
CAMELot: A Cellular Automata Simulation Environment

KOSTAS KAVOUSSANAKIS
Edinburgh Parallel Computing Centre

University of Edinburgh
James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ,

SCOTLAND

Abstract: - Soil Bioremediation is the process by which bacteria are used to accelerate and improve the natural
degradation of soil contaminants. This process is currently applied in many European, American and Middle
East countries. Bioremediation is environmentally safe and cheaper than other decontamination methods,
nonetheless it is still expensive and forecasting the result is difficult. Although accurate modelling of the
phenomena involved can reduce the cost and time factors and improve the quality of the process, very few
bioremediation companies apply such methods. The ESPRIT funded CABOTO project, introduced the use of
computers for modelling bioremediation. Cellular Automata were used to model the interaction of the bacteria
with a specific contaminant. A purpose driven language for CA specification, called CARPET was developed
to this end.

CABOTO finished in 1996 and was followed by COLOMBO. The major differences between the two projects
include the simulation of a wider class of phenomena, involving a wider range of contaminants and real field
testing. It was also desired to make the transputer-based simulation software portable across platforms and
improve its usability and functionality.

EPCC is a leading UK High Performance Computing Centre with a strong track record of providing services
and facilities to industry. It participates in COLOMBO providing expertise in Parallel Programming. The
objective is to design and develop CAMELot, an improved environment for Cellular Automata programming
and parallel execution, and implement the necessary extensions to CARPET so as to meet the end-users’
needs. In this paper we give a short outline of the Cellular Automata modelling framework and focus on the
design of the CAMELot system. We also give an overview of the supported functionality and discuss the most
important implementation issues. IMACS/IEEE CSCC'99 Proceedings, Pages:5521-5526

Key-Words: - Parallel Execution, Computer Simulation, MPI, Sockets, Cellular Automata, Bioremediation.

1 Introduction
Bioremediation is a process by which bacteria are
used to degrade the contaminant in polluted soils.
This process improves and accelerates the natural
decontamination process. Pilot studies are executed
in laboratories to predict the outcome of the
application of the method to the target grounds. In
addition to those, the phenomena are modelled using
mathematical computation methods. The physical,
chemical and biological phenomena involved in the
process are complex and require large computational
power in order to be modelled. Parallel computers
can provide this computational power in a cost-
effective way.

Cellular Automata [1] is a framework than can be
used to model the process. Cellular Automata are

discrete space and time, dynamical systems. A
Cellular Automaton (CA) consists of an n-dimen-
sional grid of cells (n usually not exceeding 3), each
of which can be in one of a finite number of k
possible states. The state of the cells is updated
synchronously in discrete time steps according to a
local, identical interaction rule, called the transition
function. Each cell is associated with a set of
neighbour cells defined by their distance from it.
The state of each cell depends on the previous state
of its neighbouring cells (and itself) [2]. The CA
approach to computational modelling involves
describing complex, continuous systems by means
of the interaction of simple cells which follow
simple rules. CA models are inherently paralellis-
able because of the locality that they exhibit.

COLOMBO is an ESPRIT collaborative project
which aims at «the application of parallel computing
to the simulation of the bioremediation of
contaminated soils». It is a follow-up of the previous
ESPRIT project, CABOTO[8]. COLOMBO aims to
improve the CABOTO products and results both on
the bioremediation and on the computing side. The
consortium includes British, Italian and German
companies specialising in the areas of contaminated
soils remediation and IT and parallel computing.

The software implemented during the CABOTO
project is called CAMEL (Cellular Automata
environMent for systEms modeLling) [3]. It was
implemented on a PC-hosted transputer system.
Model development was performed on a Windows
based graphical interface and visualisations of the
model evolution were displayed on a dedicated
framebuffer. A purpose-driven language for CA
programming called CARPET (CellulAR Program-
ming EnvironmenT) was also developed [7].

EPCC is a leading UK HPC research centre. The
mission of the centre is to «accelerate the effective
exploitation of high performance parallel computing
systems throughout academia, industry and
commerce». EPCC was not involved in the
CABOTO project. Its participation in COLOMBO is
to redesign CAMEL, so as to make it portable across
various architectures. It also aims at extending the
CARPET language capabilities.

This paper discusses the design of the emerging
CAMELot (CAMEL with Open Technology) soft-
ware and gives an overview of the functionality of
the software. It also highlights the most important
features of the implementation.

2 The CAMELot Software Design
CAMELot is an environment for the programming
and parallel execution of Cellular Automata. It
offers a programming environment and a Graphical
User Interface to interact with the system while
running a simulation, view visualisations of the
simulated data and post-processing of the output of
the run. The system supports the CA specification
language CARPET.

Although most of the CAMELot code has been
designed and written from scratch, the structure of
the product was dictated by that of CAMEL. It
consists of the following three major components:

 The CA Engine, comprising the CA Engine
Harness and the CARPET-defined CA model;

 The Graphical User Interface (GUI), including
the GUI/CA Engine communication library;

 The CARPET Parser, integrated with the GUI
and invoked by means of a button.

The main design aim for CAMELot was to come up
with a system intended to run on a Quadrics
(formerly MEIKO) CS-2, a massively parallel
computer, yet able to run on smaller, even single
process computers. Portability of the GUI was also
an issue.

It was thus decided to implement the CA Engine
harness using MPI-1 [4]. MPI stands for Message
Passing Interface. It is a standard for writing
message-passing programs, developed with the aim
to provide a «practical, portable, efficient and
flexible standard». It is available on most UNIX
platforms and Microsoft Windows.

The CAMELot GUI is a Motif application written
using Imperial Software Technology's X-Designer
4.6 GUI builder tool, which is a tool for designing
GUIs graphically. This tool generates in this case C
code which implements a GUI using the Motif
library.

This approach was taken to allow rapid prototyping
and development. Since X-Designer also has
facilities for generating C++ (using Motif or
Microsoft MFC libraries) or Java (using the AWT
library), this may also ease any future porting of
CAMELot to other platforms.

The communication between the GUI and the CA
Engine is done using BSD sockets. The reason for
choosing sockets is that they provide a simple
programming interface. MPI-1 could not be used
because its specification does not allow processes to
start at different times, which is essential for the
application since the GUI spawns the macrocell
processes. The reason for choosing Berkeley sockets
instead of TLI is that they have been established
over the past years and are widely supported across
platforms [6]. Our protocol was implemented over
TCP, which provides a bi-directional, connection
oriented channel of communication

The CARPET parser translates CARPET programs
into C programs that define the transition function
of the CA. It is composed of a tokeniser and a parser
generated using the UNIX tools flex and yacc

(or bison). This parser is derived from the one
developed in the CABOTO project, yet the language
and therefore the parser are continuously being
updated to meet the users' needs.

3 Functionality of the System
In order to execute a CARPET program, the user
must do the following:

 Compile it, so as to invoke the parser and
translate it to C;

 Build it, so as to define the size of the model and
its decomposition to a number of processes and
create the CA executable;

 Run it.

The user can initialise the state of the CA model
using appropriate files. They can also instruct the
system to perform periodic or one-off file dumps of
the state of the system, which can be uploaded at a
later time or post-processed. Periodic visualisations
of the substates of the system are also available for
the whole model or a subset of the cells. The user
may initiate an infinite loop or define a number of
iterations to be run and can pause or terminate the
run using buttons. Off-line execution not involving
the GUI is also supported but with limited
functionality, since visualisations and interaction
with the user are not available.

The CAMELot environment supports 3 different
types of Windows:

 The Development Window;

 The Simulation Window;

 The Visualisation Window.

3.1 Development Window
The Development Window consists of a Menu Bar,
the CAMELot Editor and a 3-Button Bar. The Menu
Bar contains the following options:

 File, which enables the user to open and save a
CARPET file. The user may also exit the
Development Window, thus quitting the
program;

 Edit, which involves the usual Cut, Copy and
Paste functionality1;

1 At the time of writing a text search facility is designed.

 Configure, which allows the user to define the
size of the model and its decomposition, and set
the C compiler command line and the MPI run
command arguments.

The Editor Window is an 80x24-character window
with scrollbars in either dimension which allows the
user to modify their program.

The Button Bar consists of 3 buttons which are
associated with the Compile, Build and Run
functions respectively. The Compile and Build
buttons pop up a window which contains feedback
concerning the respective actions, whereas the Run
button spawns the CA processes and pops up the
Simulation Window.

3.2 Simulation Window
The Simulation Window consists of a Menu Bar, a
Display Sub-window and a 5-Button Bar.

The Menu Bar contains the menus State and Setup.
The former allows the Initialisation of the state of
the system from files on the user's filesystem and
one-off saves of such files. It also contains a Close
option to close the Window and terminate CA
Engine execution. The Setup menu options enable
the user to set the number of iterations to be run and
the periodic storage interval and to edit the substate
of a single cell. It also allows the global
modification of the CARPET program parameters.
The user may also set the minimum and maximum
values for the colour mapping and the first and last
active fold; these two facilities are discussed later in
section 4 of this paper.

The Display Sub-window provides online
information about the size of each of the dimensions
of the model, the current CA iteration, the storage
interval and the number of folds.

The Button Bar contains the following buttons:

 Go, to start a CA Engine run with a given
number of iterations;

 Loop, to start an infinite run;

 Pause, to temporarily stop the CA Engine
execution;

 Resume, to restart the execution after Pause has
been pressed, without resetting the current and
final iteration as Go and Loop would do;

 Visualise, to define a visualisation entity and fire

up a Visualisation Window;

 IVT, reserved for post processing of data using
AVS/Express.

3.3 Visualisation Window
This Window consists of a Visualisation Space and
a 2-Button Bar. The spatial specification, substate
name and visualisation interval of the visualised
entity which have been defined by the user when
clicking on the Simulation Window Visualise button
are displayed on the X-Windows title bar of the
Visualisation Window.

The Visualisation space contains a 640x640-pixel
visualisation area, a strip displaying the colour
palette currently used and a strip relating the
minimum and maximum values of the substate
visualised with the palette strip. If the visualised
entity is larger than the available area, it is sampled
at regular spatial intervals, without averaging over
the interval.

The Button bar contains a Colours button enabling
the user to load a palette from a file following a
specified format, and a Close button which closes
the Window.

4 CA Engine Harness Internals
The CA Engine component of the program performs
the evolution of the model specified in the CARPET
program. As mentioned in section 2, the CA Engine
is implemented as a parallel program adhering to the
Single Program Multiple Data paradigm. Each
process thus created is called a macrocell and can
apply the transition function of the model locally to
a subset of the model, under the assumption that it
holds locally all the data that it requires. This
suggests the introduction of boundary data which are
maintained in neighbouring macrocells and
communicated to the process after each evolution.

This communication is implemented using MPI. The
CA Engine also needs to communicate with the
GUI. This communication is performed between one
CA Engine process and the GUI using our purpose-
built sockets protocol.

4.1 Data Representation
Each cell can be thought of as a 3-D (x, y, z) triplet
of co-ordinates with an associated set of substate
values. The CA Engine is represented as an array of

cells, each of which is implemented as a C struct
having as members the substates. This contiguous
cell approach aims at improving the performance of
the transition function application, benefiting from
data caching and read-ahead optimisations exhibited
by modern processors. It should be noted that
because the state of a cell depends on the previous
state of its neighbourhood, two such copies of the
model are maintained.

4.2 Data Decomposition
If the program is run on more than one process we
arrange them in a linear Cartesian topology. In this
case each process contains a fraction of the model
data. The data are decomposed across the x-axis of
the model. No padding mechanism has been
implemented.

