Vector solitons in KTP: theory and experiments
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Abstract: -We present theoreti@ and experimentd reaults to aitline the corditions for the existence and the
main physicd properties of vectoria solitary waves in KTPcrystals We demonstrag that the whole family of
vecta solitons can be geneeted by asingle, linearly polarized, pump frequeng/ and that the properties of the
generatedditon depend on the plarization angle of the fundamentl frequency at input (i.e. an the imbalance
between the fundamentl frequeng/ componentsparallel to the afinary and etraordinary axesof the

birefringent cysta).

We demonstiate thet the minimum enegy for soliton formation can B a non zerofundanen@ frequency
imbalane or a zero imbalarce dgoerding on thre sign o the phasemismatch.
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1 Introduction
In the lastyears se@nd order nalinea effects have
attrected a great deal of interest in the scientific
community; in particular solitors sustained by
secoml order nonlinearity have been extesively
studied after the first experimental denonstrationof
soliton prgagation in a KTP crystal [1]. For KTP,
in type Il geametry for phasematding, soliton self
trapping arises fran the mutual coyling between
two fundamentd frequeng components and the
secoml hamonic frequency (three  waes
interaction). The goal of the exprimend and
theoretical work we presert here is & describe the
polarization properties and e corditions for the
existence of vecorial solitary waves exited by
imbalancé fundamentd frequency waves (FFs).
The propertiesof these solitary waves are evisaged
to be relevart in variousapplications, raging from
bean shapimg in optica parametric amplification
and ccillation to all optical addressing of light [2-
11].

In the first part of the pgper, we will present a
simple physical picture describing the intemplay
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between nanlinear effets anddiffraction in asecond
order nonlinear cystal; ®liton selftrapping
obviously arises when the tw competing effects
balance each other. We can thenprove that this
balencing is affected by the following physical
tems: transverse size of the beam (that detemines
the role played ly diffraction), phase mismatch
among the nteracting waves (rulirg the relative
pha® delays anong the thee waves) intensities of
the three waes involved in the process of second
hamonic generation (SHG)In partialar the ple
played by the polarizaion stae of the furdamental
wave will be adilined. We will show that for
negative phase mismatch tke minimum enegy for
soliton formation is aways at zero imbalance
between the fundament frequengy componens (i.e.
for the fundamental bean linearly polarized at 45
degrees wih respect to the odinary axis of the
birefringent cistl); for positive phag mismatch
the situation charges and theminimum enery for
soliton formation s found fa non zero imbalarce.
This is a rather unexpected esult, since the
efficiency of the hamonic conversion is rediced by
the imbalarcing, due to ke reduction of available



photons pairs for SHG. We will also show that this phase mismatch the situation changes and the
rather unexpected result is confirmed by the minimum energy for soliton formation can be found
characteristics of analytical solutions that we havefor non zero imbalance. This is a rather unexpected
found through a variational approximation of the result, since the efficiency of the harmonic
problem at hand. We will then present the conversion is reduced by the imbalancing, due to the
experimental results that demonstrate the soundnes®duction of available photons pairs for SHG. We
of our theory. We will also show that the will also show that this rather unexpected result is
imbalancing produces a continuous shift of theconfirmed by the characteristics of analytical
soliton output position for negative phase mismatchsolutions that we have found through a variational
and a discontinuous one for positive phaseapproximation of the problem at hand and we will
mismatch. also provide a simple qualitative picture to describe

the physical reason why this happens.

In order to provide a simple physical picture of the
2 Problem Formulation reasons why this behavior is observed let us discuss
As well known the problem of three waves the phase curvature induced on the beam by
interactions in second order nonlinear media isdiffraction and nonlinearity separately in the case
conveniently described by the following evolution (typically attained in experiments) of negligible
equations for the three slowly varying envelopes ofWalk-off. If “difiraction does not play a role,

the fields involved in the process: solutions of the governing equations are easily
obtained. Let us write Ai=pUsexp(j@),

A 1 _o. . % A=(Udp)exp(ip), As=U s:exp (i), and

EJrZ_jD A=Ay Ag ®= @ - @ —@. Setting thez derivatives ofU;=pU,,

A A 1 Uz_:Uolp, Us; and @ equal to zero we get the fi_xed
—2—dw—2+—_D2A2 = in*As point of the system describing the nonlinear
0z ox 2j interactions without diffraction. In particular these
0Ag d Ay 1 5. ] solutions are characterized by two branches: branch

e 2wg+4_jD Ag = JAio + g 1 corresponds t@ = 0 and branch 2 tap = 1

Jumping from branch 1 to branch two entails a

where A, A, A, are the dimensionless envelopes change of sign of the curvature of phase front of all
b T PES, hree waves involved in the nonlinear interaction.

