Precedence graphs gener ation using assembly sequences

VIOREL MINZU* and ANTONETA BRATCU™
"Department of Automatic Control and Electronics
“Dunéreade Jos’ University of Galati
Str. Domneasca, 111 - 6200 Gal ati
ROMANIA

" Laboratoire d’ Automatique de Besancon ENSMM - UFC - UMR 6596
Université de Franche-Comté
25, Rue Alain Savary - 25000 Besangon
FRANCE

Abstract: - Almost al methods dealing with assembly systems design - for example, assembly line balancing (ALB),
tasks-to-workstations assignment agorithms, resource planning - are based on the partition of precedence graphs. These
are directed graphs whose nodes represent the assembly tasks and arrows represent the precedence relation between
tasks. In the literature there are very efficient and well-known methods to generate assembly sequences and a precedence
graph can be obtained by "merging" assembly sequences. Nevertheless, no systematic obtaining method for these graphs
was proposed. This paper deals with a property of a given set of assembly sequences, that guarantees the existence of an
"equivalent" precedence graph, after suitably defining such an equivalence. This result can be used for the general case,
when this property is hot met, to find an equivalent set of precedence graphs.
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1 Introduction

Precedence graphs are the most used tools in assembly
systems design. Assembly line balancing methods (see
[1]), that give a first rough layout of an assembly line,
have as input data the precedence graph. Other design
methods use also precedence graphs. For example, the
approach proposed at Draper Laboratory ([8], [9]) is
based on assembly task flow graph which are essentially
precedence graph with a linear structure. Precedence
graphs in different forms are aso used in tasksto-
workgtations assignment methods ([6]) or resource
planning ([7]).

In some papers it is proposed that precedence graphs
be obtained by "merging" assembly sequences ([8], [5],
[2]). In [5], the authors propose a method for the
generation of the precedence graphs from a given set of
assembly  sequences, which is essentially based on
heuristic search.

The precedence graphs have two weak points. The first
one is the fact the assembly tasks are generaly not well
defined. An assembly task is well defined when the base
part and the secondary part are specified. The second
weak point is the nonexistence of a systematic obtaining
method. On the other hand, there are very efficient
methods to generate assembly sequences (see [3], [4]),
whose assembly tasks are well defined.

This paper presents a theoretical analysis, in order to
answer to the question whether there exists a precedence
graph “equivalent” to a given set of assembly sequences.

2 Problem statement

In this section, we shall define our problem, that is to find
a precedence graph “equivalent” (in a sense that will be
stated below) to a given set of assembly sequences for a
certain product.

Notation:

S = set of symboals,

N =card (9).

We consider that a symbol represents a part that will
be assembled with other parts to make the product. S is
the set of symbols corresponding to al parts and N is the
number of parts.

An assembly sequence is a total order over the set of
parts. Hence, an assembly sequence may be represented
by a sequence of symboals:
w=aay..ay, "Lal S,
and & * a;ifit j.

D

From now on, we shdl cal complete sequence a
sequence having the form (1) and partial sequence a
sequence of different symbols whose number of symbolsis
less than N. So, an assembly sequence is represented by a
compl ete sequence.

Let W be a set of complete sequences representing a
given set of assembly sequences and n = card(W):
W:{Wi,i =1,..., n}.

Any complete sequence w; T W,

w; = ai1 aiz...aiN ,
induces an order relation over S, noted 0Oj, Oj | S S:



x,y1 S (x,y)l Oj U x:aij ,y:aik i<k

We say that x precedes y and we shdl note this
relation by x <y. Obvioudly, Oj is a total order relation
over S. One can define:

n
Oozmoi
i1

which is, obvioudly, a partial order over S. Notice that this
order is determined by the initial set of sequences. W. The
digraph of this relation is G = (S, Og) and we cal it
precedence graph. For a given set of symbols S and for a
given set of complete sequence W, the partial order
relation Og and its precedence graph G are uniquely
defined.
We consider another relation over S:
1=S'S-{(a bl S S¥(ab)l OgU((b,aT Op)}
We call | indifference relation and we note (x, y) T | by
X.
Definition 1: A complete sequence w=a, a,...ay Meets
the precedence graph G = (S, Oq) if for any two vaues
1£i<j£ Neither it existsapath in G from g to gj or g ?

k From now on, we note by Q the sat of complete
sequences meeting the precedence graph G=(S, Og). One
can say that the graph G is equivaent to the set Q,
because G can be obtained from Q and vice versa. To
simplify the representation of G, any arrow (g, §) is
erased, if there is a path in G from g to g formed by at
least two arrows.
Example 1. Let us consder S1={a, b, c, d, e f} and
Wy ={ abcdef, abdcef, abdecf} .