The CABOTO project introduced a form of block-
cyclic decomposition aiming to reduce load
imbalance between processes. The idea, which was
implemented in CAMELot as well, was to split the
model in folds and then assign equal parts of each
fold to each of the processors. This can lead to load
balancing under the condition that the resulting
granules (further referred to as strips) are fine
enough to ensure uneven load distribution across
folds is insignificant statistically across processes. It
should be noted though, that the more the strips, the
bigger the communication overhead among the
processing elements.

4.3 Boundary Replication
It was decided to implement cyclic boundaries. This
means that data are replicated across the axes to
ensure cyclic interaction and execution of cells.
Moreover, because of the data decomposition,
physically neighbouring strips are allocated to
different processes. Duplicate cells are annexed on
either x-side of the strip to enable local execution of
the CA rule.

The above approach suggests four types of halo:

 before the first and after the last real element (z-
axis);

 between planes (y-axis);

 between lines (x-axis);

 between strips (folded data).

The first three halos conceptually form a shell

around the model, whereas the last increases its x
dimension. There are two different kinds of
boundary replication. Across the y and z axes the
data can be replicated internally in macrocells. We
call this a boundary copy. Across strips (this effects
x-axis halo replication as well) the data must be
exchanged between consecutive processes using
MPI. We call this boundary swap. Boundary data
are copied across axes and swapped between strips
after the execution of a CA Engine generation.

4.4 Execution of the Transition Function
The transition function is applied to all the cells of a
process without any interruption for servicing User
request, thus preventing race conditions in the
calculation of the state values. The processes
communicate after the transition function has been
applied to all the cells for boundary communication.
Each macrocell loops over the strips skipping the
halos and applies the parser-generated transition
function to its cells. During this phase the cells in
strips are examined in order to decide their activity
status, as explained in section 4.5.

4.5 Automatic Inactive Strip Detection
CAMELot contains an automatic inactive strip
detection mechanism, used to isolate inactive
regions and avoid applying the function to idle
strips. The block cyclic decomposition suggests that
load imbalance emanating from this strategy will be
insignificant in the general case, given that
contiguous areas of the model are transparently
distributed to processes. Automatic inactive strip
detection can be disabled by manually choosing a
set of active folds from the corresponding
Simulation Window Setup menu option. The finest
grain in this case is the fold, which is generally
larger than the strip, and the strategy is error prone
as it depends on the user's vigilance. Moreover,
manual fold selection cannot isolate inactive regions
located in the middle of the model even if the
granularity suffices, because the active range
defined is continuous.

Initially, all the strips are considered active. The
system attempts automatic inactive fold detection
under the condition that the user has characterised
the transition function as deterministic (i.e. the
transition function is not applied with a random rule)
through the CARPET statement deterministic.
Additionally, the user may define a threshold

condition to denote if a cell has reached an
insignificant state.

After the transition function has been applied to a
cell, the cell is checked against the CARPET parser
generated cpt_threshold() function and the
previous values of all its substates. If a substate has
changed and cpt_threshold() returns false,
then the whole strip is characterised as active for the
next generation and the check is not performed for
any other cells of the strip.

Even if all the cells of a strip are classed as inactive,
the strip is not considered inactive unless the
boundary cells to be received by each of the
neighbours are also inactive. During boundary swap
the processes exchange information with their
neighbours about the activity status of the incoming
boundaries and combine the results with those
emanating from the internal cell check to decide on
the activity status of their strips.

5 Visualisation
The CA Engine can be instructed to transmit
periodically Visualisation data for a defined entity.
The implementation of the visualisation
functionality required the introduction of various
data structures on the GUI and the CA Engine. The
protocol for the maintenance of the visualisation
entities is slightly complicated because of the variety
of possible events. Moreover, a colour mapping
strategy was devised.

5.1 Data Structures
The finest granule of the visualisation entities is a 2-
dimensional plane, except if the model is linear, in
which case the granule is a line. The representation
of planes includes the substate and the visualisation
step so as to enable detection of equal planes or
planes that could be visualised more than once in a
given step. The former are rejected from the CA
Engine, the latter are only transmitted once.

