MRAC using a Variable Structure-based Neuron-like model

ELIEZER COLINA-MORLES
FRANCKLIN RIVAS-ECHEVERRÍA
Departamento de Sistemas de Control
Universidad de Los Andes
Facultad de Ingeniería. Escuela de Sistemas. Mérida. 5101
VENEZUELA

Abstract: -In this work it is proposed a model reference adaptive control (MRAC) law for a class of nonlinear systems. It is used a virtual (neuron-like) time variant linear model, that updates its parameters using a variable structure-based algorithm. It is proved that the virtual model signals will converge to the nonlinear systems, and using the linear control law, it yields to an accurate tracking for the reference model. It is presented an illustrative example using a nonlinear system.

Key-Words: - Nonlinear Systems, Variable Structure Control, Sliding Mode, Model Reference Adaptive Control, Neural Networks

CSCC’99 Proceedings: - Pages 5151-5154

1 Introduction

Since the creation of the sliding regime theory [1], there have been many publications that uses these approach for creating different kinds of control laws [2,3,4]. One of the most recent paper can be found in [5]. The use of Variable Structure Control (VSC) for updating the parameters in dynamical weights neural networks [6,7,8] have been proposed together with some identification and control applications. The authors of these paper have also proposed an adaptive control law using a state feedback control which parameters were adapted using a VSC-based algorithm, but this approach is only for regulation in time variant linear systems [9]. In this paper, it is proposed a Model Reference Adaptive Control law, as the one presented by Slotine and Li [10], but for a class of nonlinear systems, using a VSC-based virtual linear model for obtaining the parameters to be used in the control law.

The paper is organized as follows: Section 2 presents the formulation of the problem. In Section 3 is presented using a theorem the reference model adaptive control proposed and the parameters adaptation law. Section 4 show an example for the control scheme proposed. Section 5 gives some conclusions and some further works in this direction.

2 Problem Formulation

Let consider the nonlinear system given by:

\[
y = f(y, \dot{y}, ..., y, t) + g(y, \dot{y}, ..., y, t)u(t)
\]

(1)

with \(g(.) \neq 0\) and where the components \(y, \dot{y}, ..., y\) are measurable.

Defining the following time variant linear neuron-like model:

\[
y_i(t) = -a_{n-1}(t)y_i(t) - ... - a_1(t)\dot{y}_i(t) - a_0(t)y_i(t) + u(t) + \gamma(t)m
\]

(2)

where \(a_i(t)\) and \(\gamma(t)\) are adjustable parameters.

The objective is to use the parameters found using a vsc-based algorithm for the virtual model (2), in order to give an accurate track of the nonlinear system (1) to the reference model given by:

\[
\alpha_m y_m(t) = -\alpha_{n-1} y_m(t) - ... - \alpha_1(1)\dot{y}_m(t) - \alpha_0(t)y_m(t) + r(t)
\]

(3)

3 MRAC using a Variable Structure-based Neuron-like model

In this section it is presented the theorem used for fill the requirements given in the previous section in order to provide an accurate track to a reference model for a given nonlinear system.

Theorem 1:
If the parameters of the equation (2) are adjusted according to:

\[
y = f(y, \dot{y}, ..., y, t) + g(y, \dot{y}, ..., y, t)u(t)
\]

(1)
Thus, the sliding surface $e(t)$, satisfies a differential equation with discontinuous right hand side whose solution exhibits a sliding regime in a finite time tr (Utkin, 1992).

Notice that equation (8) may be solved explicitly as:

$$
\int_0^{tr} e(t) dt = -w \int_0^{tr} \text{sign}(e(t)) dt \\
\Rightarrow e(tr) - e(0) \leq -w \text{tr} \text{sign}(e(0))
$$

At time tr the value of $e(t)$ is zero and therefore:

$$e(0) \geq w \text{tr} \text{sign}(w(0))$$

(9)

Multiplying both sides of inequality (9) by $\text{sign}(e(0))$ yields:

$$|e(0)| \geq w \text{tr}$$

and therefore

$$\text{tr} \leq \frac{|e(0)|}{w}$$

(10)

Substituting the control law (5) in the virtual model expression (2) it is obtained:

$$y_v = y_m - \beta_{n-1} e_{T(t)} + ... + \beta_0 e_T + a_{n-1} \dot{y}_v + ... + a_0 y_v - \gamma(t) m$$

(12)

but, $y_v - y_m = e_T$, so (12) can be rewritten as:

$$e_T + \beta_{n-1} e_T + ... + \beta_0 e_T = 0$$

(13)

Considering that the β_i were selected according to a Hurwitz polynomial, it can be seen that $e_T \rightarrow 0$, and consequently $y_v \rightarrow y_m$. It has been previously shown that selecting the virtual model parameters using the VSC-based algorithm it will occur that $y_v \rightarrow y$. So it yields that $y \rightarrow y_m$.

... It is important to point out that if $\text{sign}(e(0))$ is not measurable, the updating law for the parameters in (3.4) may be rewritten in the following terms:

$$
\left[
\begin{array}{c}
a_0(t) \\
a_1(t) \\
\vdots \\
a_{n-1}(t) \\
-\gamma(t)
\end{array}
\right] =
\frac{\text{num}}{y_v^2 + \dot{y}_v^2 + ... + \gamma(t) m^2}
\left[
\begin{array}{c}
y_v \\
\dot{y}_v \\
\vdots \\
y_m
\end{array}
\right]
$$

(11)

5152
with \(W \) being a positive design constant satisfying
\[w > B_{(n)} \text{, where } B_{(n)} \text{ is a bound for } y. \]

4 Illustrative Example

Let consider the nonlinear system:
\[\ddot{y}(t) = f(\dot{y}(t), y(t), t) + g(\dot{y}(t), y(t), t) * u(t) \]
where:
\[f(y(t), \dot{y}(t), t) = 4 * \sin(3t) * y(t) * \dot{y}^2(t) * \cos(\dot{y}(t)) \]
\[g(y(t), \dot{y}(t), t) = [1 + \sin(t) * \cos(y(t) * \dot{y}(t))] \]

It is defined the virtual model as:
\[\ddot{y}_v(t) = -a_1(t)\dot{y}_v(t) - a_0(t)\dot{y}_v(t) + u(t) + \gamma(t)m \]
Our goal is to reach an accurate tracking to the following reference model:
\[\ddot{y}_m = -y_m - 0.25\dot{y}_m + \text{ref} \]
where
\[\text{ref} = \begin{cases} 1 + \sin(4t) & \text{if } t \leq 30 \text{s,} \\ 0.5 & \text{if } t > 30 \text{s.} \end{cases} \]

In Figure 1 it is depicted the tracking error (difference between the reference signal and the virtual model output), and the sliding surface created in such a way that the difference between the virtual model output and the nonlinear system output converge to zero.

In Figure 2 is shown the reference signal, virtual model output, and nonlinear system output. It doesn’t take much time for reaching the reference signal, and after that moment, it follows accurately the reference model including when it has a change on the reference signal (30 sec.)

5 Conclusions

In this paper have been proposed an adaptive control law for a class of nonlinear systems for an accurate tracking of a reference model. It was proposed a linear time variant virtual model for obtaining the parameters to be used in the control law. The virtual model parameters were adjusted using a Variable Structure-based algorithm.

It was shown that the control scheme proposed works was very easy to implant and the parameters...
such as the convergence time and the tracking error can be defined according to the performance desired for the system.

References: