Windupless PI and PID controllers Tuning
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Abstract: The paper investigates the basic properties of two possible dynamical structures of integrating
controllers. They are characteristic with one possible saturated period of control in their responses to a set
point step (structures denoted by index ,,1%), or just with an exponential (in the limit with a step) transient to a
new steady state control signal value, without attacking given saturation limits (structures denoted by index
,0%). By discussing several possible tuning procedures, the paper is focused on steps required for a reliable

controller tuning.
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1. Introduction

It is well known that in controlling systems with a
dominant first order dynamics, for an admissible
class of input signals the control signal saturation
does not cause any serious problems with system
stability although it slows down the transients. The
basic problems in controlling these systems are
mostly caused by the parallel structure of linear PI
and PID controllers. These problems are usually
increased by the control signal saturation. The
resulted performance degradation is denoted as the
windup phenomenon. Due to mentioned deficiencies,
majority of linear PI and PID controller structures
have to use additional anti-windup network in order
to reduce undesired effects. Such an approach,
however, requires additional tuning of several free
parameters. In this paper some aspects of practical
implementation and tuning of a new type of fully
windupless  integrating  two-degrees-of-freedom
controllers [1] will be considered. These controllers

can be tuned independently on reference following
and on disturbance attenuation.

2. Basic Controller Structures

In [1] it was shown that a fully windupless PI
controller structure for systems with dominant first
order plant dynamics can be based on a 2-channel
structure consisting of: (a) P-controller extended by
feed-forward control ensuring desired set point
tracking and (b) Observer based compensation of
input disturbances which guarantees an independent
disturbance response and a zero steady-state error.
This approach helps to achieve fast transient
responses without overshoot typical for the linear PI-
structures and does not need any additional anti-
windup loops.

In generalising the mentioned approach, a higher-
order controller R can be introduced (e.g. PD)
instead of the P controller (see Fig.1).



For disturbance compensation it is necessary to
estimate the actual plant input, e.g. by using filtered
(lead-lag) estimation of the inverse process transfer
function. An equivalent input disturbance is then
evaluated as a difference of the estimated filtered
plant input and of the filtered controller output. The
identified disturbance vy has then to be subtracted
from the controller output and the resulting signal to
be limited according to saturation limits.
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Fig.1. Basic controller R, static feed-forward control
and an observer based disturbance compensation for
dominant first order plant

For a dominant feedback dynamics, another 2-
degrees-of-freedom controller is proposed (see
Fig.2). It is composed of a static inverse gain in the
feed-forward path and of the channel for
reconstruction and compensation of disturbance
(Fig.2)

Next, both these structures will be explained with an
accent given to the experimental tuning of the
controllers for control loops with a gradually
increasing degree of complexity.
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Fig.2. Static feed-forward control and reconstruction
based compensation of input disturbance for loops
with dominant feedback dynamics

3. First Order Open Loop
Approximation

Two cases are possible:

a) The first order plant in the feed-forward path,
when it is natural to use the control structure given in
Fig.1 with

A,(8) =LA, () =1+T5; A(s) = A, (s)A4, (s) =1+ Ts
F(s)=1+T;s

This situation (see [1]) corresponds to a windupless
PI,-controller.

b) A dominant feedback dynamics, when the basic
control scheme is given by Fig.2 with

A (s)=1+Ts;4,(s)=1; A(s) = 4,(s)4,(s) =1+Ts;
F(s)=1+T;s

This basic 2-channel controller is denoted as PI,
controller.

3.1. Admissible Input Signals
An admissible control signal is usually defined by
U <u<U, €8

In order to maintain the output signal y in a
neighbourhood of a chosen reference value w=const,
it must be possible to control the polarity of the
output signal changes by the admissible control
signal. So, for A4,(s) satisfying A,(0)=1 the set of
admissible reference signals can be restricted by

KU, +v)<w< KU, +v),K >00r

KU, +v)<w< KU, +v),K <0

In controlling systems with unstable 4,(s) (T<0) it is
yet necessary to introduce a notion of the admissible
initial state y, [1]. In such a state, the sign of the
output derivative has to be changeable by the
admissible control.
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3.2. P-controller

Setting 7y — o, the control loop (Fig.1) behaves like
P-controller with gain Kg. The output signal is given
as



Y(s) = F, (s)w(s) + F,(s)v(s);
A+1/K,,,)K,
1+ K, +Ts
Fi(s)=— 3)
1+ K, +Ts
K, =K,K
Koy = KKy,

E,(s)=

Obviously, the zero steady state error can only be
achieved for v=0 and K,,=K. Since for 7>0 and
Ky>0 the characteristic polynomial C(s)= 1+ K,+Ts
is always stable, this plant approximation gives no
information relevant for an optimal tuning of Kp.

For unstable plant with 7<0, the range of possible
controller gains would be limited from one side by
the condition K,<-1.

However, the controller gain can be limited
according to allowed measurement noise
amplification.

