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Abstract: - We present theoretical and experimental results to outline the conditions for the existence and the
main physical properties of vectorial solitary waves in KTP crystals. We demonstrate that the whole family of
vector solitons can be  generated  by a single, linearly polarized, pump frequency and that the properties of the
generated soliton depend on the polarization angle of the fundamental frequency at input (i.e. on the imbalance
between the fundamental frequency components parallel to the ordinary and extraordinary axes of the
birefringent crystal).
     We demonstrate that the minimum energy for soliton formation can be at non zero fundamental frequency
imbalance or at zero imbalance depending on the sign of the phase mismatch.
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1   Introduction
In the last years, second order nonlinear effects have
attracted a great deal of interest in the scientific
community; in particular solitons sustained by
second order nonlinearity have been extensively
studied after the first experimental demonstration of
soliton propagation in a KTP crystal [1]. For KTP,
in type II geometry for phase matching, soliton self
trapping arises from the mutual coupling between
two fundamental frequency components and the
second harmonic frequency (three waves
interaction). The goal of the experimental and
theoretical work we present here is to describe the
polarization properties and the conditions for the
existence of vectorial solitary waves excited by
imbalanced fundamental frequency waves (FFs).
The properties of these solitary waves are envisaged
to be relevant in various applications, ranging from
beam shaping in optical parametric amplification
and oscillation to all optical addressing of light [2-
11].
     In the first part of the paper, we wil l present a
simple physical picture describing the interplay

between nonlinear effects and diffraction in a second
order nonlinear crystal; soliton self-trapping
obviously arises when the two competing effects
balance each other. We can then prove that this
balancing is affected by the following physical
terms: transverse size of the beam (that determines
the role played by diffraction), phase mismatch
among the interacting waves (ruling the relative
phase delays among the three waves), intensities of
the three waves involved in the process of second
harmonic generation (SHG). In particular the role
played by the polarization state of the fundamental
wave will be outlined. We will show that for
negative phase mismatch the minimum energy for
soliton formation is always at zero imbalance
between the fundamental frequency components (i.e.
for the fundamental beam linearly polarized at 45
degrees with respect to the ordinary axis of the
birefringent crystal); for positive phase mismatch
the situation changes and the minimum energy for
soliton formation is found for non zero imbalance.
This is a rather unexpected result, since the
efficiency of the harmonic conversion is reduced by
the imbalancing, due to the reduction of available



photons pairs for SHG. We will also show that this
rather unexpected result is confirmed by the
characteristics of analytical solutions that we have
found through a variational approximation of the
problem at hand. We will then present the
experimental results that demonstrate the soundness
of our theory. We will also show that the
imbalancing produces a continuous shift of the
soliton output position for negative phase mismatch
and a discontinuous one for positive phase
mismatch.

2   Problem Formulation
As well known the problem of three waves
interactions in second order nonlinear media is
conveniently described by the following evolution
equations for the three slowly varying envelopes of
the fields involved in the process:
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where  A1, A2, A3  are the dimensionless envelopes,
(x,y) are the dimensionless transverse coordinates
(normalized with respect to a transverse scale length
r0, z0=r 0

2k1 the longitudinal scale length (diffraction
length), dω, d2ω are the beam walk-off coefficients,
characterizing the different directions of energy and
phase fronts in birefringent crystals,  γ = z0 (k3-k2-k1)
gives the dimensionless mismatch parameter.
     The goal of our experiment was to study the
conditions for the existence of vectorial solitary
waves with imbalanced fundamental frequency
waves (FFs); this topic has been already studied
theoretically [12,13] and was first experimentally
addressed in [14] where the authors reported the
dependence of the threshold energy for soliton
formation as a function of the phase mismatch for
balanced FFs and the threshold energy as a function
of the imbalance in the FFs components. The main
conclusions were that the minimum energy for
soliton formation is at the phase matching condition
and, for a given phase mismatch, it is attained for
zero imbalance. The result we present in this paper
show that this last conclusion is affected by the sign
of the phase mismatch; in fact while for negative
phase mismatch the minimum energy for soliton
formation is always at zero imbalance, for positive

