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Abstract: - The study of connectivity properties in graphs and digraphs is of special interest to the designers of
reliable communication or interconnection networks. For the network designer in particular it is useful to have
some knowledge about those graphs that have high, or maximum, vertex connectivity. Thus, different types of
graphs have attracted much interest in recent years. They are characterized for conditions determined in their
configurations. A special class of these graphs are those named geodetic graphs. A graph G = (V,E)  is said  to
be geodetic graph, if between any pair of non adjacent vertices x, y  V there is an unique path. This class of
graphs has been studied by several authors. They have obtained some interesting properties of these graphs
together with a number of results that connect with other  types of graphs.

In this paper we present generalizations of geodetic graphs, which allow three, four, five or , in general,
k shortest paths between any two non adjacent vertices. These graphs are called trigeodetic, quatergeodetic,….
or, in general,  k-geodetic.

We present some properties about k-geodetic graphs. An upper bound for the number of edges of k-
geodetic graphs is obtained. An algorithm to obtain the k-geodeticity of a graph is shown. If we require a k-
geodetic graph in which two vertices exist which have exactly k paths of minimum length between them, the
graph is said own k-geodetic graph. We obtain some properties about the own k-geodetic graphs.
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1 Introduction
A connected graph is defined by means of the
existence of a path between an arbitrary pair of
vertices; a forest can be defined on the basis of
uniqueness of the paths. Both conditions are fulfilled
in the case of trees. Similarly, as we can consider
various forms of connectedness, we can consider
distinct weaker forms of uniqueness of paths, for
example:
(i) Two arbitrary vertices with distance  2 are

connected by at most one shortest path. A
graph with this property will be called weakly
geodetic.

(ii) Two arbitrary vertices are connected by at
most one shortest path. These graphs are called
geodetic [4].

(iii) Two arbitrary vertices are connected by at
most one path of length less than or equal to

the diameter of the graph. We shall call the
graphs with this property strongly geodetic .

The concept of geodetic graph is a natural
generalization of a tree. A tree   is a connected graph
whose number of edges is n-1.  While in a tree there is
a unique path joining any two vertices; in a geodetic
graph, there is a unique shortest path connecting any
two vertices.

Srinivasan, Opatrny and Alagar [13] in 1988
introduced a new type of graphs, called bigeodetic
graphs, which are a generalization of geodetic graphs.
Bigeodetic graphs are defined as graphs in which each
pair of vertices has at most two paths of minimum
length between them.

Geodetic and bigeodetic graphs have been
studied in the last years because of their relevance to
the design of some interconnection or communication
computer networks (see [2], [4], [6], [7], [8] and [14]).

Ramos, Siclia,  and Ramos  [12]  in 1998
introduced  a new class of graphs: k-geodetic  graphs.



These graphs generalize to the bigeodetic and geodetic
graphs. K-geodetic graphs are defined as graphs in
which  each pair of vertices has at most k shortest
paths between them. In this paper we studied  some
new properties about these class of k-geodetic graphs.
Besides we define the own k-geodetic graphs as those
k-geodetic graphs which there exist two vertices with
exactly k shortest paths between them.

The remaining of this section is devoted to
recall some basic concepts and results used throughout
this paper.  Let  G = (V,E) be  an undirected simple
graph, that is without loops or multiple edges, with set
of  vertices V and set of edges E. Its adjacency matrix
is denoted by A = (aij) i = 1,2,…,n; j = 1,2,…,m and is
given  by aij = 1 if the edge (xi,xj)  exists in G and aij =
0 if the (xi,xj)   does not exist in G. For any edge
(x,y)  E, we say that x is its initial vertex, and y its
final vertex. For any pair of vertices x, y  V, a path x,
x1,x2,…,xn-1, y from x to y, with its vertices different
except possibly x and y, is called an x-y path. We
consider only simple connected graphs with at least
two vertices. .  A tree is a connected graph whose
number of edges is n-1. Two vertices x, y are adjacent
if the edge (x,y) exists. The distance between any pair
of vertices x, y of the graph is the minimum length
between both vertices and it is denoted by d(x,y). The
diameter of G is the maximum of distances d(x,y)
between any vertices x, y of the graph.

