. This leads
the sigmoid FCM to exhibit sudden changes at the
activation of the concepts which is not close to
reality. On the contrary CNFCM possess memory
capabilities and this is the reason it evolves  more
smoothly and in a continues manner, bringing it
close to reality.

c)  Sigmoid FCMs have problems with the linguistic
background of their transfer function. Although
sigmoid function has background on the
physiological level of the human brain, there is not
similarity with the linguistic lever of human mind.
On the contrary, CNFCMs use a transfer function
with strong linguistic background since it is used
by many systems for the aggregation of
qualitative values.

d)  Sigmoid FCM tends to find equilibrium at levels
close to -1 and 1 which are the saturation levels of
the sigmoid function, instead of using the whole
interval [-1,1]. CNFCM on the other hand, finds
equilibrium at levels from the  whole interval     [-
1,1].

e)  CNFCM is much more reliable in the predictions
it makes, since it uses a much better transfer
function with strong linguistic background. On the
other hand the degrees of increase or decrease
predicted by a Sigmoid FCM are not reliable due
its weak linguistic background and its tension to
find equilibrium close to -1 and 1.

From the above the advantages of using CNFCM are
apparent. Details of their implementation can be
found in [14].
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Appendix A
 The results from five random initial states (results are drawn from simulations of 1000 initial states)

Bad
Weather

Freeway
 Congestion

Driving
Speed

Driver
Caution
Level

Patrol
Frequency

Auto
Accident

Initial State 1 0.89 -0.413 -0.691 0.009 0.017 -0.057
Trivalent FCM 1 1 -1 -1 -1 1
Sigmoid FCM 0.89 1 -0.774 -0.975 -0.975 0.967

CNFCM 0.89 0.895 -0.693 -0.8 -0.802 0.812

Initial State 2 -0.802 -0.47 -0.678 0.341 0.536 -0.028
Trivalent FCM -1 -1 1 1 1 -1
Sigmoid FCM -0.802 -0.999 0.773 0.975 0.973 -0.958

CNFCM -0.802 -0.889 0.69 0.8 0.8 -0.8

Initial State 3 0.976 -0.547 0.352 0.426 -0.403 0.49
Trivalent FCM 1 1 -1 -1 -1 1
Sigmoid FCM 0.976 1 -0.774 -0.975 -0.975 0.975

CNFCM 0.976 0.901 -0.695 -0.8 -0.804 0.822

Initial State 4 -0.468 0.596 0.052 -0.789 -0.976 -0.348
Trivalent FCM -1 -1 1 1 1 -1
Sigmoid FCM -0.468 -0.994 0.769 0.975 0.964 -0.887

CNFCM -0.468 -0.855 0.673 0.798 0.787 -0.739

Initial State 5 -0.117 -0.853 0.73 0.124 -0.507 0.239
Trivalent FCM -1 -1 1 1 1 -1
Sigmoid FCM -0.117 0.931 0.998 0.991 -0.976 -0.99
Limit Cycle -0.117 -0.979 -0.997 -0.991 0.977 0.978

CNFCM -0.117 0.556 -0.382 -0.78 -0.682 0.429




