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Abstract: - This paper presents, an algorithm using wavelets to detect objects from motion. The
algorithm is designed to be part of a Vehicle Tracking System. The main aim is to integrate
information from Gabor and Mallat wavelet transforms to improve the accuracy and speed of vehicle
detection. The Gabor-wavelet analysis allows a rapid estimation of image flow vectors with low
spatial resolution. Furthermore, it enables us to produce a histogram over the image flow field, its
local maxima providing motion hypotheses. These then serve to increase the accuracy of the
subsequent object detection using the Mallat-wavelet transform, which provides the required high
resolution. The reliability of the motion detection is improved by integration over time. Since no
object model is used, the system can detect even small, disconnected, and openworked objects of
arbitrary numbers, such as dot patterns. The algorithm behaves well even in the complex motion
situation.
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1. Introduction
The detection algorithm presented here has
been motivated in context of a larger effort to
build a Vehicle Tracking system. It is an
attempt to develop a motion-tracking
algorithm, which improves the accuracy and
the speed of the system. This is the main
reason why Gabor and Mallat wavelet
transform are used here. Object detection
from motion algorithms can be divided into
two broad classes, the filter based methods
and the matching methods. A typical example
of a filter-based method is the gradient
method, where a motion constraint analysis
[4] is used to estimate image flow. As this
method estimates motion locally in a small
region of the image, it suffers from the
aperture problem. The matching techniques
on the other hand usually suffer from the
correspondence problem; i.e. there is an
ambiguity as to which feature point in one
frame has to be matched to which feature
point in the next frame. In this work we
integrate these two types of techniques, filters
and matching, in order to overcome the

aperture problem and reduce the
correspondence problem significantly. This
achieved by the adaptation of an algorithm
developed by [1],  to tracking vehicle motion
in depth.

2. The System
2.1 mage Flow Estimation
The first stage of the algorithm is the
computation of an image flow field. The
method used here is based on a convolution
with a Gabor Wavelets transform [2], which
has the shape of localised, plane waves. This
Gabor wavelet transform yields complex
coefficients with phases usually varying with
the main frequency of the corresponding
kernels. The distance d between two points
and the phase difference ∆φ of the coefficients
at these two points have an approximate
relationship ∆φ = dk , where k  is the wave
vector of the kernel’s main frequency. Using
several kernels with different orientations can
provide an accurate estimate of d  based
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on ∆φ . Similarly, phase differences between
the coefficients in two successive frames
(Fig.1) but at the same location can be used to
estimate the translation of the underlying grey
value distribution at that location. Doing this
at each pixel provides an image flow field [5].

The Gabor wavelet transform for an
image I x( ) is defined as a convolution
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with a family of Gabor wavelets
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in the shape of plane waves with wave vector
k j , restricted by a Gaussian envelope

function. We employ a discrete set of 5
different frequencies, index υ = 0,..,4 and of 8
orientations, index  µ = 0,….,7,

8
,2,

sin

cos
2

2
π

µϕπ
ϕ
ϕ

µ

ν

ν
µν

µνχ ==







=








=

+
−

k
k

k

k

k
k

jy

j
j  (3)

with index  υµ 8+=j . This sampling evenly
covers a band in frequency space. The width

k
σ  of the Gaussian envelope is controlled by

the parameter  σ π= 2 . One speaks of a
wavelet transform since the family of kernels
is self-similar, all kernels being generated from
one Mother Wavelet by dilation and rotation.

2.2 Motion Hypotheses
The second stage of the algorithm is
concerned with the extraction of motion
hypotheses from the image flow field. This
can be simply extracted by detecting local
maxima in the image flow histogram, a
histogram over the flow field vectors. In order
to avoid detecting too many irrelevant
maxima, a low-pass filter is applied to the
histogram and maxima of a certain minimal
height are accepted. The result of this stage is

usually a small number of displacement

vectors 
→

nυ  representing frequently occurring

flow vectors. A displacement d
→

 can be

compared with a motion hypothesis υn

→
 by the

displacement similarity function
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with a parameter r  to set its sensitivity.

The advantage of the motion hypotheses is
that they drastically reduces the
correspondence problem for an image flow
estimation algorithm based on more localised
features, such as edges. Instead of testing all
possible displacements within a certain
distance range, only a few of them suggested
by the motion hypotheses need to be taken
into consideration. This greatly improves the
accuracy and speeds up the processing.  See
in Fig.2, Illustration of the reduced
correspondence problem: Without motion
hypotheses, a whole region within a certain
diameter has to be tested for possibly
corresponding pixel locations with a similar
grey value gradient. With motion hypotheses,
the regions to consider reduce to a few small
spots.