3.3. Windupless PI;-controller

By placing the loop around the saturation, according
to Fig.3, the controller gains integral action with the
time constant 7;=7} where
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Fig.3. Rearranged structure of windupless PI;-
controller; Ky,=Ky Ky, Ky=KKp.

The idea of anti-windup Pl-controller based on a
loop around saturation can also be met by other
authors [35, 6].

The closed loop is characterised by the following
transfer function:

1+1/ K, )K,A+T,s
£ (o)~ VKK 0 T,9)
Fden(s)
(%)
KT,s
F(s)=—
Fden(s)

where
F,,()=(0+1/K,)K, +[(1+K0)T/ + Ty Ky / Koy Is +T/'Tsz

Since F,(0)=1 and F,(0)=0, this controller gives a
zero steady state error also in the case of a constant
input disturbance v#0 and of a model mismatch,
when K=K (KM;tO), Ty#T.
For 7>0 (stable plants) and 7;>0, the closed loop
remain stable for any K,>0 and K,>0. In the case of
unstable plants with 7<0 the closed loop stability in
the nominal case (7},=T, K,,=K) is guaranteed (all
coefficient of the characteristic polynomial have the
same sign) for K,<-I. It means that the controller
gain must not be increased under the critical value
(KRSKRmin) .

K =—1/K (6)

A well-balanced dynamics (with equally fast
dynamical modes) can be obtained by achieving a
double real pole [3] of the closed loop characteristic
polynomial. In the nominal case

_ —(1+K)T, —T ++/Det

Siz ™)
27, T

where
Det =[(1+ KT, + T —4T,T(1+ K,)

From the demand Det=0, it follows

T=T/(1+Ky) ®)
It might seem at the first glance that in the case when
v=0, and v~=0, the disturbance reconstruction
(compensation) channel remains inactive and the
loop behaves as the first order one. However, the
higher order modes may be initiated by a possible
mismatch of initial conditions (e.g. due to the
measurement noise) and/or by the model-plant
mismatch.

3.4. PIj-controller

In the case of the first order loop dynamics placed in
the feedback, Fig.2 can be modified into Fig.4
involving linear PI controller with the proportional
gain Kg=T\/KyT¢ and with the integral time constant



Ti=Tm. Together with the input filter it forms a
structure denoted here as a Ply-controller:

K(1+T,s)1+Ts
F(s)= (I+T,s)( )
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Fig.4. Rearranged structure with linear Ply-controller
and input filter

It is important to note that in the nominal case, due to
F,(s)=1, the closed loop behaves like a memory-less
system. To eliminate step changes of the control
signal (and also to decrease sensitivity to a possible
mismatch of Ky and K), the value of 7y in the input
filter is being set to zero. Then, the effect of the input
filter is equivalent to industrially produced PI
controllers with error acting on I-only. From the
stability point of view, the filter time constant 7} in
controller can take any positive value. However, this
value can be limited according to allowed high-
frequency gain

KN:KR:TM/K/\/IT]‘; (10)

3.5. Summary

The first order open loop estimations are appropriate
for design of the basic controller structure. However,
they give no information about parasitic time lags
involved in each control loop which are of the
crucial importance in determining the optimal
controller values. So, to make the tuning procedure
reliable, one has to wuse higher order loop
approximations.

4. Second Order Open Loop
Approximation

In this sub-section, three different situations will be
considered:

a) Ay(s)=1+T;s; A(s)=1+T5s;
A(S)=ANS)AL(S)=(11T;s)(1+T1s)

b) Ay(s)=1; As)=(1+T,s)(1+Tos);
AS)=AS)ALS)=(1+T;s)(1+T1s)

¢) Ap(s)=(1+Tys)(1+T1s8); As)=1;
A(S)=AN(S)A(S)=(1+T;s)(1+T2s)

4.1. Separate tuning of the P-controller

Disconnecting the disturbance compensation channel
in the nominal case (a), for R=K; from Fig.1 it
follows

F(s) = 1+ K,)A+T,s) an

A+T)A1+T,s)+ K,
For stable time constants (T,>0, T»>0), the closed
loop is stable for all K,>0. For T,<0, the closed loop
can be stable just for Ky<-1 and 0<7,<-T.

An optimal closed loop gain K, can be determined
from the requirement of equally fast particular modes
of the closed loop dynamics, i.e. by choosing a
double real pole of the characteristic polynomial [3]
corresponding to

_ 2
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The closed-loop step responses are monotonous just
for 7,<T,. For T,>T,; overshoot already occurs - the
loop has to be classified as a loop with dominant
feedback dynamics and the corresponding control
structure (Fig.2) has to be used. The other possibility
is the active compensation of the time constant T, by
the PD-controller.

Although the requirement of a double real closed-
loop poles gives sometimes too damped transients, it
still does not give the critical value of the controller
gain.