(x.Y) are the _dimensionless transverse CoorOIinatei/loreover as we shall see in a short while, solutions
(normallzzed with respect to a transverse S.Cale I?ngﬂbelonging’ to branch 1 have a curvature of’ the phase
fo, 2=ro’ky the longitudinal scale length (diffraction ¢, opposite to the diffraction induced phase front
Iength),da_), .dz‘*’ are the beam_ wa[k-off coefficients, curvature. Thus solutions belonging to branch 2 are
characterizing the different directions of energy and ¢ |\ interest for us here, since they can never
p_hase front_s in bi_refringent_ crystalp= 2o (keko-ky) compensate diffraction. Note that the faqgidixes
gives the dimensionless mismatch parameter. the imbalancep=1 is the balanced case) and we are

The goal of our experiment was to study the )y interested here to discuss the properties of the
conditions for the existence of vectorial solitary g tions near the balanced case.

waves with imbalanced fundamental frequency gypjicitly, the amplitude of these solutions reads:
waves (FFs); this topic has been already studied
theoretically [12,13] and was first experimentally

addressed in [14] where the authors reported the %0—2|U3|2 %)2
dependence of the threshold energy for solitonUq= 7]
formation as a function of the phase mismatch for 1+p

balanced FFs and the threshold energy as a function
of the imbalance in the FFs components. The main z?1(p2 + p6)+ pz\/éz(H p4)Z +4(1+ 4p4 + p8)E0
conclusions were that the minimum energy for Y3~ 2@+4 4, 8)

soliton formation is at the phase matching condition P-*P

and, for a given phase mismatch, it is attained for ] )
zero imbalance. The result we present in this papetVhere we have defined the total energy function
show that this last conclusion is affected by the signEo(R)=(P"+1/ p%) Uy +2Us" and R= X’ + y°. Note

of the phase mismatch: in fact while for negative that non trivial solutions require:

phase mismatch the minimum energy for soliton

formation is always at zero imbalance, for positive




1+ p4 nonlinear one, i.e. we must ask the following

y<—(Ep)"? relation to hold:
2p
a’ 2 2 2~2
This last point will be of crucial relevance in the T—r\Y +6Q° = Q- =1
discussion that will follow: in order for the solutions W

to exist at a given positive phase mismatch, we need )
to increasek, (the total energy) above a critical Wherel stands for the total energy carried by the
threshold. three waves (the integral from minus infinity to plus

Note that the amplitude of tHg; component infinity in the planex,y of the total energ¥). Note
increases monotonically with (reflecting the fact ~ that the ratic= (a/w) is the ratio between the width
that the energy composition of the solutions Of the total energy function and the width of the
approaches the case of a dominant second harmongecond harmonic component. The minimum value of
component as we move towards the boundary ofthis energy is clearly obtained fQrgoing toward0
their existence region). Also the phases @, @ of  (@ndagoing to infinity) and it is
the three interacting waves can be easily determined
in this approximation. For the sake of clarity and Ith1=r1(c*) |y |
simplicity we can limit our attention to the phase of
the second harmonic componegs, moreover the  however this limit can be reached only for negative
general expression of the phase is ratherphase mismatches, since for positive phase
cumbersome, but for the problem of interest we canmismatch we cannot go to arbitrary I@walue: as
limit ourselves to the expression describimgg Q approache$® solutions of the nonlinear problem
aroundR=0 andp=1. in the positive phase mismatch region tend to

disappear.
The minimum attainabl® value for a giveryis

3 Problem Solution

In the framework described in the previous section 2p2
we get: Qth=y ——
1+p
(R) — _ 2Q2 2 3 . .
¢,(R)=19,(0) R? +O[R which gives a threshold energy

