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Abstract: Iteration space tiling is a technique used by parallelizing compilers to increase the
computation to communication ratio by varying the granularity of the computation. The source
problem that we investigated are modeled by orthogonal uniform recurrences defined over a
three-dimensional, parallelogram shaped iteration space. This paper studies the best partitioning
and good mapping of iteration space on a ring and on a grid of processor. The results are vali-
dated by exhaustive experiments on distributed memory machine (INTEL Paragon).
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1 Introduction :
Tiling the iteration space is a common

method for improving the performance of parallel loop
programs executed in SPMD (Single Program Multi-
ple Data) fashion on a DMM (distributed memory ma-
chine). It may be used as a technique in parallelizing
compilers.
These techniques are developed very actively these
last years around the automatic parallelization of the
nest of [4,7,11]. Tiling consists in partitioning the it-
eration space into blocks called tile; a single processor
executes each tile in an atomic way.

Optimal tiling consists in determining the op-
timal parameters of the tile (shape and size) which to
minimize the execution time by reducing the extra cost
of communications.

In the case of two-dimensional uniforms de-
pendency loops, the results described in [1,2,6,9] pro-
pose an analytical solution with the optimal size of the
tile. The objective of this work is to develop tiling
techniques in the case of a three-dimensional uniform
recurrence and to propose best architecture (ring or
grid) to project the iteration space. This last problem
according to our knowledge was never studied.

2 Tiling :
In the field of the parallel programming, partitioning
holds a significant place. Indeed parallelization with
fine grain can lead to very bad results because of the
overcoats due to the communications. The solution is
to gather elementary operations to link communica-
tions, i.e. partitioned the field of computationation in
tiles. A processor will carry out each tile in an indi-
visible way.
One of the major objectives in this search is to find
optimal parameters(shape, size) of the tile for a better

computation/communications ratio. In the case of two-
dimensional uniform recurrence, the problem of parti-
tioning have be largely studied [4,7,11], what be not
the case of three-dimensional.
The approach used in this paper is based on the results
presented in [1,2,3]. The optimal size of the tile is ob-
tained by minimizing the total execution time, which
is a function whose dimensions of the tile are vari-
ables. The other parameters of the function are the
following: the size of space of iteration, the volume of
communication, the number of processor and the de-
sign features techniques of machine (the time of es-
tablishment of a communication ( ), the time of com-
putationation of a elementary data ( a), the time of
transmission of an elementary data ( t).
Let us consider the following example (E1), That is to
say a nest of loops of depth three; n1, n2 and n3 dimen-
sions of the space of iterations and F a function of re-
currence with orthogonal dependencies : d1=(1,0,0)
and d2=(1,1,3);

For i=1 to  n1

  For j=1 to  n2   (E1)
    For k=1 to  n3
      f[i,j,k]=Max{f[i-1,j,k];f[i-1,j-1,k-3]}
    end
  end
end.

We can find this type of dependencies in
many applications resulting from the dynamic pro-
gramming. One of most interesting is generalization
3D of the algorithm of Smith and Waterman for the
comparison of the biological sequence[12].

There are two ways to project the iterations
space (E1) either on a grid or on a ring of processors.



3 Projection on a grid :
The approach that is used is  based on the re-

sults presented in [3]. We give here only the principal
steps of that approach:

-Partition the iteration space into orthogonal
tiles (rectangular parallelepipeds) of size (r*s*t)  and
leave r, s and t free variable. Each processor receive a
surface of size (r*t) of its neighbor North and a surface
of size (s*t) of its neighbor West, calculate its tile and
send a surface of size (r*t) to neighbor South and a
surface of size (s*t) to neighbor East (Fig.1).

-Cluster the recurrence into tiles, yielding a
new uniform recurrence over a new domain. Each tile
is considered as an atomic computation.
- Apply systolic space-time transformations, yielding a
virtual  two-dimensional systolic array.
- Implement this array on a torus of size (q1*q2 = p)
processors.
- Relax the systolic space-timing model to account for
practical machines, and obtain a formula for the total
running time of the final implementation. This for-
mula will be expressed as a function of r, s and t, as
well as other parameters of the program and architec-

ture.
- The optimal tile size is obtained by minimizing

the total execution time:

Under  the contraintes :

The optimal size of the tile is given by:
 Where:

and optimal volume is given by :

In a broad spectrum of problems, our objective is to
evaluate the profit between the cyclic solution and the

no cyclic solution in the concrete case of INTEL Para-
gon machine.