4.2. PI;-controller

In the nominal case (a), for R=Ky and F(s)=1+T}s,
from Fig.1 it follows



(1+K,)(A+T,5)(1+T,5)

F, ()= (13)
1+ K, +[(1+K0)Tf +T]s +
+T,(T; +T,)s* +T,T, T, s°
For Tw=T), T,>7T,>0 (dominant stable plant

dynamics), the closed loop remains stable, if
Ty>0 AND T;>T) (-Ti+KoTo)/[ (1+K)(T)+T5)] .
For 7,>T,T>/(T,+T,) the closed loop stability is
guaranteed for any K, and when K,<T,/T for any
Ty>0.
In the case of unstable plants with 7;<0 the closed
loop stability in the nominal case (73,=7,, K=K,
T>0, T,>0) is guaranteed for Ky<-1 and 7,<|T}|.
Accepting the condition of the double real pole (12)
for the P-controller tuning, the closed loop is stable
for any Tf>0>—4*T[2*Tg/(T/+Tg)2 i.e. its value can be
determined fully independently and the only
restriction is to get an acceptable high frequency
noise gain

K=K+ T\/(KT). (14)
One idea is that a better dynamics can be achieved
by choosing T,,=T,+T, what corresponds to the
approximation of plant inverse at low frequencies.

This PI; controller, which has been derived for the
configuration (a), gives acceptable results also in the
situation (c), when the magnitude optimum (MO)
method [2] yields

o L T3 TAT+2T)

0= T, =

1 (T +T,)
An optimal approach to this situation would already

2 (1, + 21,1,
be based on a non-linear PID, controller described
e.g.in[7].

(15)

4.3. Example:
K=2; T\=5; T,=1; distribution c).
1) Linear PI based on MO [4]: Kg;=1.3, T=5.03s;

2) Windupless PI;, Double real pole: Kg,=0.4; Tp=
2.7778

3) Windupless PI;, MO: Kg;= 0.7857; Ts=4.8611

While controllers 1 and 3 corresponding to MO yield
identical response in linear case (Fig.5a), the linear
PI with constrained control signal (Fig.5b) shows
typically increased overshoot. But, on the contrary,
the overshoot of the corresponding windupless PI,
C3 has decreased due to the narrower region of
linear control. The windupless controller C2, with

the proportional gain Kjp; corresponding to the
double real pole (12) with the filter constant Tp
guaranteeing the same total high frequency noise
gain Ky, as in the case of linear PI C1, when it is
given directly by Kz, i.e.

Ky, :KR2+LAZKR1 (16)

KT,

gives obviously the fastest responses both for the
reference step, and for the disturbance step. Without
the limitation on the noise attenuation, the filter time
constant T, could be further decreased and the
disturbance response could yet be made faster.
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Fig. 5. The closed-loop responses of the second-
order process when using three chosen controllers in
a) linear case; b) constrained case.

4.4. Ply-controller

Use of Pl controller is recommended in the case of
the dominant feedback dynamics, i.e. for



configuration (a) with T;<T, and for the
configuration (b), with T,<T,. According to Fig.4,
for 7,,~=T5, one gets

1+Tfs
a)F,(s)=——————,0r (17)
1+7,s+1,T,s*
1+7,.)Y1+T s
£ (s) = LTS (18)
14T, s+1,T,s°

It means that the loop is stable for any 7,7, 7; >0.
Appropriate controller setting could e.g. be based on
the demand of equally balanced dynamical modes of
the closed loop response, when

2
=T, £ \T] 41T,

§1, = B
" 2TT (19)
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2
Det=T} —4T,T, =0=T, =4,

With respect to the dynamics of disturbance
compensation, this setting will be acceptable just for
small values of T,. Another limitation on the
controller tuning could be given by allowed noise
amplification specified by (10).

It is to see that this value is smaller as in the case of
the PIi-controller. This may be reason, why in a
rough industrial environment the Pl controller is
used also for the loops with dominant plant
dynamics. However, responses achieved are no more
the optimal ones. They can be locally (i.e. for
specific input, initial condition and saturation limit
values) improved by a modified setting and so it
might be one of the most serious arguments for
existence of the inflation of different optimal settings
of linear PI-controllers!

5. Conclusions

The paper investigates the basic properties of two
dynamical structures of integrating controllers.
Several closed-loop control schemes were proposed.
It was shown that the first-order estimations are
appropriate for design of the basic controller
structure. However, they give no information about
parasitic time lags involved in each control loop
which are of the crucial importance in determining
the optimal controller values. Moreover, it was
shown that the design of the P-controller gain is not
fully independent on the disturbance reconstruction
and compensation channel. Elimination of this

dependence requires use of higher-order plant
estimations in disturbance reconstruction.

Several experiments by using the second-order
process estimation have been conducted. It was
shown that the proposed windupless controller
structure (PI;), by choosing appropriate double real
closed-loop pole (12), gives the fastest response both
for the reference change and disturbance step-
change.
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