
A use case driven domain analysis for precision agriculture
information systems

SARAIVA, A. M.; CUGNASCA, C. E.; HIRAKAWA, A. R.; MASSOLA, A. M. A.
Dept. of Computer Engineering - Agricultural Automation Laboratory

Universidade de São Paulo - Escola Politécnica
Caixa Postal 61548 - São Paulo - SP - 05424-970

BRAZIL

Abstract: - Precision agriculture is a recent technology which is changing agricultural practices and concepts.
Since it is strongly based on huge amounts of data, one of its main components is the information system that
supports decision making. Such systems are nowadays one of the gaps in the technology, since the existing
ones do not cover the minimum requirements posed by the application. This paper deals with the problem of
an adequate specification of the functionality of this class of systems. In order to support the development of
these systems, a study was conducted to identify their desired features, based on current software engineering
paradigms and techniques such as object orientation and domain analysis. The concept of use case was
adopted because it allowed a clear understanding of the functions that the system should provide from its users
point of view. The paper presents the method and concepts adopted for a domain analysis for this class of
systems, and presents the use cases that resulted from that analysis.

Key-Words: precision agriculture, information systems, domain analysis, use cases, object-orientation, Proc.pp..4671-4676

1 Introduction
Precision agriculture (PA) is a technology, or else a
set of technologies, that is considerably changing
agricultural practices and concepts as it introduces
the spatial variability as another factor to be taken
into account in field operations and on farm
management.
 The basic idea of precision agriculture is to more
accurately consider the differences in important
parameters (such as soil fertility, soil moisture,
yield) that exist within a single field. Conventional
agricultural practices would deal with those
differences by taking an average value for each
parameter and then treating the whole field as being
uniform. Based on that average value subsequent
operations, such as fertilizer applications, would be
carried out following a recommendation that a
certain amount of fertilizer be uniformly distributed
to the field.
 As a consequence, every field operation, such as
inputs application, might result in over or under
application in most of the field except in those spots
where the actual value of the parameter equals the
average that was considered for the
recommendation.
 With precision agriculture this tends to occur in a
much smaller scale, since the field variability of the
parameters is now measured by electronic

equipment (the data acquisition phase of PA) and
the inputs are applied variably according to the
actual needs of each spot of the field by means of
computer controlled application equipment (variable
rate application phase).
 However an important question that is yet to be
answered is what to do with the data collected in
order to obtain an adequate recommendation for the
application. In other words, this intermediate phase
of precision agriculture, which can be named
information management, is by far the most
undeveloped. Part of the problem is the lack of
knowledge on the processes related to crop growth
at this unprecedented level of detail. But another
important issue is the lack of adequate computer
tools to turn all the huge amount of data collected
into decisions and to help develop the missing
knowledge. [1]

2 A Method for Domain Analysis
In order to understand the reasons for this situation
and define the role of the information systems in the
information management in PA, a research work
was proposed. An important aim of the work was
that of analyzing the requirements for this class of
systems so as to help develop specific systems and
to evaluate the adequacy of the ones available.

