
Extendible Persistent System

ERDAL KEMIKLI and NADIA ERDOGAN
Department of Control and Computer Engineering

Istanbul Teknik University
80626 Ayazaga, Istanbul

TURKEY

Abstract: The backlog in software development, percentage of unsuccessful projects and high costs of new
software forced the industry to use the term "software crisis". Increasing complexity of the computer systems
necessitates new system paradigms, so that human cognitive capacity will be able to comprehend and maintain.

Persistent Operating systems will be the next logical step in the higher level abstraction of electronic
information systems. They are an attempt to reduce the complexity of programming and system design. This
paper summarizes the research on the Extendible Persistent System (EPS) and explains briefly requirement and
design of this system.

Key-Words: Persistent system, operating system. IMACS/IEEE CSCC'99 Proceedings, Pages:4971-4974

1 Introduction
A program creates and manipulates a large amount

of data throughout its execution. Each item of data
will have a different lifetime [1]. While programming
languages provide excellent, integrated support for
transient data, other categories of data is supported by
Database Management Systems, or file systems.

In a conventional operating system two
abstractions of data access and storage are provided:
virtual memory and files [5]. While we can directly
access data in virtual memory, data in files can be
accessed using system calls. A persistent system,
which differs from conventional systems, has a
different abstraction of data storage environment
unifying virtual memory and the file system to provide
a single abstraction o data.

The idea behind persistence is simple [2]: all data
in a system should be able to persist (survive) for as
long as that data is required. In this sense persistent
systems provide a uniform abstraction over storage,
whereas in contemporary systems long lived data is
treated in a fundamentally different manner from
transient data.

PS-ALGOL [3] coined the term “orthogonal
persistence”, that is, the possibility that any object can
be made to persist, independent of its type or the way it
is used in the program. Systems,which provide
orthogonal persistence, treat all data identically as
persistent objects.

There are certain advantages of the persistent
systems over the transient ones [4]:

§ Several programs or different runs of the same
program that use data with the same structure
do not have to build the structure from scratch
every time.

§ The programmer is saved from task of writing
extra code for I/O operations to transfer the data
to a file and then transfer it back into the
memory.

§ Since data objects can persist, a program that
uses the data doesn’t have to run to completion
once it starts; the execution can be temporarily
distributed.

This paper briefly describes the requirements and
design of such a system, Extendible Persistent
System (EPS). The goal of this system is to
demonstrate an extendible and tailorable computing
system model, which supports persistent object
paradigm. The EPS will be suitable to be used as a
base for an expandable system with the required
server functionality. EPS supplies facilities that will
ease developers to extend the functionality of the
system with simpler programming. Moreover, the
resulting extended system will not need extra system
administration tasks and complex configuration
management.

2 EPS Requirements
EPS is aimed to be a system of easy programming
and use, supposed to work on existing architectures
and operating systems. In this section, requirements
of such a system are explained.

2.1 Programming Interface Requirements
Programming under EPS will not be very different
than a conventional system. The well-known
programming languages are used with few but
critical additions to them. This will enable
programmers to develop new systems based on EPS
with a short learning period. Consequently, this
harmony with the existing systems will facilitate the
widespread use of EPS.

The loading of persistent objects are handled by
explicit function calls. While this looks like an extra
task to programmer, we shall be aware of the fact
that the programmer shall declare the binding
between the persistent object and the database in any
case.

The programmer decides the loading time. This
gives flexibility to design programs for different
purposes and characteristics.

Type checking will be conducted during the
compilation phase. It will also be possible to delay
the type checking to the execution phase, to enable
programmers develop code for currently non-existent
persistent objects. This will be made available
through a compiler option.

A default persistent object called as the ‘program
table’ will be available to every program, and the
necessary code to handle this persistent object will
be inserted automatically to the program during the
link phase. This object will include standard fields
such as ‘variable name’, `variable value’. There will
be extra functions to retrieve and modify the values
in the program table. This table is planned to be used
as the practical storage area for every program. The
structure itself can be used in the implementation of
an RDBMS-like server.

2.2 Security Requirements
There are two basic mechanisms to access objects:
capabilities and access lists[8]. Capabilities are non-
replicable tickets those give authorization to their
owner to access an object. Capabilities can be used
to name, protect and define the operations on that
object. General characteristics of capabilities:

§ If a process owns a capability, then it has
the access right to the related object.

§ Capabilities allow sharing of the objects.
§ Capability should be non-replicable and non-

decipherable. A system that lets users to create
capabilities is useless.
Very little work has been done on the removal of

already distributed capabilities. Amoeba system
[9,10] with the most advanced features can remove
the capability by modifying the random number of the
capability, but partially removing the capabilities is
not possible.

The EPS system shall provide the following
capability features:
§ It shall support resource sharing. By passing a

capability to a new object the access rights of the
related object shall be transferred.

§ While capabilities are transferred, it shall be
possible to restrict the access rights . A client shall
be able to transfer a restricted copy of a
capability.

§ Formerly distributed capabilities shall be removed
from some of the clients or some of the rights in a
capability shall be taken be back.

§ It shall be possible to remove a formerly given
capability completely.

2.3 Architectural Requirements
The mechanism to support these features shall have
the following architectural constraint: There shall be
no need for a protected storage area. A constraint on
this feature will restrict the number capabilities.

Using current operating systems, the implementers
of a persistent system must manage the address
translation tasks. A persistent operating system will
provide an abstraction consistent with our
requirements as a fundamental building block.
Intrinsically a persistent operating system would be
capable of providing all the functionality of
traditional operating systems. The research issues are
those same issues which compromise the
implementation of persistent systems when
conventional operating systems are used as a
platform, namely: addressing, resilience, process
management and protection.

The major constraint is that the operating system
should run on conventional architectures . The
effects of this constraint are that on most current
architectures addresses are a maximum of 32 bits
long, there is no hardware support for object
protection and the only memory management
hardware available is based on fixed sized pages.
Thus, in order to construct a persistent operating

system on conventional hardware some compromises
must be made.

3 System Design
EPS has a multi-tier architecture that is designed to
extend naturally based on the needs. The basic
system is composed of three basic components;
Naming and Protection Server (NPS), Object Server
(OBS) and Client object library (COB). An
underlying messaging facility interconnects these
three modules. While these modules are the base
system, any user need can be satisfied by extending
the system via active objects (AOB).

This modular system is based on an existing
UNIX implementation, Linux. Linux, with its open
source code and worldwide support by its user
community was the most logical choice of operating
system to use. The system language is chosen to be
the C programming language because of its natural
integration of UNIX operating system.

Fig. 1 - EPS Layers

3.1 Messaging System
To facilitate the usage, a high level interface
matching with the general requirements of the system
is provided. The primitives are designed to support
object to object synchronous and asynchronous
communication need. Unix IPC/RPC mechanisms is
used as the basic mechanism. This high level
primitive is used both in systems development and
application development.

3.2 Object Server
OBS can be logically considered as a part of the
operating system kernel. Physically it is implemented
as a user level module. Object server loads active or
passive static objects. While active objects consist of

data and methods, passive object contains only data
but do not have methods to modify it. Static object is
an object, which resides in the long-term memory and
needs an extra operation before being used.

3.2 Naming and Protection Server
NPS is implemented in the form of a server process.
This choice makes it possible to include an indefinite
size object table to perform some of the functions.
NPS is responsible form the security and
synchronization of objects.

InUse table (which itself is a persistent object) in
NPS is used to keep the records of all currently
used/loaded objects. It actually holds the entire
capability information. Since the number of loaded
objects can not be anticipated, its size is dynamically
adjustable.

3.3 Client Object Library
Client object library which is used by every EPS user
program and AOB has facilities to hide the
underlying complexity of the system. The majority of
the system primitives are implemented fully or
partially in the COB. The services of COB also
include the local (in-process) implementation of
synchronization and address translation facilities,
which are transparent to the application programmer.

4 Conclusion and Future Work
EPS is one of the efforts in the scientific community
for the design and development of a computer system
with a different philopsopy [6,7]. The main concerns
of EPS has become the software crisis and
development/management of increasingly complex
systems. These problems are planned to be solved
applying an innovative technology.

Currently, explained EPS design is under
development and hoped to be completed in a short
time. Our experience during the design and
development of EPS confirmed our belief on the
usefulness of such a system.

The second phase of the research will include
experimental studies for the determination of the
effectiveness of the system in reducing system
complexity and improving programmer productivity.
These experiments will test the added value of the
persistent paradigm and our implementation.

References:
[1] Atkinson, M. P. et al, An Approach to Persistent

Programming, The Computer Journal, Vol. 26,
No. 4, 1983, pp.360-365.

[2] Dearle A., Rosenberg J., Jenskens F.A., Vaughan
F., and Maciunas K.J, An Examination of
Operating System Support for Persistent Object
Systems, Proceedings of the 25th Hawaii
International Conference on System Sciences,
Vol. 1. Editors V. Milutinovic and B. D. Shiver,
IEEE Computer Society Press, Hawaii, USA,
1992, pp. 779-789.

[3] Atkinson M.P., Chisholm J., and Cockshott W.P.,
PS-Algol: An Algol with a Persistent Heap, ACM
Sigplan Notices, Vol. 17, No 7, 1982, pp. 24-31.

[4] Sajeev A. S. M., and A. J. Hurst, Programming
Persistence in X, IEEE Computer, Vol. 25, No. 9
, 1992, pp. 57-66.

[5] Tanenbaum, A.S., Modern Operating System,
Prentice Hall, 1992.

[6] Shapiro M., Object Support Operating Systems,
Workshop on Operating Systems and Object
Orientation at ECCOP-OOPSLA, Position paper,
1990.

[7] Varhol P.D., Trends in Operating System Design,
Dr. Dobb's journal, May 1994, pp. 18-27.

[8] Morrison R., Brown A.L., Connor R.C.H., Cutts
Q.I., Kirby G.N.C., Dearle A., Rosenberg J., and
Stemple D., Protection in Persistent Object
System, Security and Persistence, Rosenberg J.,
and Keedy J.L. (editors), Springer-Verlag, 1990,
pp. 48-66.

[9]Mullender S.J., van Rossum G., Tanenbaum A.S.,
van Renesse R., and van Staveren H., Amoeba: A
Distributed Operating System for the 1990s,
IEEE Computer, Vol. 23, No. 5, 1990, pp. 45-53.

[10]van Renesse R., van Staveren H., and
Tanenbaum A.S., The Performance of the
Amoeba Distributed Operating System, Software
- Practice and Experience, Vol. 19, No. 3, 1989,
pp. 223-234.