5.2 Plane Visualisation
The CA Engine maintains a list of planes ordered
with respect to the next iteration in which they are
due to be visualised. When a plane is to be
visualised, it is popped from the list, the substate
data are gathered in the root process and are
transmitted to the GUI using a dedicated socket. The
plane is finally reinserted in the list.

5.3 Colour Mapping
CARPET supports all C datatypes and arrays of
these as possible substate types. It is therefore
essential to perform colour-mapping of these before
visualising them.

The colour mapping is performed in all the
processes before gathering the data at the root
process so as to take advantage of the parallel
execution. In order to perform the colour mapping
the processes traverse the cells which are going to be
visualised according to the plane specification, and
seek the minimum and maximum values for the
substate visualised. The minimum and maximum
values are stored as double precision numbers
globally in the processes. Their values are updated
every time the substate is visualised and they are
maintained throughout the life of the program. By
doing this we generally make the mapping
consistent for the planes throughout the life of the
program and indicate how the substate changes with
respect to time.

It is worth noting that, because the granule of
visualisation is the plane, 3-D models are broken
down to planes on the GUI side in order to visualise
them. Therefore, in the first step of the visualisation
the first plane of the cube visualised possibly sets
the minimum and maximum values to something
different than the next planes and could be displayed
erroneously; in the next visualisation the minimum
and maximum values and therefore the colour
mapping, are updated, «converging» to the correct
values. The minimum value of the substate for the
visualised plane is mapped to 1 and the maximum is
mapped to 255. The intermediate values are linearly
projected to the [1,255] interval. The above mapping
leaves 0 as the background colour for 3-D
visualisations. In the palettes distributed with
CAMELot, this corresponds to Black.

This automatic colour mapping strategy can be
overridden. The automatic strategy implies that the
whole range of values is of equal importance.
Nonetheless, in some cases the user needs to focus
on a specific range of substate values ignoring the
rest. The system thus provides an option under the
Setup menu of the Simulation Window, by means of
which the user can set the range of its interest. All
values below the user-specified minimum are
mapped to the 1 and all those above the maximum
are mapped to 255, thus visualising the intermediate
range in greater detail.

6 Conclusion
CAMELot is an environment for Cellular Automata
programming and parallel execution. It is developed
in the context of soil bioremediation; nonetheless it
is a general problem-solving tool. The system
contains a purpose-built CA programming language,
called CARPET.

In this paper we gave a list of the necessary
functionality for such an environment. We also
discussed details of its design and implementation
and highlighted the most interesting features of the
language and the system.

Approximately 75% of the two-year duration of the
project has elapsed at the time of writing, and the
programme is in the phase of soliciting and
implementing extensions. Frequent feedback from
the end users also helps to improve the stability and
robustness of the product.

References:
[1] J. von Neumann, Theory of Self-Reproducing

Automata, University of Illinois Press, Illinois,
1966. Edited and completed by A.W. Burks.

[2] T. Toffoli and N. Margolus, Cellular Automata
Machines. The MIT Press, Cambridge,
Massachusetts, 1987.

[3] S. di Gregorio and R. Rongo and W. Spataro and
G. Spezzano and D. Talia, A Parallel Cellular
Tool for Interactive Modeling and Simulation,
IEEE Computational Science and Engineering,
Vol.3, No.3, pp.33-43.

[4] Message Passing Interface Forum, MPI: A
Message-Passing Interface Standard, Version
1.1, June 1995.

[5]K Kavoussanakis, S D Telford and S P Booth,
COLOMBO WP3: CAMELot Implementation,
Deliverable DI3.3.3, Version 1.0, March 1999.
Restricted Availability.

[6] W.Richard Stevens, UNIX Network Program-
ming, Prentice-Hall Software Series, 1990.

[7] G. Spezzano and D. Talia, Designing parallel
models of soil contamination by the CARPET
language, Future Generation Computer Systems,
Vol. 13, 1998, pp 291-302.

[8] D. Talia, Cellular Automata Thrive on Parallel
Systems, Scientific Computing World, October
1998.

[9] Project COLOMBO, Project Programme, Ver-
sion 2.1. Restricted Availability.