 A first theoretical basis for the work was the
software engineering concept of domain analysis.
When the aim of a work is the development of a
system, the requirement analysis is an important
activity that should be carried out on the early stages
of systems development. That activity is based on
the problem analysis and should help define how to
solve the problem, what the system should do and
how to design it so as to allow its future evolution.
Domain analysis can be thought of as being the
equivalent to the requirement analysis phase when,
instead of a problem, one is dealing with a class of
problems and, instead of a single solution (a target
system), a class of solutions (a class of systems or a
meta-system) is being pursued. In other words,
domain analysis deals with the identification,
acquisition e representation of knowledge about the
specification and implementation of software for
classes of real world problems [2].
 An important point is that this knowledge must
be potentially reusable within the specific domain,
since the meta-system that one is trying to identify
aims at being the guideline for future
implementations of (many) specific systems. It
becomes evident from this statement that domain
analysis and software reuse are tightly coupled.
 The methods adopted for domain analysis vary
widely, from formal to more practical ones. A
possible approach is that derived from knowledge
engineering, that adopts as basic steps the
identification of suitable knowledge sources,
knowledge acquisition and knowledge
representation.
 However, these steps are not trivial, as
experience shows. Reverse engineering has played
an important role in the process of search and
acquisition of knowledge. Starting from a set of
existing solutions, one tries to extract their common
characteristics to allow a generalization.
 Many other knowledge sources, as well as many
different profiles of human experts, can take part in
this process. Among the former, one can mention
technical literature, available systems, users
knowledge. Among the latter, one can list a system
analyst, system users, domain analyst, domain
expert [2].
 The output of a domain analysis process can
vary widely, ranging from standards,
recommendations, interface definitions, to
functional models, structural models, domain
taxonomies and domain languages.
 The degree of formalism found in these outputs is
also very different. Besides depending on the
purpose of the analysis, another important point is
the difficulty of how to bridge the gap between the

knowledge sources of a domain and their formal or
semi-formal representation.
 Object orientation has been suggested as a
concept that might be of great help to requirement
formalization and elicitation, as well as to
knowledge acquisition [3]. Object oriented methods
present some advantages to other paradigms because
they structure the system in terms of objects that
exist in the real world in the problem domain, and
that interact with each other. This is an important
characteristic because it reflects the way people see
their environment, i.e., in terms of objects. Hence it
becomes easy to think in terms of objects when
modeling a system, and it becomes easy to
understand an object model. In other words, the
semantic gap between model and reality is small.
 One important feature is that object technology is
concerned with specifying what an object is, rather
than how it is used. The uses of an object are highly
dependent on application details and change
frequently along the development. As the system
requirements change, the object characteristics are
much more stable than the way the objects are used.
Thus, software based on an object structure is more
stable in the long run. This potential stability is
essential for a domain model of PA given the fact
that the technology is in its early stages and many of
the “how to” questions are still unsolved, while most
of the “what” questions (the objects) can be more
easily defined.
 In short, object-oriented modeling and design
allow for a better understanding of systems
requirements. Thus, it leads to better models of the
problem domain, simpler design due to software
structuring in terms of abstract data concepts, more
maintainable systems, and allows for the application
of software reusability during development of
specific systems [4].
 Another concept that was borrowed from
software engineering and incorporated to this
approach to domain analysis, was the one of “use
cases” [4]. Use cases represent a sequence of
interactions related to a behavior or a function of the
system, in a kind of dialog between a user and the
system. They show the ways the system is used by
its users and how it interacts with them. Actors
represent everything that there is outside the system
and interact with the system for information
interchange: users (people), machines, other
systems. The actors represent roles these external
entities can play and hence they can be understood
as classes of users. System users are instances of
actors and can assume different roles at different
moments.

 The identification of use cases can be done for
instance by asking the actors what kind of action
they want to perform with (or in) the system. The
use cases are represented in a use case model, whose
notation is very simple [4]. Once the use case
identification becomes stable, each use case must be
described in detail, in text form, showing the
sequence of events that constitutes it and the
possible exceptions and deviations or branches.
These descriptions are important as they will guide
the identification of domain objects that will form
the object model.
 This user-based approach allows the fundamental
role of the user in systems specification to be more
adequately considered.
 In summary, the method used to do the domain
analysis included many different knowledge
sources, different profiles of experts, and the
concepts and notations borrowed from objects and
use cases [4] [5]..