az(yz +6Q6)1/2

2
ith2 = 7r(c®) [y | |1+ 24P )2
where, for the sake of simplicity, we have taken a 1+p

particular total energy function, namely a gaussian
function with beam widttar: note that ap=1 we havelth2=Ith1(7*?) in optimum
agreement with the experimental results and that for
R E small p deviations around the conditigre1, Ithl
EO(R)=Q2 exp% H_g does not depend op. On the contrary smalp
0w deviation aroundl (i.e. small deviation from the
balanced case) tend to redute2 (as observed in
the experimental results). The reason why this
happens is that the imbalancing makes it possible to

competition between the two effects and diffractive PEN€trate further in the positive phase mismatch sign
free propagation can result whenever the phase frontl0" @ given beam energy) or equivalently to

curvature induced by nonlinearity is compensated byMaintain the same existence domain for a lower
the phase front curvature induced by diffraction. To POWer-

describe the phase front curvature induced by i

diffraction we can simply consider a gaussian beamt€! US now move to the description of the

at the second harmonic component with a beamexpe_rlmen_tal results z_and their comparison W|th_the
radiusw. Therefore, for diffraction free propagation Physical picture of soliton self trapping we have just
to take place, we must require the linear phase fronfl€scribed.

curvature to be exactly compensated by the

(|

If we now consider also diffraction to play a role in
the specific problem, we will have to face the



In the experiment we used Z&zm long KTP beam (the phenomenum known as walking soliton).
crystal cut for type Il phase matching; the pumpIn the figure the points corresponds to the
laser (deliveringd5ps pulses atl064nmwith 10Hz experimental results and the continuous line refers to
repetition rate) was focused into the input face of thethe analytical results, obtained in the framework of a
KTP crystal with a spot size of22microns  variational approximation [13].

(FWHMI). Figure 2 refers to a phase mismtath L = 3 1T

Before entering the nonlinear crystal, the linearContrary to the previous case, we see that the
polarization of the pump beam could be rotated byminimum energy for soliton formation is not at zero
means of a half wavelength plate, thus allowing toimbalance; this is due to the existence of a forbidden
change the relative intensity of the beam along theregion for soliton formation near the zero imbalance
extraordinary and the ordinary axes of the situation, where the solitary wave requires bigger
birefringent crystal (i.e. allowing to change the intensity to be sustained. This is in agreement with
imbalance). The light at the output of the KTP the analyses reported in the first part of this paper
crystal was then imaged onto a CCD camera whereand also with the exact numerical solution obtained
we measured the beam output width at thein the framework of a variational approximation
fundamental frequency (while the second harmonic[13]. Note also that the shape of this existence curve
components was stopped by filtering). For a givendepends crucially on the beam width at input;
phase mismatch and imbalance we then plotted theeducing the width of the input beam, in fact, the
output width as a function of the input intensity and forbidden region observed in figure 2, shrinks and
we defined the threshold for soliton formation as thetends to disappear.
input intensity where the output beam widti25%
of the input one. We then repeated this procedure for
different imbalances of the input beam. The results
are summarized in figure 1 and 2, where the
intensity is inGW/cni and 8 (-774) is the oreintation
of the linearly polarized input beam with respect to
the ordinary axis of the crystal.
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Figure 2: experimental (dots) and analytical
(continuous line) threshold curve defining the
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Figure 1: experimental (dots) and analytical If, for a given input intensity (14 GW/drn figure
(continuous line) threshold curve defining the 2), we change continuously the input imbalance we

existence region for solitons. The phase mismatchcan move from a region where solitons exist (at non

here is -3 zero positive imbalance) to a region of non
existence (near the balanced case) and then again
Figure 1 refers to a phase mismtatk L =-3 7. INto an existence region.

We can see, as already reported in [14], that thecorrespondingly the soliton beam at output shifts
threshold for soliton formation increases with @bruptly in space from left (figure 3a, corresponding
increasing imbalancing. Moreover we note that thef® Point A in figure 2) to right (figure 3c,
change in the imbalance is also responsable for &orresponding to point C in figure 2). In the
continuous space displacement of the output soliton
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