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Abstract:  We present a survey of methods for passing from subsymbols to symbols. First, we present a
definition of the following notions: Subsymbols, Symbols and Hybrid Systems, as well as a taxonomy of
Intelligent Systems.  Then, pure Artificial Intelligent (AI) as well as pure Computational Intelligence (CI)
techniques for subsymbolic to symbolic mapping are exposed. Next, we present a taxonomy of hybrid systems;
according to that there are three categories of hybrid systems: Combined Intelligent Systems, Transformational
Intelligent Systems and Coupled Intelligent Systems. Hybrid systems are a very promising alternative to pure
AI and pure CI techniques for mapping subsymbols to symbols. Finally, we elaborate on the Hybrid Intelligent
Systems as well as on the approach, which we follow in Physta research project, which is a subcategory of
Hybrid Systems.
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1  A Pragmatic Framework
A framework for the terminology and

categorization of intelligent systems as tools for
modeling the brain or as machines that are
characterized by an intelligent behaviour has been
proposed by Bezdec [7]. The main distinction in
Bezdec's categorization is made on the basis of the
abstraction level of the processing involved in each
intelligent system: symbolic or subsymbolic
(numerical). Historically, these two main
approaches are represented by Artificial
Intelligence (AI) and Neural Networks (NN),
respectively. The NN approach together with other
subsymbolic techniques (fuzzy logic, genetic
algorithms etc) has lately been referred to as
Computational Intelligence (CI).

Knowledge representation in artificial
intelligence systems involves the use of symbols.
We will adopt the following definition of symbols:
a symbol represents abstract notion as well as
relevant properties of that abstract notion.
Symbolic processes transform symbol structures

into other symbol structures that are relevant in a
specific context. Although heuristic and linguistic
knowledge used by experts can be the basis on
which AI systems are constructed, the symbol
grounding problem, i.e. the problem of how the
symbols acquire meaning, remains one of the main
problems of AI [14]. Roughly speaking, this is the
top-down view of the problem of subsymbolic to
symbolic mapping. Several methodologies (as
fuzzy set theory, probabilistic reasoning etc.) have
been used in order to support the conventional AI
systems in order to bridge the gap between symbols
and subsymbols. For example, fuzzy expert
systems or decision trees are using numerical data
in order to determine the symbolic knowledge.

On the other hand, in computational
intelligent systems, knowledge is represented in a
more opaque, subconceptional manner. The
subsymbolic representation is usually defined by
the origin of the information (e.g. sensors or
database), rather than by the content of the
information. Moreover, in a CI system with
multiple streams of information, knowledge is



usually stored in a distributed fashion. A main
objective of mapping subsymbolic information into
a symbolic representation is to find an abstract
representation of the symbol or object, which is
invariant with respect to various features (e.g.
invariant with respect to position and orientation).
Moreover, the representation should be such that
direct links are possible to properties of the object
or symbol and such that the representation can
easily be used in symbolic reasoning. This problem
can be viewed as the bottom-up case of the
subsymbolic to symbolic mapping problem. The
main approach of computational intelligence is the
connectionist approach. Biologically inspired
neural networks that try to model the human brain
and artificial neural network models that try to
emulate the intelligent behaviour of humans are the
basic methods of computational intelligence.
Lately, supporting methodologies like fuzzy set
theory have been used in order to improve the
symbolic representation and processing capabilities
of NNs.

Although each of the subsymbolic and
symbolic framework can specify intelligent
systems by itself, the limits of each category are not
clear and become increasingly vague. The
emergent need for intelligent systems that can work
in both the symbolic and the subsymbolic
framework leads to the unification of AI and CI
approaches. Hence, the perspective that the basic
method of CI is the NN approach and that the basic
method of AI is the traditional symbolic processing
(expert systems, rule-based systems) is mainly due
to historical reasons. The main issue in the research
on intelligent systems is now how the symbolic
description of mental processes, in terms of rules
and representations in the province of conventional
AI, can be related to a subsymbolic description in
terms of brain mechanisms (the top-down
approach). The same question is how the
subsymbolic processes of neurons, synapses and
interconnections of a conventional artificial neural
network can be related to the symbolic description
of human logic and behaviour (the bottom-up
approach). The perspective of PHYSTA is based on
the bottom-up approach. One of the principal
reasons that neural networks have been considered
a useful vehicle for such a development is that
there is an existence evidence for the solution of
creating such a system (and of course answering
the above questions), that of the human being.
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The need for combination of AI and CI
methods arises from the need for both symbolic and
subsymbolic processing. This combination leads to
hybrid systems. Hybridization is done not only in
the sense of integrating independent AI and CI
methods in order to construct an overall system, but
also in the sense of the theoretical unification of AI
and CI ideas (Figure 1). In the following, we will
adopt a taxonomy of hybrid intelligent systems, as
shown in Figure 2. This taxonomy is done on the
basis of previous work by (see [16],[25]) The basic
innovation with respect to the latter lies in the use
of a different terminology and in the distinction of
hybrid intelligent systems into three categories. The
first category, Combined Intelligent Systems,
comprises systems that use NNs as tools for
symbolic processing (top-down approach) and NNs
that use AI concepts in order to support symbolic
processing (bottom-up approach). AI and CI
methodologies are combined to construct a
combined intelligent system. The second category,
Transformational Intelligent Systems, use CI and
AI techniques to transform symbolic
representations to subsymbolic and vice versa. The
main operations provided by Transformational
Intelligent Systems are rule insertion, rule
extraction and rule refinement. The most important
point is that the CI and AI methods used for this
operation are stand-alone and based on
conventional approaches, in the corresponding