3 Results and Discussion
Following the method adopted for the domain
analysis, the first activity consisted in identifying the
knowledge sources, human or non-human. The
acquisition of such knowledge was in a first stage
based on traditional methods, such as readings all
the documents obtained – mainly research papers,
but also documents from existing systems, in a kind
of reverse engineering. A very important role was
played by the contact with system users of different
profiles, such as researchers and consultants who
could transmit their feelings of the weaknesses and
strengths they saw on the systems with which they
came across.
 The huge amount of information acquired had to
be structured, and the decision was made to write
down a first document, Problem Definition, as
suggested in [4]. The text defines an initial systems
requirements set, mainly from the high level
functionality point-of-view. Despite the ambiguities
inherent to the textual description, it is a starting
point for the models that follow, which go deeper
into systems requirement formalization, using the
concept and the notation of use cases and objects.
 From that text, some important features the
systems for PA should present can be summarized
[6]:
 implement a single and coherent user interface,

eliminating the need to know different packages
and their operation;

 automate data exchange procedures, eliminating
the need for data set preparation for execution in
different packages;

 allow information tailoring according to the user;
 automate data processing and analysis, following

previously validated recipes, thus freeing the
user from having to understand each analysis
technique and its parameters; this must take into
account the different users of the system;

 allow the operator to interfere in the analysis
process, creating himself his analysis recipes;

 provide means for the operator to have access to
meta-data, i.e., data about the data, about the
form of acquisition, and about the operations and
data that generated new data;

 allow the operator to interfere on the results,
inserting his impressions and knowledge directly
into the maps; giving him the power of decision,
and keeping him in control of the operations; the
user must be able to interact with the system;

 allow simulation of different scenarios,
whenever possible, through previously validated
simulation models;

 be implemented in an open architecture, based
on de facto (or de jure) standards in order to
lessen the problems related to integration with
other packages, other data sources, local or
distributed;

 be structured in such a way so as to facilitate
further integration of future modules,
components, recipes, accompanying the
evolution of PA; be expansible;

 Following the generic and informal description of
the Problem Definition, the next step on the domain
analysis consisted in the use cases identification.
This was done in a series of iterations and for that,
all the information acquired with existent systems
and by means of interviews with users was essential.
 One important thing of use case modeling is the
definition of the limits of the systems and of its
interfaces to the eternal entities, the actors. So,
instead of presenting as a first diagram a more
complex set of use cases, it was considered more
adequate to group the use cases into a few more
abstract cases that could exemplify the main
functions of the system and its interfaces with the
external world.
 Based on that point of view the use case model
derived was the one presented in Figure 1. It shows
that the main functions of the system – insert field
data, generate maps, and configure the system. It
also shows the four actors that represent the classes
of users of the system: operator, manager, data-
acquisition equipment and application controller
equipment.

Fig.1 Use case model.

 The use case “insert field data” groups all the
actions related to the input of data collected from the
field, both manually by an operator or automatically
by means of data acquisition equipment.
 The use case “generate maps” groups all the
actions related to processing of the data in map
form, such as corrections, editing, overlaying and
deriving of further map layers. It is performed with
the operator's participation and the final application
map can be transferred to an application controller
equipment.
 The use case “configure the system” is performed
only by the actor “manager”, which means that this
is an off-line use of the system and aims at
configuring the system for different operators, crops,
regions, etc.
 The actor “operator” represents a class of end-
users of the system, probably consultants,
researchers, and maybe a few farmers.
 The actor “manager” represents the class of
programmers that will work on the final systems in
order to customize it to each situation – a different
crop, different region, different agricultural inputs,
specific knowledge, etc.
 Finally the actors “data acquisition equipment”
and “application controller equipment” represent the
classes of the proper equipment. It was decided to
depart from the traditional notation [4] and use a
different symbol for the non-human actors for a
more clear distinction between these super classes of
actors.
 As mentioned before, this diagram hides a
complex set of sub-use-cases and was simplified on
purpose. The next step was then to describe these
use cases in great detail in order to allow for the
identification of objects for an object model of the
domain.