2.3 Edge Valuation
The third stage of the algorithm uses the
Mallat Wavelet transform which can be
thought of as the grey-value gradient at
different levels of resolution. This stage is
similar to a matching algorithm and is
therefore faced with the correspondence
problem, which is particularly severe for such
a simple feature as the local gradient. We
employ two methods to bypass the
correspondence problem. Firstly, the
evaluation of the Mallat-wavelet transform is
restricted to edges, as defined by the modulus
maxima [3]. Edges have a particularly high
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information content and are less ambiguous
than gradients in general. Secondly, we match
the edges between two frames, using the
image flow field obtained in the first stage.
This reduces the correspondence problem
significantly, but leaves it partially unresolved
at the same time. It is important from a
conceptional point of view that the modulus
maxima of the wavelet transform provide
sufficient information to reconstruct images.

Given a gradient similarity function 
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found by varying 
→
d  . Notice that only edge

pixels are evaluated and taken into
consideration. This accordance function
defines an accordance map for each motion
hypotheses indicating whether an edge might
have moved by the respective flow vector

υn

→
or not. It is important to note that the

accordance maps may still contain ambiguities
as to which edge belongs to which motion
hypothesis. This would be indicated by high
accordance values in more than one
accordance map for a single edge pixel.

2.4 Integration over a Sequence of Frames
The quality of the accordance maps can be
significantly improved by integrating them
over a sequence of frames. The main difficulty
is to determine which motion hypothesis in
one pair of frames corresponds to which
motion hypothesis in the next pair of frames.
In order to avoid assumptions about the type
of movement objects may perform, We
associate the motion hypothesis via the spatial
overlap in the intermediate frame, i.e. the one
that is common to both pairs. This is possible

because the first pair of frames already
provides a crude segmentation result. See in
Fig.3, Accordance maps for Frame 15 with
respect to the two relevant motion
hypotheses. This accordance map was
integrated over time and takes into account
the results preceding frames. The integrated
accordance map is the geometric mean of the
previous integrated accordance map and the
current instantaneous accordance map.

2.5 Segmentation
The last stage of the algorithm performs the
segmentation. Each edge pixel is classified as
belonging to that motion hypothesis for which
it has the highest accordance value. One can
think of as a pixel-wise winner-take-all
competition between the accordance maps.
See in Fig.4, Motion Detection based on the
accordance maps.

3. Examples
The strength of the system is that it generates
motion hypotheses on a coarse level, but
segments on a single pixel level. This allows
the system to segment even small,
disconnected, or openworked objects. A
second strength is that the motions need not
be continuous in order to do the integration
over a sequence of frames. Objects may jump
back and forth, and the algorithm will still be
able to track them. This is demonstrated for
dot-patterns in Fig.5, fifth frame of the dot-
pattern sequence, Showing a stationary circle
with eight points and a dotted background
moving left. Each frame in the sequence is
additionally shifted randomly up to (±2, ±2)
pixels, resulting in an additional relative
displacement of up to ±4 pixels in each
dimension where random shifts of the frames
against each other have been introduced
artificially.

When tracking several vehicles on the road,
the ability of the algorithm to track each
vehicle separately is lost if the vehicles travel
closely to each other with nearly  the same
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speed. Altough the algorithm respresents
these two vehicles as one object (motion), the
segmentation result shows these object as two
vehicles. This is shown in Fig.6, three moving
vehicles on the road taken from stationary
camera. Two vehicle moving towards left
closely with nearly same speed and one
vehicle just coming into view which is moving
toward right.

4. Conclusion
The system presented performs segmentation
from motion on a sequence of frames. It is
unconventional in several respects. It
integrates two different techniques based on
Gabor- and Mallat-wavelets to improve the
accuracy of detection and it integrates over
time for an additional improvement of the
segmentation results. Segmentation is only
performed on edges and it is argued that
edges are the most appropriate
representations for segmentation, because
they provide enough motion evidence and the
complete grey-value distribution could be
reconstructed from edges.
Since no object model is used, the system can
even segment small and openworked objects.
We propose to do the segmentation locally
and integrate the local fragments on a higher
level. Due to the closeness and nearly same
velocity of the motion objects, the two

different objects can be attached together as
one motion object. This attachment which can
be improved by regularisation constraints and
explicit object knowledge, while keeping local
segmentation decisions.
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         (a)         (b)

Fig.1: (a) Frame 14 , (b) Frame 15 is the car moving sequence on the road taken from moving camera.
 The images have a resolution of 128x128 pixels with 256 grey values.

       Correspondence problem
       without motion hypotheses      with two motion hypotheses

Fig.2: Illustration of the reduced correspondence problem

          (a)       (b)

Fig.3: Accordance maps for Frame 15 with respect to the two relevant motion hypotheses.
 (a) corresponds to the car,   (b) corresponds to the background.

       (a)         (b)

Fig.4: (a) Motion Detection based on the accordance maps. with (b) Segmentation of the background
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(a)

     (b)       (c)

Fig.5: a) Fifth frame of the dot-pattern sequence. b)  Segmentation result for the circle and
c) the background.

     (a)           (b)

     (c)           (d)

Fig.6: a) 20th frame of three moving vehicles on the road. b) Detected two vehicle which moving closely as
first object. c) second object is the one vehicle  moving right. d) is the background.