We will define a relation on the edges set E of
a graph G, as follows: two edges are related by R if
they are contained in one and the same circuit of G.
The relation R is obviously a equivalence relation. Let
{E1, E2,…, En} be the partition  of the set E of edges of
G induced by R. Let Ri denote the subgraph of G with
its edges being the elements of Ei and its vertices the
endpoints of the elements of  Ei . Each isolated vertex
of G forms a further graph Ri. The graphs Ri are called
the blocks of G. A vertex p of a graph G is a cutvertex
if there are two edges in G incident with p and no
circuit in G containing both edges. A non separable
graph is a connected graph which has not cutvertices.
A block of a graph is a maximal non separable
subgraph. If  G is non separable, then G itself is often
called a block.

Let us examine a path F of a connected graph
G with its endvertices  p and q belonging to distinct
blocks of G and let us record those inner vertices of F
which are incident to edges of different blocks. Let
order of these vertices along F from p to q be a1,
a2,…,an. The sequence p, R1, a1,R2, a2,…,Rn, an,Rn+1,q
is called a block-chain  corresponding to F. All blocks
in a block-chain are distinct. This uniqueness of block-
chain indicates that the blocks of the graph also has a
tree like structure.

The Block-Graph GB of a graph G is made as
follows: The vertices xBi V(GB) are the blocks Bi of
the graph G, that is, for each block Bi of G, it will have
a vertex xBi of GB , and exists an edge (xBi, xBj) if
Bi Bj  , that is, if they contain some vertices
belonging both of them.

The Block-Graph GB is a sequence of
complete subgraphs joined by edges or vertices.

We will define the block-cutvertex graph GR

as follows: The vertices of GR are associated with each
block and with each cutvertex of G. The edges of GR

are obtained by connecting each vertex associated to a
block with all the vertices associated with cutvertices
in the corresponding block. The block-cutvertex  graph
of a connected graph G is a tree.

2   K-geodetic graphs.
As we have  above mentioned a graph is said to be
geodetic is joining any pair of non adjacent vertices
there is a unique path. Geodetic graphs have been
studied by several authors [2], [4], [5], [10], [13] who
analyzed various of their properties.  A natural
extension of geodetic graphs would be define a new
graph, where each  pair of vertices has two paths of
minimum length between them. A simple graph with
that condition is not possible. This is only possible
when the graph is a multigraph of order two and these
multigraphs have to be complete. The generalizations
of these type of graphs are those named k-geodetic
graphs, graphs which allow three, four, five or, in
general,  k shortest path between any two non adjacent
vertices.
Definition: Let G be a simple graph, that is, without
loops or multiple edges. We will say G is a k-geodetic
graph if each pair of vertices has at most k paths of
minimum length between them.
Obviously,  if two arbitrary vertices with distance 
k+1 are connected by at most k shortest paths, the
graph will be called weakly k-geodetic. If two arbitrary
vertices are connected  by at most k paths of length
less than or equal to the diameter of the graph, the
graph will be called strongly k-geodetic.

It is obvious that if a graph is k-geodetic then
it will be p-geodetic with p  k. The inverse is not true.
Also, if a graph is k-geodetic then  it will be weakly k-
geodetic. If a graph is strongly k-geodetic  then is k-
geodetic. But if a graph is strongly  k-geodetic it could
not   be   strongly geodetic.
  In Ramos et al. [12] we proved the following
properties  about the k-geodetic graphs.
Proposition 1: If G is a k-geodetic graph then all its
blocks are k-geodetic. The converse is not true.



Theorem 1: A separable graph of diameter two is k-
geodetic if, and only if, G has exactly one cutvertex,
all its blocks are k-geodetic of diameter two at most
and all the vertices of G are adjacent to the cutvertex
of G.
Theorem 2:  Let G be a separable graph where all its
blocks are k-geodetic and satisfy the following
property: all the vertices of each block Bi are adjacent
to any cutvertex of Bi. Then G is k-geodetic.