The graph G1 corresponding to the sets S1 and W is
presented here-after:

Fig. 1 Precedence graph G1=(S1, OQ)

One can verify that the set of sequences meseting the
precedence graph is Q.={abcdef, abdcef, abdecf}=Wj.
Hence, the precedence graph G, is equivaent to the set
W4
Example 2: Let’s consider Sp={a, b, c, d, ¢, f, g, h} and
Wo={ abcdefgh, acbfdegh} .

The graph G2 corresponding to the set Sp and Wo is
presented here-after:

e

Fig. 2 Precedence graph Go= (Sp, OQ)
One can verify that the set of sequences meseting the
precedence graph G2 is.

iabcdefgh, achdefghii
Q, = abedfegh, achdfeghy.
{ abcfdegh, acbfdeghb

It is easy to verify that this time the graph G2 is not
equivalent to the set Wol Q2.

Obvioudy, from the way we have constructed G, it holds:
wi Q )

The favorable situation is when Q =W, because one can
conclude that the graph G= (S, Oq) is equivaent to the set
W. One can regard the construction
W® G® Q
like a map that defines the set Q for a given W. One can
ask the quedtion: does the set W have a property that
guarantees the equality Q =W?

In the next sections we shall show that such a property
exigts.

3 The general form of

sequence belonging to Q
We shall note by
GI=(S1)
the undirected graph of the indifference relation, smply
called below as indifference graph.

a b / \ f
d e
Fig. 3 Indifference graph for example 1.

Generaly, G| is not a connected graph. Let GCj,
i=1, 2, ..., m be the connected components of G| that
contain more than one symbol. For the example above, it
exists only one such connected component: C1={c, d, €},
while for example 2 there are C1={b, ¢} and C={d, e, f}.
The variability of complete sequences is given only by the
symbols belonging to the connected components. The
other symbols have fixed postions insde of a complete
sequence (for instance, the symbols a, b and f in example
1).
We shall call segment a generic partial sequence made up
of al symbols belonging to a connected component C;,
i=1,2,...,m.

We shall note by § the segment corresponding to C;.
In a given complete sequence w the segment §

a complete

i=1,2,...m is instanced by the partid sequence S,
i=1,2,...m.

In example 2, there are two segments, S1 and S,
corresponding to the two connected components. A
complete sequence has the form aS1Spgh, where S is
either bc or cb and S is either def, dfe or fde.

Theorem 1 (the form of a complete sequence meeting a
precedence graph G):

"wl Q P

w= ab...c.SiW) de..f .S(ZW) gh....i.sW jk..mn.

Hence, Q will appear as the set of al instances of the
expression:

ab..cS de.fS,gh...iS;, jk.mn.



Lemma 1: Letwi Q.

(U=sjas,bsy,aM,s,t f)P "xI 65 :(x?8) U(x?D).
The proof is obvious, because a, b and al the symbols

of s2 belong to the same connected component of Gj.

4 The case w=Q.

Necessary and sufficient condition
Let consider X a set of complete sequences formed with
symbols of S. From X it can be deduced its associated
precedence graph G*, using the same construction as
above. Let
s(X)={(ab)|a, bl S,a?b}
bcithe set of pairs of indifferent symbols, deduced from
G

Notice that s(W)=s(Q).
Definition 3 (property P): Let X be a set of complete
sequences formed with the symbolsof Sand E1 S' S, If

("wl X," (ab)T El S Sw=aabb)p w=ababl X
we say that X hasthe property P in relation to the set E.

In the case E=s(X), it is simply said that X has the

property P.

Remark: Q has the property P.

Notation:

w(i)=a - the symbol ahasthe position i in the complete
sequence w

p(a b) - the permutation of the symbolsaand b

"." - the juxtaposition operator

Lemma 2: If there exist two complete sequences wi, w2 1

Q, such that wq(i)=a, w2(j)=a and i<j, then it exists a

complete sequence w3 meeting G so that w3(i+1)=a and,

moreover, w3 can be obtained from wq by applying a

sequence of permutations.

Proof:

Because wy (i)=a, one can write:
w1=s1.aS2,
where s1 isapartia sequence containing i-1 symbols.

We shall show that $b1 s ,,a%.