framework. The third category, Coupled Intelligent
Systems, integrate AI and CI modules to produce a
system with the ability to work at both symbolic
and subsymbolic level. The AI and CI components
are independent and communicate in a predefined
way that characterize the kind of processing
involved. Four types of coupling can be
distinguished, namely chainprocessing,
subprocessing, metaprocessing and coprocessing
(see [16]).
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2  Review of conventional AI
techniques for mapping features to
symbols
In this section, some methods for solving the
complete reduction problem of AI systems are
reviewed.  In expert systems, knowledge is
represented in the form of rules that are used to
carry out tasks usually performed by human experts
[10]. The basis of such rules is the theory of
propositional logic which uses propositional
variables (true/false) and truth-functional
propositional connectives, including conjunction,
disjunction, negation, implication and logical
equivalence. If axioms and rules of inference are
provided, a sequence of inferential rules results in a
proof.

However, deterministic reasoning cannot
solve many real life problems; thus probabilistic
reasoning is required. Reasoning under uncertainty
may be achieved by using a probabilistic network
(see [19]). Another interesting generalization of AI
systems that is very effective with noisy and
uncertain data is that of fuzzy knowledge-based
systems. Fuzzy set theory and fuzzy logic are
mathematical theories widely used in artificial
intelligence [21]. Fuzzy rule-based systems and
fuzzy expert systems are AI systems with the
ability of mapping subsymbolic to symbolic
knowledge with the aid of fuzzy mathematics [40].

There are also many methods for rule
induction. One of the earliest is the decision tree,
which is a directed acyclic graph comprising
internal and terminal nodes. All internal nodes
contain splits, which test the value of a
mathematical expression. Each terminal node of a
decision tree has a class label associated with it.
The nodes are connected by edges. The
construction algorithm tries to find a rule at each
node which splits the data according to some

criterion giving rise to a decision tree with an
exponential number of nodes at each level. The
criterion is usually such that entropy or a related
quantity is minimized at each node. The result is a
decision tree, which gives a good performance
(usually with regard to classification) and which
provides insight into the performance, since the
rules at the decision nodes are known.  These rules
usually are defined in terms of if-then rules.

Learning and adaptation are important
characteristics of intelligent systems that play a
central role in subsymbolic to symbolic mapping
via classification. EITHER [28] and Labyrinth-k
[36] are two symbolic learning algorithms. The
input consists of a (probably incorrect) domain
theory and a set of data (i.e. empirical knowledge).
The output is a refined domain theory.  Another
interesting method, lately used to enrich AI systems
with the ability of self-construction is the Genetic
Programming (GP). GP is actually a method of
automatic programme induction and bears a
resemblance to the theory of natural selection [22].
The word "programme" should be considered here
in the broadest possible sense, to include computer
programs but also any symbolic structure

3 Review of conventional NN
techniques for mapping features to
symbols

Artificial neural networks are universal
approximators and operate in a subsymbolic
framework. They have been widely used for
classification problems. Classification can be
viewed as a first way of relating subsymbolic to
symbolic information. Ideas of mapping features to
symbols can be found in the basic structure of
typical neural networks (such as multi-layer
perceptrons, self-organizing maps etc). However,
this mapping takes place to a limited extent, since



traditional neural networks do not support methods
for symbolic processing. With the aid of clustering
and classification some general information is
mined concerning the grouping of numerical data.
On the other hand, methods for solving the problem
of mapping features to symbols have to prove
useful in terms of symbol understanding and
processing. For this aim, the problem of mapping
features to symbols with the aid of NNs is
connected with the problem of rule extraction from
already trained NNs.

The topic of rule extraction in neural
network research has raised a recent increase of
interest driven by the need to develop artificial
systems with near-human capabilities (although
this is still remote) and analyse the manner in
which humans achieve rule extraction; also by the
need to understand deficits caused by brain injury
as well as help build artificial systems. A review of
the whole area of these various aspects of rule
formation is given in [6].