If we are going to look for upper and lower
bounds for the number of edges of a k-geodetic graph
with n vertices, a trivial result is obtained for the lower
bound which is the number of edges of a tree. So, the
minimum number of edges without violating the
connectivity will be n-1 and, as any tree is geodetic,
then the graph will be k-geodetic. Also an upper bound
corresponds to the complete graph  which is  the
combinatorial number Cn,2.  That does not mean that a
k-geodetic graph can  have any number of edges m.
So, a k-geodetic graph with a determined number of
edges is not always possible. For example, a graph
which has four vertices and five edges cannot be
geodetic. The following results proved in Ramos et al.
[12] given the way to design connected k-geodetic
graphs.
Theorem 3:  Given k   2 and n  k + d + 1, it is
possible to design a connected k-geodetic graph with n
vertices and diameter d, in such a way that the number
of edges is

Proposition 2: Given k, all the connected graphs of
diameter two with n  k+2 vertices are k-geodetic
graphs. Besides, this number of vertices is maximal,
i.e. there exist at least a connected graph of diameter
two with n = k + 3 vertices which is not k-geodetic.

3 Determining the k-geodeticity of a
graph.
In this section we propose new results about k-
geodetic graphs. An algorithm to obtain the k-
geodeticity is presented. The algorithm determines the
maximum order of the geodeticity of the graph; that is,
the procedure obtains the maximum k value which is
allow us join two vertices with exactly k shortest path
between them.
If the diameter of a graph is arbitrary, the following
result allow us the maximum k-geodeticity of a graph
with n vertices.
Proposition 3: The maximum k-geodeticity of a graph
with n vertices only depend of the number of vertices

and it is k = 22-s  3(n-6+2s)/3  if  n = s  (mod. 3) where
s {0,1,2} and the diameter is d = (n – 6 + 2s) / 3 + 3 –
s if n = s (mod. 3).
Proposition 4:  Let G be a graph with n vertices and
diameter d, then the maximum k-geodeticity is
k = [(n-2)/d-1)](d-(p+1))  [(n-2)/(d-1) + 1]p if n-2 = p
(mod. (d-1)), p = 0,1,2,…,d-2.
 Proposition 5: Let G = (V,E) be a simple graph with
diameter d. Let D = (dij)n n be the distance matrix of G.
Then, it is possible to determine the k-geodeticity of
the graph G whose value depend of the above matrices.
Proof: consider the adjacency matrix raised to the r-th
power,  Ar= (tij)nxn being tij the number of paths of
cardinality r between xi and xj (xi , xj  V(G)). Let Pr

denoted the set Pr={(i,j) / dij = r} and let kr be the value
kr= max(i,j) Pr{tij}. Then, it is obvious that graph G is k-
geodetic, being k = max1 r d kr.

The above proposition allows us to give a
procedure to see the k-geodeticity of the graph, that is,
the order of the geodeticity of the graph. We will use
the following matrices:
- A(I,J) N  N  the adjacency matrix.
- D(I,J) N  N the distance matrix.
- TR(I,J) N  N  = AR(I,J) the R-th power of A.
-  PR(I,J) N  N  a matrix whose elements are 1, is dij = R
and 0 if  dij   R.
K(R)1 d a vector of possible values of the k-geodeticity.

ALGORITHM 1:
Step 1:

Compute the adjacency matrix A(I,J).
Compute the distance matrix D(I,J).
Set R = 1.

Step 2:
Compute TR(I,J) = AR(I,J) the R-th power of A.
Define an auxiliary matrix PR(I,J):  if   dij = R,
then PR(I,J) = 1;  otherwise PR(I,J) = 0.

Step 3:
If  PR(I,J) = 1, then compute the maximum of the
elements of TR(I,J). Let K(R)  be this maximum.
Introduce K (R) into a list L.
Set R = R + 1.

Step 4:
If R = diameter d, then compute the maximum
value of the list L. Let k  be this maximum. Stop.
Otherwise go to step 2.
The k-geodeticity of graph G is the  k value

obtained in the algorithm above.
We show an example for determining the k-

geodeticity of a graph. Consider the graph shown in
fig. 1.  The diameter of the graph on fig. 1 is d = 3. We
compute the distance and adjacency matrices.
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Fig. 1

 Set R = 1 and  calculate  T1 (I,J), we consider  the
auxiliary matrix P1(I,J)  and have the value K(1) = 1.
We continue the algorithm  and we calculate for R = 2
the matrices T2 (I,J) and P2 (I,J). So we obtain K(2) =
3, this value is included in the list L. Next we obtain
K(3) = 4 and set R = 4, going to the step 4. The
diameter is less than or equal  R, so we stop. The
geodeticity of the graph is 4.

