
A Decision Queue based on Genetic Algorithms: Axis-Parallel Classifier
versus Rotated Hyperboxes

JOSÉ RIQUELME, JESÚS AGUILAR Y MIGUEL TORO
Departamento de Lenguajes y Sistemas Informáticos.

Facultad de Informática y Estadística. Universidad de Sevilla.
Avenida Reina Mercedes s/n. Sevilla 41012

SPAIN

Abstract:- This paper describes a system for learning rules using axis-parallel or rotated hyperboxes as
individuals of a genetic algorithm (GA). Our method attempts to find out hyperboxes: aligned with the
coordinate axes, such C4.5; or at any orientation by combining deterministic hill-climbing with GA. The
system uses a decision queue (DQ) as method of representing the rule set. It means that the obtained rules
must be applied in specific order, that is, an example will be classified by the i-rule only if it doesn’t satisfy the
condition part of the i-1 previous rules. With this policy, the number of rules may be reduced because the
rules could be one inside of another one. We have tested our system on real data from UCI repository. We
have also designed some two-dimensional artificial databases to graphically represent the experiments. The
results are summarized in the last section.

Key-Words: -data mining, supervised learning, genetic algorithms. CSCC'99 Proceedings, Pages:4821-4827

1 Introduction

Supervised learning is used when the data samples
have known outcomes that the user wants to predict.
This type of learning is the more common form
because data are usually collected with some outcome
in mind. Human problem solving is normally an
exercise in studying input conditions to predict a result
based upon previous experience with similar
situations. SL algorithms tend to emulate that sort of
human behavior.

Decision trees (DT) are a particularly useful tool in
the context of machine learning techniques because
they perform classification by a sequence of simple,
easy-to-understand tests whose semantics is intuitively
clear to domain experts. Some techniques, like C4.5,
construct decision trees selecting the best attribute by
using a statistical test to determine how well it alone
classifies the training examples [10]. This class of DTs
may be called axis-parallel, because the tests at each
node are equivalent to axis-parallel hyperplanes in the
space. Others techniques build oblique decision trees
(ODT), as OC1[9], that tests a linear combination of
the internal attributes at each node, for that, these tests
are equivalent to hyperplanes at an oblique orientation
to the axes.

To find out the smallest DT (axis-parallel or oblique)
is a NP-hard problem [3]. Both methods use hill-

climbing, that is, the algorithm never backtracks;
therefore, it could be converging to locally optimal
solutions that are not globally optimal.

Simpson [13] introduced the idea of using
hyperboxes to cluster or classify spatial data. Each
hyperbox is viewed as a fuzzy cluster, a fuzzy set in
which all of the elements within the hyperbox have
membership 1.0 for being in that set, and elements
outside the hyperbox can have a positive membership
in the set depending on a fuzzy membership rule for
that set. Simpson used a deterministic procedure to
place and appropriately size hyperboxes to describe
data. Hyperboxes were created and sized by
considering the data in an ordered sequence. A
hyperbox was placed around preliminary data. As
subsequent data was added, either the present
hyperbox was expanded to include the new data, or a
new hyperbox was added and the process continued.
This procedure was of limited efficacy because it
required trial-and-error setting of operator parameters
and the final solution depended on the order of
presentation of the data, even when the data possessed
only spatial and not sequential characteristics.

Genetic algorithms (GA) employ a randomized
search method to seed a maximally fit hypothesis [4,
5].

In previous works [1,2,11], we presented a system to
classify databases by using hyperboxes (axis-parallel).
This system used a GA to search the best solutions and
produced a hierarchical set of rules. The hierarchy
follows that an example will be classified by the i-rule
if it does not satisfy the conditions of the i-1 precedent
rules. The rules are sequentially obtained until the
space is totally covered. The behavior is similar to a
queue, for that reason we have given the name
decision queue (DQ) to the produced rule set. This
concept is based on the k-DL, the set of decision lists
with conjunctive clauses of size at most k at each
decision [12]. A decision list is a list L of pairs

),(),...,,(11 rr vfvf

where each fj is a term in n
kC , each vi is a value in

{0,1}, and the last function fr is the constant function
true.

A decision list L defines a boolean function as
follows: for any assignment x∈Xn, L(x) is defined to
be equal to vj where j is the least index such that
fj(x)=1 (such an item always exists, since the last
function is always true).

Furthermore, DQ does not have the last constant
function true. However, we could interpret that last
function as an unknown function, that is, we do not
know to which class the example belongs to.
Therefore, it may be advisable to say "unknown class"
instead of making an erroneous decision.