Supposing that " xI s2: a<x, it results that (" wi Q
,wik)=a) b Kk£i.

But $w21 Q with wo(j)=a and j>i. Therefore, the
supposition is false. So, we can note by b the first symbol
of s2 which isindifferent with a. Hence, we can write:
W1=sl.ax1x2...pr.sz’ and" Xxj,i=l..p:a<xj. (3)

But a? b, so, applying lemma 1, we obtain:

(xj ?a) or (xj ?b)," xj, i=1...p.

From (3) and (4), it follows that:
Xi ?b," xj, i=1...p.

Using the property P of Q, one can apply the sequence
of permutations:

(4)

Wy %99 s 181X .. X551 Q%%Xi%%/%t?@
AN Sp.aXX .. 0Xp. 1XpS 2T Q® Yl
%8990 S1.80X1X .. XS o'l Q% ¥9le
7.89e Spbax1Xp.. XS5 = Wal Q;

We note:
P:P(Xp, b), P(Xp-1, D),...., P(Xq, b), P&, b).

It is known that s1 contains i-1 symbols, so
w3(i+1)=a; besides, w; ¥#5® wj, g.e.d.
Consequence: If there are 2 complete sequences w1, w2
belonging to Q, so that w1 (i)=a, wo(j)=a and i<j, then, for
each number k, i<k<j, it exists another complete sequence
w3 belonging to Q so that w3(k)=a and, moreover, w3 can
be obtained from w1 by applying a sequence of
permutations.

Using the result of theorem 1, we introduce the following
Notation:

"wl Q:
w=wWOW2)..wW(i)w(i +1)..w(iq +1)w(i +11 +1)...
St
W)W D) Wi o +15)
S
WO Wiy D) W3 ) WON),
Sm
[ >1" i=1.m.

Theorem 2: Letwy , w21 Q be two complete sequences.
wy =wy (1)..Sh..Sh ...s}...sﬁ]...wl(N); 5)
Wy =Wy (D). .. S5 .87 .. Sh. o (N)

For any j, 1£jEm,
permutations p such that:

WYBA® wy'=wy (D). SL. S} ...SF ... Sy Wi (N).

it exists a sequence of

Proof:
We shall fix j. To simplify the notation, we shall write:
Wy =188 5 W2 :...blbz...b|j
s sjz

i
Obviously: {alk}k=1,2,...j :{b|k}k=L2'___j.

If ay; * by, then firstly we shall try to obtain from w1
a sequence having the symbol b|j on the position |j of §.
Because w;(q) = b|j Wy (1) =ay, yWo (r) = b|j and g<r, one

can apply the consequence of lemma 2; hence, it exists a
sequence of permutations, p1, such that
w; %%® wh=...cic, e Cpjaby

In the same way, from wiwe shall obtain a sequence
having the symbol by;-10N the postion lj-1 of §.
Therefore



$p, Wi %He w? =..dpdy...dij by by ..

Sj
Remark: To meet exactly the conditions of lemma 2, we
must have the guarantee that p2 does not change the
position of by; in wi. This means we must prove that

by, is not the first symbol indifferent with byj-1- In the

opposite situation, we should have

Wi =....bj._18'by;...and" xT s':by, . <X
i i i
Sj
So, in every sequence of Q, al the symbols of s’
should succeed by-1- But w2 is not such a sequence.

Hence, our supposition is false.
We proceed in the same way for each symbol of S.
Finaly we obtain

Pli-
w, 50 Wt %8k@ .. %%he w, = biby by .
—_
Sj
and, <0, the seguence of
P:p1, p2,.....,p|j_1rea|isesthetransfer w; 4@ w,, g.ed.

permutations

Theorem 3: Letwy , w21 Q be two complete sequences.
Then it exists a sequence of permutations p such that
w, @ w,.

Proof:

We write the sequences w1 and w2 in the form (5) and
we use m times the result of theorem 2 as follows:

M)
$p® :wy %870 w =w; (1)..5f .. S5 .S} ... Sy Wi (N);

2
$p@ W %83® W2 =wy(1).. 5.5 ... S ... S W (N);

$p(M ;M- %5’/9;/21@ wi™ = wy(1)..S7..S2 S S wy (N);
Therefore, the sequence of permutations

p=p®.p?....p".

achieves the transfer:

wy 7@ W™ =wy(1).. .53 ...S7 .. Shywy(N) =

= W50, S .. S W(N) =i
In the circumstances of the construction
W®e G® Q,
presented before, we give the main result.
Theorem 4 (necessary and sufficient condition for the case
W=Q):
W=Q U W has the property P.
Proof:
Necessity:
We know that W=Q. Because Q has the property P and
s (Q) =s (W), it follows that W has the property P.