4 Own k-geodetic graphs.
In this section we introduce the new class of own k-
geodetic graphs.
Definition: A graph G is named own k-geodetic graph
if G is a k-geodetic graph in which two vertices exist
which have exactly k paths of minimum length
between them.
        Logically if we denoted C the class of geodetic
graphs, we will see that G can be partitioned in k sub
class Ci which will be formed by the own i-geodetic
graphs. If a graph is an own k-geodetic graph then we
can make up a (k-1)-geodetic graph. It is possible to
split one edge to remove one path. A own k-geodetic
graph is not own (k-1)-geodetic graph neither
viceversa.
A result  which relate the k-geodeticity of a graph with
the k-geodeticity of its blocks is  given  next.
Theorem 4: Let G be splitted in r blocks B1 B2, ... ,Br

such that any block Bi is own pi-geodetic (pi  k) and
there exist exactly pi shortest paths between zi1 and  zi2

where zi1, zi2 are any cutvertices of Bi. Then G is k-
geodetic with

Besides G will be own k-geodetic graph  with

if the graph G is designed as a sequence of blocks B1

B2, ... ,Br  such that the Block-Graph GB is a chain, xB1,
xB2,...,xBr.
Proof:  Let GB be the Block-Graph associated with G
and we suppose that we give a weight wi = pi

(geodeticity of the block Bi) to every vertex xBi of GB.
Then any path P between xBt and xBs  will have a
weight  pi where xBi P. This mean that any pair of
vertices x,y of G, the geodeticity of G is at most  pi

where xBi P. Now we have two posibilities
(i) if x, y Bi 1  i  r, then there exist at most pi

shortest  paths between them. Hence k = pi  
 pi where xBi P;

(ii) if x  xBt and y  xBs will have at most  pi

where xBi  P paths between them if that paths
go through these blocks Bi, using only
cutvertices zi with xBi P.

Since the k-geodeticity of the graph G is obtained by
multiplying the feasible maximum numbers pi, then

Besides, if the Block-Graph is a chain xB1, xB2,...,xBr

then obviously

and hence G will be an own k-geodetic graph.            
We have seen by the above theorem that the own k-
geodeticity of a graph G can be obtained if the graph
have a determined design. Is it possible to obtain the
own k-geodeticity on any graph?. The answer is
affirmative and we will need only to use a simple
algorithm and the definition of  block-cutvertex graph.
We have seen that the block-cutvertex graph of a
connected graph is a tree. Hence the own k-geodeticity
of a graph G is obtained by the following algorithm:

ALGORITHM 2:
Step 1:

Construct the block-cutvertex graph GR

relative to G. Associate to any vertex xi of GR,
a weight wi, such that wi = pi if xi is a block-
vertex and wi = 1 if xi is a cutvertex

Step 2:
Determine the shortest path Pxy which joins
any pair of vertices x, y of GR. (Observe that
there exists an unique shortest path between
two given vertices, since the block-cutvertex
graph is a tree).

Step 3:
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For any path (x-y path) Pxy = {x = s1,s2...,st1, y
= st}.
Calculate the cost c(x,y) =  pi where si Pxy.

Step 4:
Determine k = max {c(x,y) / x,y GR} where
GR is the block-cutvertex graph. Then the
graph G is an own k-geodetic graph.

The above algorithm is efficient because we
would need to calculate l(l-1)/2 costs c(x,y) only,
where l is the number of blocks-vertices of the block-
cutvertex graph.

5 Results
 In this paper we propose new results about k-geodetic
graphs. The maximum k-geodeticity of a graph is analyzed.
We propose a procedure to determine  the k-geodeticity of a
graph. Also, the own k-geodetic graphs are defined and
some results are commented.  We give an algorithm to
calculate the own k-geodeticity of a graph.
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