DQ is based on DL. Really, DQ is a DL-
generalization because it permits codifying functions fi
of continuous attributes and the values vi can belong to
any set.

In the sense mentioned above, our system has a
measure, called unknowledge, to indicate how many
test examples have no associated class. The domain
expert can choose the number of rules or the allowed
error rate (relaxing coefficient), thus avoiding some
unnecessary mistakes if the rule does not assign to the
test example a class. Incrementing the relaxing
coefficient the unknowledge will be less, but the
number of misclassified examples will be higher. The
expert, based on experimentation, must determine such
parameter.

DQ presents the following structure:

If conditions Then class
Else If conditions Then class

Else If conditions Then class
..

Else “unknown class”

We show in figure 1 an example, in which rotated
hyperboxes can find out better solutions than axis-
parallel hyperboxes can. Decision queue policy is

applied in order to reduce the number of rules. With
this DQ-method, there is no problem if the regions are
overlapped. An extreme case is presented in the next
figure.

Fig. 1. Rotated versus axis-parallel hyperboxes.

In the other hand, if we use axis-parallel techniques,
the number of rules is very high. When does one
technique apply over the other? In principle, it is not
possible to know, but it could be a good idea to begin
with axis-parallel technique and, increasingly, to rotate
the best solutions found.

2 Description

In order to apply GAs to a learning problem, we
need to select an internal representation of the space to
be searched and define an external function that
assigns fitness to candidate solutions. Both
components are critical to the successful application of
the GAs to the problem of interest. Information of the
environment comes from a data file, where each
example has a class and a number of attributes.

2.1. Environment for axis-parallel hyperboxes

The representation of an individual takes the
following form:

0.0 1.9 2.5 1.0 12.9 32.1 1.0

parameter 1 parameter n class

.

Each parameter is defined by,
* A value belonging to the set {0, 1, 2} identifies
the type of operation:

- 0 means “if p1 ≤ 1.9...”
- 1 means “if p1 ≥2.5...”

- 2 means “if 1.9 ≤ p1 ≤ 2.5...”
* The two following values are the limits for each

l l l
1 2

u u u
1 2 k k

θ
1

θ θ
2 k-1

class

parameter. If the operator is ≤ only makes sense the
first value; if the operator is ≥, the second value is
used; and, in the third case the two values indicates
lower and upper boundaries.
* The last value identifies the class. The number of
classes determines the set of values to which it
belongs. That is to say, if there are five classes, the
value will belong to the set {0,1,2,3,4}.

2.2 Environment for rotated hyperboxes

The GA uses real codification; that is, an individual
is formed by an n-tuple of real. If k is the dimension,
an individual has exactly 3× k values: 2 × k for the
boundaries of each dimension; k − 1 for the angles of
rotations, in radians, anti-clockwise around the
hyperbox center; and one for the class. The next figure
shows a n-tuple:

Fig. 2. Representation of an individual

where li and ui represent the lower and upper bounds
of the individual, respectively, for every dimension; θi

is the rotation angle; and class. In two dimensions is
possible to put a hyperbox at any orientation by using
only one rotation; in k-dimension it is necessary k-1
rotations.

We consider that an example belongs to the area
determined for an individual if it satisfies its condition
part. Thus, let an example be given by Pj=(p1, p2, ...,
pk, c) that fall within the region defined by the
individual (or equivalently, an example will be
covered by the rule) indh =(l1, u1, l2, u2, ..., lk,
uk,θ1,θ2,...,θk-1, class) if rotating the example P=(p1, p2,
... , pk) with the angles -θ1,-θ2,...,-θk-1 with relation to
the center of the hyperbox defined by (l1, u1, l2, u2, ... ,
lk, uk), the resulting P’ belongs to this hyperbox.

Let (m1, m2, m3) = ((l1+ u1)/2, (l2+ u2)/2, (l3+ u3)/2)
be the center of the hyperbox defined by the rule, then
the coordinates of P’ are:

)3,2,1(

100

02cos2sen

02sen2cos

1cos1sen0

1sen1cos0

001

)33,22,11()3',2',1'(mmmmpmpmpppp +

−

−−−−== 























θθ

θθ

θθ

θθ

(1)

The example (p1, p2, p3, c) will be covered by the
rule (l1, u1, l2, u2, l3, u3, θ1, θ2, class) if P’ satisfies

l p u l p u l p u1 1 1 2 2 2 3 3 3≤ ≤ ∧ ≤ ≤ ∧ ≤ ≤' ' '
(3)

where P’ is obtained as above. And it will be correctly
classified if its class is equal to c.

2.3 Algorithm

The algorithm is a typical sequential covering GA[7].
It chooses the best individual of the evolutionary
process, transforming it into a rule, which is used to
eliminate data from the training file[14]. In this way,
the training file is reduced for the following iteration.
A termination criterion could be reached when more
examples to cover do not exist.

The method of generating the initial population
consists of randomly selecting for every individual of
the population an example from the training file. After,
an interval to which the example belongs is obtained
by adding and subtracting a random quantity from the
values of the example.

The angles are randomly generated between zero and
π/2. Sometimes, the examples very near to the
boundaries are hard to cover during the evolutionary
process. To resolve this problem, the search space is

increased (actually, the lower bound is decreased by
5%, and the upper bound is increased by 5%). For
example in one dimension, let a and b be the lower
and upper bounds of the attribute; then, the range of
the attribute is b-a; next, we randomly choose an
example (x1, class) from the training file; for last, a
possible individual of the population could thus be:

),*,*(2111 classkrangexkrangex +−
where k1 and k2 are random values belonging to
[0,1.05], and class is the same of that of the example.

The evolution module includes elitism: the best
individual of every generation is replicated to the next
one. A set of children is obtained from copies of
randomly selected parents, generated by their fitness
values. The remainder is formed through crossovers.
Afterwards, mutation is applied depending on a
probability.

Crossovers are specifically designed, choosing a
value among one of the three segments formed inside
the interval of the attribute by putting the two values
of the individual as cross points. That is, for every
attribute, an individual has two values, so these values
are partitioning the interval in three segments. We
select randomly a value inside of a segment also
randomly chosen.

Mutation is applied in two different ways: if the
location corresponds to a value of the interval, then a
quantity is subtracted or added, depending on whether

it is the lower or the upper bound, respectively (the
quantity actually is the lower euclidean distance
between any two examples).

In the case of rotated hyperboxes, the crossover
operator calculates the mean of the angles; and
mutation randomly generates another one.

To improve the best individual is a difficult task. If
the fitness value is better, then the new angle replaces
the old, and one value of one attribute is modified as
mentioned above. This method allows the rotation of a
hyperbox using only one dimension.

A possible criterion for implementing the mutation
operator consists of distinguishing between mutation
of values and mutation of angles as two independent
operators. Mutation of values could have a higher
probability of application than mutation of angles.
Thus, we can penalize the rules with wrong angles;
that is, the new individual is moving away from the
closest example of the same class.

2.4 Fitness function

The evolutionary algorithm minimizes the fitness
function f for each individual. It is given by

if G(i)*RC<=CE(i) then CE(i)=0 (2)

f i
V

T

G i

CE i
()

()

()
= +

+1

where T is the cardinality of the training file, V is a
new factor called coverage (the rule coverage is the
side of a k-dimensional hypercube which volume is
equivalent to the volume of the k-dimensional region
covered by the rule); CE(i) is the class errors, which
are produced when the i example belongs to the region
defined by the rule, but does not have the same class;
G(i) is the number of goals of the rule; RC is the
relaxing coefficient. Every rule can be quickly
expanded for finding more examples due to V in the
fitness function.

2.5 Relaxing coefficient

Databases used as training files do not have clearly
differentiated areas, for that, to obtain a rule system
totally coherent involves a high number of rules. We
show in previous paper [1] a system capable of
producing a rule set exempt from error rate; however
sometimes, it is interesting to reduce the number of
rules for having a rule set which may be used like a
comprehensible linguistic model. When databases
present a distribution of examples very hard to
classify, then it is advisable to use a relaxing
coefficient [11]. Many times, we are more interested in

understanding the structure of the databases than in the
error rate. In this way, it could be better to have a
system with fewer rules and despite some errors than
too many rules and no errors.

3 Application

We have used five cross validation in all our
experiments to estimate classification accuracy. This
cross validation experiment consists of the following
steps: randomly divide the data into two disjoint
partitions (70% and 30%); build a rule set using 70%
of data and test the rule set with 30% of the data; for
each partition the number of bad classification of the
rule set are all counted and divided it by the number of
instances of the test file to compute the error rate; the
five values are summed and divided by five. We have
chosen C4.5 to compare the results, also with five
experiments and cross validation.

3.1 Artificial databases

We have designed some databases of varying
complexity to graphically represent the experiments.