Comparison between the solution cyclic
and no cyclic :

The comparison between the cyclic and no
cyclic version  was tested on the first six problems
among the seven presented in the following ta-
ble(Table1) (the last problem is used for  the ring  ver-
sion). Each problem represents an authority with vari-
ous values of n1, n2 and n3 in order to obtain various
forms for iteration space:

Pbs n1 n2 n3

pb1 500 500 500
pb2 50000 10 50 000
pb3 500 500 40 000
pb4 50000 50000 10
pb5 30000 2000 20
pb6 50000 3000 100
pb7 500000 10 10

Table1: Data

The table(Table2) is divided into two parts: the first
(column 3,4,5,6) corresponds to the no cyclic solution
and the second (col 7,8,9,10) to cyclic solution.
The choice of the solution depends directly on the
value of 1 (col 2). Indeed, if 1 is positive, the opti-
mal solution is not cyclic. Otherwise the optimal solu-
tion is cyclic.
In the two parts, we calculate the theoretical and ex-
perimental solution.
For the theoretical part of the no cyclic version, we
calculate topt according to the formula (). If topt is
higher than one, the theoretical solution is kept; if not,
as topt cannot be lower than one, we recomputed opti-
mal time by realizable approximate topt equal to one
(collar 5). In the sixth column, we give the experi-

mental time.
The second part of table (cyclic) is also divided into a
theoretical part (collar 7,8,9) and an experimental part
(collar 10).
In the seventh column, we calculate topt, the eighth
column shows the execution time obtained by the cy-
clic solution. The last but one  column present passes
number. In the last column, we give the experimental
optimal value for the cyclic solution.

We note that the theoretical value for the two
solutions is close to the experimental value. We ob-
serve thus that for a square field or a field whose third
dimension n3 is larger than n1 and n2, the no cyclic
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solution has a modest advantage on the cyclic solu-
tion. In the other case, the cyclic solution is shown
more interesting than the no cyclic solution.  The pre-
vious results show that the non-cyclic version is not
always that allows to obtain the optimal time. Con-
trarily to conclusions of Ohta and al[8], the preceding
table shows that for certain problems the cyclic ver-
sion is the best.

Conclusion
When mapping is done according to smallest dimen-
sion, it is always interesting to use the cyclic solution.

4 Projection on a Ring:
The space of iterations (E1) is partitioned in rectan-
gular parallelepipeds of size r*s*t , Each tile is consid-
ered as an atomic computation. The mapping of the
graph of tiles is carried out vertically on a ring of $p$
processors. Each processor receives a surface s*t of its
neighbor of left-hand side, calculates a tile and sends a
surface of size s*t to its neighbor of right-hand side.

 The execution time of a tile is  arst, the number of
tiles is : N1*N2*N3 with N1=n1/r, N2=n2/s, N3=n3/t.
While following the approach[2], the optimal size of
the tile is obtained by minimizing the time execution
total :

Under Contraints:

The execution time (according to r and s and t ) is
given by the function:

 The size of the message sent (received) is
constant and is equal to s*t. We put s*t=h, we replace
in equation(4); the passage of a graph of tiles 3D to-
wards a graph of tiles 2D is given by the figure
(Fig.2(b)).

The resulting equation(5) is a model for two
dimensional uniforms recurrences. We can apply the
results described in [2,1,5].

The optimal size of a tile is given by:

with 2=2pn2n3 -(p-1)n1 a

 Then, we will are interest in the evaluation of
the difference between the cyclic and no cyclic solu-
tion.