Sufficiency:

We know that W has the property P and we shall prove
that Q=W. Supposing that W Q and considering the
relation (2), it holds
wi Q.

Hence
$wsuchthat wi Q and wi W

We shall fix such a complete sequence w.

Let consider woi  W. According to theorem 3, there is
a sequence of permutation pg, such that :

w ¥ 88® wy,.

Po = P(aq, by).p(az, by).....p(a, by ), where
(a,b)Ts W=s (Q)," i=1.k

\WEZ %a%’i)%/z)l@ Wy Ya %a%b‘%l@ Wy % %%@Z@
7 edle w, ; 755 %e w,.

Figure 4 illustrates this situation.

The last permutation involves by reflexivity the
following one:

Wo ‘74&4%4%@ W1

Supposing that wg-11 W, it follows that W has not
the property P, fact that contradicts our supposition.
Hence, wk-11 W.

Fig. 4. Sequence of permutations
By applying the same reasoning, it results that wi
W, which is a contradiction to our supposition. Therefore,
W=Q, g.ed.

5 Useof the property P

One can make an agorithm that decides whether a given
set Wof complete sequences has the property P or not. If
the answer is positive, the precedence graph equivalent to
the set of sequencesis G.

If W has not the property P, the agorithm should
generate the partition of Winto subsets having the
property P, each of them being represented by a
precedence graph. The partitioning manner may be subject
to two criteria: (a) the minimal number of subsets, and (b)
a each iteration choosing the subset of maximal cardinal.

The base idea of the algorithm is to apply sequences of
permutations to each complete sequence of W, in order to
obtain its symmetric sequences. The agorithm can start
from any sequence of W. When obtaining a symmetric
sequence that “overpasses’ the set W, the agorithm will
stop and decide that W has not the property P.

In this case, using the same idea, it must be found the
maximal subset of W having the property P in relation



with a subset of s(W). One may verify that the problem of
partitioning is NP-hard.
In the example below it has been considered as optimal
partition that one corresponding to a minima number of
precedence graphs.
Example 3:

Let consider a set of complete sequences:

W= 1w, = abdcegfh, w, = abcdegfh, w, = abdecgfhup
fw, = abcdefgh, w, = abcdegfh

1 f
P s(W) =i(b,c),(c,d),(ce),(f,0g)y
T A A Ps P4 b

_ 1 abedef ; achdef; abcdfe; achdfe; abcedf; acbedf; (i

" { aboefd; achefd; abcfde; achfde; abcfed; achfed })

Q

WI QU Whas not the property P.

The agorithm has been arbitrarily started with
w;=abdcegfh.
Remark: To obtain symmetric sequences starting with a
certain sequence means, in fact, to build the graph of the
symmetry relation, whose points are the sequences of W
and whose edges are labelled by the pairs of s(W). Figure
5 presents this construction.

The optimal partition that has been obtained is:

- . 2 _
Xf)?t ={w,,w,,wg}; X<()p)t ={w,,wg}.

Fig. 5 The graph of the symmetry relation (sequences overpassing W are represented by “*”)

The obtained partition:

}W: XOEXD;, xHcex@=F
i X hasthe property P in relation with {p,, p.}

I X hasthe property P inrelation with {p, }

opt
iw, =abdcegfh
.
Tw, =abcdegfh

X O

opt

E__
|

; = abdecgfh

s
L

Tw, = abcdefgh

X @

opt

W5 = achdefgh

—

One can verify that the subset Xopt'™” is equivalent to the
graph G1 and the graph G2 is equivaent to the subset
Xopt® (seefigure 6).

Fig. 6 Precedence graphs representing the set W

6 Conclusion
In the field of assembly systems, the representation of a
given set of assembly sequences by a precedence graph is
apoint of interest.

In this paper, we have anayzed the equivalence
between a set of assembly sequences and a precedence
graph.

When this equivalence exists, we have proved that a
property of the initial set of sequences (property P ) is
met. The test of this property can be implemented by a
smple agorithm. For a given set of assembly sequences
that does not meet the property P, we have suggested a
way to obtain an equivalent set of precedence graphs.
Obvioudly, this praoblem is NP-hard and, so, any algorithm
conceived to solve it will be exponentially complex.
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