.....The list of sub use cases that were grouped in the
three main use cases is presented below. For each of
them a detailed description of the interactions
between system and user was written.
 The use cases and their sub-cases are:
Use case: Insert field data

New farmer registration
New farm registration
New field registration
Sampled data reading, from external equipment
Manual input of sampled data

Use case: Configure the system
Management rules configuration
Data base configuration of inputs and
equipment
Task recipes configuration
Task automation shortcuts configuration
New operator register

Use case: Generate maps
Sampled data files correction
Primary data layers creation
Basic data layers creation
Data layers manual edition
Secondary data layers creation
Scenario simulation execution
Application maps generation
Output files generation for application
controllers
Map printing

 Each description, text or graphical, adds more
structure to the knowledge of the domain as the
analysis proceed. The final level adopted for this
work was that of deriving object models for the
domain. The objects were selected from the use
cases descriptions. Although this selection is not
straightforward, some guidelines can be found in
many object-oriented methods, such as searching for
names, substantives, etc. The choice of the objects

manager

operator

generate maps

insert field data

configure the system

equipment
controller

application

equipment
data acquisition

demanded much iteration but after all it arrived to a
stable and fairly complete set of objects. Instead of
having a single object diagram for the whole
domain, for the sake of legibility of the diagrams,
the choice was to keep separate object diagrams for
each use case. The objects that appear in more than
one diagram show the links that exist between them.
Figure 2 shows a sample object diagram, the one
that represents the use case “insert field data”.

4 Conclusion
In order to help understand the complexity of the
domain of the information systems for precision
agriculture and to provide guidelines for specific
systems development, a domain analysis was
conducted.
 Since there are a number of approaches to
domain analysis, an innovative method was
proposed, having as main concepts the use of use
cases for the requirements specification and object
orientation for structuring the knowledge.
 It was based on a more informal initial phase, in
which a wide variety and a huge amount of
information was gathered and studied, from which a
textual description of the main needs of this class of
systems resulted.
 The concept of use cases was then used to define
the main sequences of interactions between the
systems and the external entities, the actors, which
may be humans or other systems or equipment.
 These use cases where further detailed and from
this detailing, objects were selected to build object
diagrams. This structuring of the knowledge in
terms of domain objects, has the potential of being
stable although the PA technology is changing.
 The models are easy to understand, even for
those not used to systems modeling, since the
notations are simple and the objects that appear on
the model have their counterpart in the real world.
This helped the communication with users and
domain experts and facilitates their cooperation in
the modeling process.

References:
[1] Saraiva, A.M. et al. An object model for

information systems for precision agriculture.
Proceedings of the Fourth International
Conference on Precision Agriculture, Saint Paul,
1998. (in print)

[2] Arango, G.; Prieto-Díaz, R. Introduction and
overview: domain analysis concepts and research
directions. In: Prieto-Díaz, R.; Arango, G. (ed)

Domain analysis and software systems modeling.
IEEE Computer Society Press, Los Alamitos.
1991. pp..9-32.

[3] Greespan, S.J.; Mylopoulos. J.; Borgida, A.
Capturing more world knowledge in the
requirements specification. In: Prieto-Díaz, R.;
Arango, G. (ed) Domain analysis and software
systems modeling. IEEE Computer Society
Press, Los Alamitos. 1991. pp.53-62.

[4] Jacobson, I. et al. Object-oriented software
engineering: a use case driven approach.
4.ed.rev. Harlow, Addison Wesley
Longman/ACM Press, 1993.

[5] Rumbaugh, J. et al. Modelagem e projetos
baseados em objetos. Rio de Janeiro, Campus,
1997. (Portuguese version of Object-oriented
modeling and design, 1991)

[6] Saraiva A.M. et al. Object oriented approach to
the development of a field information system.
ASAE Paper nº 97-3015. St. Joseph, ASAE,
1997.

positioning_eqp

map

Farmer

cel

Figure 2 - Class diagram - Use case "Insert field data"

sample

soilsample_raw

soilsample cropsample

cropsample_raw

weedsample pestsample

field

farm

limit

dataacq_eqp

consists of

divided in
measured by

located by

sampled by

divided in

owns

limited by

characterized by

characterized
by