Comparison between the cyclic and no cy-
clic solution :
In the first part of table(Table3) (column 3,4,5,6), we
present the no  cyclic solution, while in the second
part (col 7,8,9) we give the cyclic solution. For the
seven problems (table1} presented previously, we cal-
culate the value of 2. If the value of 2 is positive, we
will adopt the no cyclic solution if not the cyclic solu-
tion.
In column3, we calculates optimal surface hopt ac-
cording to the formula(6). If hopt is higher than one, we
will adopt the theoretical solution (collar 4) if not, we
recomputed the optimal solution with hopt equalizes
with one(col 5). In column 6, we give the experimen-
tal results of the no cyclic solution. We calculate the
optimal width of the tile (ropt) in column 7. We give
the optimal execution time of this version in column 8.
Finally, column 9, represents the experimental results
of the cyclic solution. We note that the experimental
results remain close to the theoretical results. We note
thus that the cyclic solution remains limited compared
to the no cyclic solution, we needed a field completely
deformed (pb7) to find that the cyclic solution will
take a small advantage compared to the no cyclic so-
lution.

Conclusion :
The two solutions give very close results. To avoid the
problems of buffer and for the simplicity of the no cy-
clic solution it is better to choose the latter.

5 Comparing the grid and ring
mapping :
We compare mapping ring and mapping roasts in the
point of their best behaviors. The results observed in
the table below show a negligible difference between
the version ring and the version roasts. In other words,
the optimal solution of the grid is very close to that of
the ring.
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Pbs Ring(sec) Grille(sec)

pb1 3.39 3.36
pb2 640.45 640.04
pb3 256.87 256.60
pb4 640.45 656.01
pb5 31.24 31.16
pb6 384.78 384.46

Table1 : data

Strategy :
If we choose mapping on a ring, it is better to choose
the no cyclic solution. When we choose mapping on a
grid and if this one is done according to smallest di-
mension, it is interesting to choose the cyclic solution.

6 Conclusion :
 The approach suggested in this paper develops the
techniques of optimal tiling to find the best computa-
tion/communication ratio for three-dimensional or-
thogonal uniform recurrences. Two aspects of this
problem will interest us. The first one consists in
showing which of the two solutions (no cyclic and cy-
clic) is the best. We validate thus in experiments the
results of [3]. We showed as the optimal solution can
be given as well by the cyclic version as by the no cy-
clic version.
The second one consists in finding an optimal strategy
using a fixed number of processors, which can be con-
figured either out of ring or out of grid. We compared
two methods of mapping of the space of iterations on a
grid and a ring of processors. For uniform orthogonal
dependencies, the results of two methods are very
close. Therefore, we can deduce from it that the opti-
mal solution can be given by the simplest strategy:
configure the processors out of ring and use only one
pass.
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Pb 1 topt T(n1/q1,
n2/q2,topt)

T(n1/q,
n2/q,1)

ropt T(ropt,
n2/q2,1)

Nb
Pass

  /

Pb1 13.37 2.00 3.36 3.39 137 3.40 / /
Pb2 1437.95 14.15 640.044 / 647.123 516 1073.53 / /
Pb3 1150.98 17.96 256.60 / 267.68 410 259.534 / /
Pb4 -10199.7 0.05 640.03 1083.76 / 516.02 565.01 24 664.23
Pb5 -244.23 0.02 31.15 41.31 / 241.53 31.16 31 32.17
Pb6 -609.13 0.03 384.64 409.313 / 554.15 384.46 49 389.75

Table2 : grid results (q1=5, q2=4)

Fig.1:  Grid  No cyclic solution(a), cyclic solution(b), communications(c)

 No Cyclic Cyclic
Theoretical Exp(sec) Theoretical Exp(sec)

Pbs 2 hopt T(n1/p,hopt)
  (sec)

T(n1/p,1)
(sec)

ropt T(ropt,1)
(sec)

/

pb1 899.995 430.81 3.394 / 3.49 10774.9 3.397 /
pb2 1799.52 60.95 640.453 / 651.31 152380.0 640.455 /
pb3 72000.0 3853.29 256.871 / 262.98 96373.9 256.869 /
pb4 1799.52 60.9519 640.455 / 649.34 152380.0 640.455 /
pb5 143.709 22.25 31.240 / 32.20 33384.9 31.243 /
pb6 1079.52 47.21 384.781 / 393.53 118033.0 384.782 /
pb7 -4.485 0.27 1.40 1.53 / 6814.66 1.40 1.51

Table3 :  Ring  Results  (p=20)

Fig2  Ring: transformation of a tile graph  3D (a) into a graph 2D(b)