Fig. 3. Artificial databases named DB1, DB2, DB3, DB4 and
DB5.

These databases are shown in the fig. 6. Results are in
table 1.

Every database has two hundred examples,
two dimensions and two classes.

DATABASE C4.5 DQ-CLASSIFIER-AP DQ-CLASSIFIER-RH

#RULES ERROR RATE #RULES ERROR RATE #RULES ERROR RATE

DB1 17 12.9 10.6 14.56 3 3.3
DB2 12.5 16.25 12.0 10.54 2 2.7
DB3 11 12.13 10.0 9.43 3 6.6
DB4 9 0 5 0 5.6 2.7
DB5 27 0.8 5 0 6.2 4.1

Table1. Databases (number of examples, dimension, number of classes)

3.2 Databases from UCI repository.

The experiments described in this section are from
UCI Repository [8].

It is very important to note that every execution has

been realized with a very small population of 50
individuals and only 50 generations. These are very
low numbers considering the number of examples and
number of dimensions of the databases.

Decision queue is very relevant in relation to the
number of rules.

DATABASE C4.5 DQ-CLASSIFIER-AP DQ-CLASSIFIER-RH

#RULES ERROR RATE #RULES ERROR RATE #RULES ERROR RATE

IRIS (150,4,3) 4.4 6.3 3.4 7.47 3.6 4.83
PIMA (768,8,2) 77.6 28.4 20.0 27.2 17.4 26.35
CANCER (683,9,2) 5.2 13.8 2.2 4.24 2.2 5.38

Table 2. Databases (number of examples, dimension, number of classes).

4 Conclusions

A supervised learning tool to classify databases is
presented in this paper. It produces a decision queue
where the conditions of each rule indicates if an
example belongs to a region. The regions can present
two shapes, axis-parallel hyperboxes and rotated
hyperboxes. The user chooses what rule representation
is better for his problem. The number of rules is
reduced with regard to other systems, like C4.5, and
improves the flexibility to construct a classifier
varying the relaxing coefficient.

References:

[1] Aguilar, J and Riquelme, J. A Tool to obtain a
Hierarchical Qualitative Set of Rules from
Quantitative Data. Lectures Notes in Artificial
Intelligence 1415. pp 336-346. Springer-Verlag,

1998.
[2] Aguilar, J. and Riquelme, J. Decision Queue

Classifier for Supervised Learning using Rotated
Hyperboxes. Progress in Artificial Intelligence
IBERAMIA'98. Lectures Notes in Artificial
Intelligence 1484. pp. 326-336. Springer-Verlag,
1998.

[3] Blum, A. and Rivest, R. L. Training a 3-node
neural network is np-complete. In Proceedings of
the First ADM Workshop on the Computational
Learning Theory, pp. 9-18, Cambrige, MA, 1988.

[4] Ghozeil, A. and Fogel, D.B. Discovering Patterns
in Spatial Data Using Evolutionary Programming.
Genetic Program Conference 96.

[5] Goldberg, D. Genetic Algorithms in search,
optimization and machine learning. Addison-
Wesley Publishing Company, Inc. 1989.

[6] Michalewicz, Z. Genetic Algorithms + Data
Structures = Evolution Programs. Second Edition,
Springer-Verlag, 1994.

[7] Mitchell, T. Machine Learning. MacGraw-Hill,
1997.

[8] Murphy, P. and Aha, D.W. UCI Repository of

Machine Learning Databases. Dept. of
Information and Computer Science. University of
California, Irvine, 1994.

[9] Murthy, S. K., Kasif, S. and Salzberg, S. A
system for induction of oblique decision trees.
Journal of Artificial Intelligence Research, 1994.
Morgan Kaufmann Publishers.

[10] Quinlan, J. R. C4.5: programs for Machine
Learning. Morgan Kaufmann Pub.,1993.

[11] Riquelme J. and Aguilar, J. y Toro, M. Revista
Iberoamericana de Inteligencia Artificial nº 5. A
GA-based Tool to obtain a Hierarchical Classifier
for Supervised Learning. (in spanish) pp 38-43,
1998.

[12] Rivest, R.L. Learning Decision Lists. Machine
Learning, 87. pp. 229-246.

[13] Simpson, P.K. Fuzzy Min-Max Neural Networks.
II. Clustering. IEEE Trans. Fuzzy Systems, Vol.
1:1,32-45.

[14] Venturini, G. SIA: a Supervised Inductive
Algorithm with Genetic Search for Learning
Attributes based Concepts.