Neural networks have been widely used for
classification problems; classification could be
viewed as a subsymbolic to symbolic mapping.
Feedforward networks, like multi-layer perceptrons
(MLPs) [15], are appropriate for various
classifications tasks, although it is not clear that
they can be useful for subsymbolic to symbolic
mapping purposes. A more useful approach is that
of tree neural networks (TNNs) ([30, 13]). The
main idea of these networks is the combination of
decision trees with feedforward neural networks
using a small MLP for each decision node of the
decision tree. An interesting extension of decision
trees is described in [5]. Another idea following the
same rationale, is the hierarchical mixture of
experts (HME) architecture [18] which is a tree-
structure with gating networks on the links and
expert networks on the leaves.

Another useful approach are the
probabilistic neural networks (PNN) [33, 8]. The
network structures are similar to those of multilayer
perceptrons; the primary difference is that the
sigmoid activation function is replaced by an
exponential one. Key advantages of PNNs are that
training requires only a single pass and that
decision surfaces approach the Bayes-optimal
decision boundaries as the number of training
samples grows. An interesting generalization of
probabilistic networks is proposed by Kuo et al. in
[23] using concepts from fuzzy set theory. The
pRAM model is a stochastic neural network,
generating strings of random bits, whose joint
probability distribution is modifiable through
learning algorithms, in terms of conditional

probabilities of any bit given the values of certain
others [4].

Using fuzzy set theory and fuzzy logic
principles the network becomes more flexible,
more robust and can be described at a higher
symbolic level. Fuzziness can be introduced either
in neuron models or in the training algorithm.

4  Hybrid AI and NN techniques for
mapping features to symbols

Next we explore the Combined Intelligent
Systems which is the first sub-category of the
hybrid systems. The earliest examples in this
category are the Neural expert systems which
enrich neural networks with heuristics. Those
heuristics allow neural networks to cope with
incomplete information, to explain conclusions and
to generate questions for unknown inputs (see [12,
32]).

The KBANN [38] integrates  propositional
calculus with neural learning.  A set of rules
designating a domain theory that is partially correct
is integrated into a feed-forward neural network.
The neural network is trained, thus refining the
rules. Furthermore, it is possible to integrate a
deterministic finite state automaton in a recurrent
neural network (see [27]). Rule extraction for feed-
forward neural nets can be achieved with the KT
[11], which produces propositional logic rules. A
novel method for the classification of structures by
neural networks has been proposed by Sperduti and
Starita [35]. The authors propose a generalization
of a recurrent neuron, whereby it is facile to map
graphs to a neural network. Another idea is the
LRAAM model [32, 35], which can be  used in
conjunction with a classifier network to classify
labeled structures.

The use of NNs in order to realize the key
concepts of a fuzzy logic system enriches the
system with the ability of learning and improves
the subsymbolic to symbolic mapping. Neural
network realization of basic operations of fuzzy
logic, such as fuzzy complement, fuzzy intersection
and fuzzy union, has been proposed [29,17]. A
connectionist approach of fuzzy inference has been
proposed by Keller et al. [20]. The issue of
identifying the fuzzy rules and tuning the
membership functions of fuzzy sets using neural
networks and training algorithms has been widely
studied. Another approach to this problem related
to fuzzy control has been proposed by Lin and Lee
[24] (chapter 19), who introduced the fuzzy



adaptive learning control network (FALCON) to
study hybrid structure-parameter learning
strategies. Structure learning algorithms are used to
find appropriate fuzzy rules and parameter learning
algorithms are used to fine tune the membership
functions and other parameters of the fuzzy
inference system.

Several methods are described next which
aim at extracting, inserting or refining
propositional rules in trained neural networks, all
these methods fall in the transformational
intelligent systems category. Some of these
methods are decompositional, in the sense that the
focus is on extracting rules at the level of
individual (hidden and output) units [3]. Other rule
extraction methods are usually classified as
pedagogical, in the sense that the network is treated
like a black box, whereby rules are extracted.

RULEX [1,2] is a technique of rule
extraction from a trained CEBP (Constrained Error
Back-Propagation Network). The derived rules
belong to the class of propositional logic. The
algorithm for rule production is quite efficient since
it is based on a direct interpretation of the
parameters of the CEBP network. Furthermore, it is
possible to refine a set of rules by inserting them
into the CEBP network, training the network and
then extracting them. There are also methods for
extraction of propositional rules from a trained
multilayered perceptron when considered as a black
box (see [37]) or at the level of individual neurons
(see [31]). In a parallel line of research a finite state
automaton has been extracted from a trained
networks (see [27]).

Narazaki in [26] deals with the problem of
rule extraction in a novel way: he bases his method
on the function approximated by the network,
rather than considering connection weights.
Finally, a method called TREPAN, whereby
propositional rules are extracted from a neural
network with the aid of a decision tree, has been
proposed in [9].

6  Conclusion - Perspective
The above described rich taxonomy and

characterization of algorithms and representations
is the basis for the development of a theory and
methodology in the PHYSTA Project. Moreover,
PHYSTA will investigate a different perspective.
According to this, the rule extractor is not an
external agent but a rule located in the mentioned
hierarchy,  i.e. a piece of neural network by itself.
Thus, rather than an external subroutine, we are

looking for an inner loop priming symbols from
synapses.
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