phase mismatch the situation changes and the
minimum energy for soliton formation can be found
for non zero imbalance. This is a rather unexpected
result, since the efficiency of the harmonic
conversion is reduced by the imbalancing, due to the
reduction of available photons pairs for SHG. We
will also show that this rather unexpected result is
confirmed by the characteristics of analytical
solutions that we have found through a variational
approximation of the problem at hand and we will
also provide a simple qualitative picture to describe
the physical reason why this happens.
In order to provide a simple physical picture of the
reasons why this behavior is observed let us discuss
the phase curvature induced on the beam by
diffraction and nonlinearity separately in the case
(typically attained in experiments) of negligible
walk-off. If diffraction does not play a role,
solutions of the governing equations are easily
obtained. Let us write A1=pU0exp(jφ1),
A2=(U0/p)exp(jφ2), A3=U3exp(jφ3), and
Φ=  φ3 − φ2 −φ1. Setting the z derivatives of U1=pU0,
U2=U0/p, U3 and Φ equal to zero we get the fixed
point of the system describing the nonlinear
interactions without diffraction. In particular these
solutions are characterized by two branches: branch
1 corresponds to Φ = 0 and branch 2 to Φ = π.
Jumping from branch 1 to branch two entails a
change of sign of the curvature of phase front of all
three waves involved in the nonlinear interaction.
Moreover, as we shall see in a short while, solutions
belonging to branch 1 have a curvature of the phase
front opposite to the diffraction induced phase front
curvature. Thus solutions belonging to branch 2 are
of no interest for us here, since they can never
compensate diffraction.  Note that the factor p fixes
the imbalance (p=1 is the balanced case) and we are
only interested here to discuss the properties of the
solutions near the balanced case.
Explicitly, the amplitude of these solutions reads:
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where we have defined the total energy function
E0(R)=(p2+1/ p2) U0

2+2U3
2 and R= x2 + y2. Note

that non trivial solutions require:
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This last point will be of crucial relevance in the
discussion that will follow: in order for the solutions
to exist at a given positive phase mismatch, we need
to increase E0 (the total energy) above a critical
threshold.
     Note that the amplitude of the U3 component
increases monotonically with γ (reflecting the fact
that the energy composition of the solutions
approaches the case of a dominant second harmonic
component as we move towards the boundary of
their existence region). Also the phases  φ3, φ2, φ1  of
the three interacting waves can be easily determined
in this approximation. For the sake of clarity and
simplicity we can limit our attention to the phase of
the second harmonic component  φ3; moreover the
general expression of the phase is rather
cumbersome, but for the problem of interest we can
limit ourselves to the expression describing φ3

around R=0 and p=1.

3   Problem Solution
In the framework described in the previous section
we get:
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where, for the sake of simplicity, we have taken a
particular total energy function, namely a gaussian
function with beam width α:
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If we now consider also diffraction to play a role in
the specific problem, we will have to face the
competition between the two effects and diffractive
free propagation can result whenever the phase front
curvature induced by nonlinearity is compensated by
the phase front curvature induced by diffraction. To
describe the phase front curvature induced by
diffraction we can simply consider a gaussian beam
at the second harmonic component with a beam
radius w. Therefore, for diffraction free propagation
to take place, we must require the linear phase front
curvature to be exactly compensated by the

nonlinear one, i.e. we must ask the following
relation to hold:
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where I stands for the total energy carried by the
three waves (the integral from minus infinity to plus
infinity in the plane x,y of the total energy E0). Note
that the ratio c= (α/w) is the ratio between the width
of the total energy function and the width of the
second harmonic component. The minimum value of
this energy is clearly obtained for Q going toward 0
(and α going to infinity) and it is

||)(1 4 γπ cIth =

however this limit can be reached only for negative
phase mismatches, since for positive phase
mismatch we cannot go to arbitrary low Q value: as
Q approaches 0 solutions of the nonlinear problem
in the positive phase mismatch region tend to
disappear.
The minimum attainable Q value for a given γ is
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note that at p=1 we have Ith2=Ith1(71/2) in optimum
agreement with the experimental results and that for
small p deviations around the condition p=1, Ith1
does not depend on p. On the contrary small p
deviation around 1 (i.e. small deviation from the
balanced case) tend to reduce Ith2 (as observed in
the experimental results). The reason why this
happens is that the imbalancing makes it possible to
penetrate further in the positive phase mismatch sign
(for a given beam energy) or equivalently to
maintain the same existence domain for a lower
power.

Let us now move to the description of the
experimental results and their comparison with the
physical picture of soliton self trapping we have just
described.



     In the experiment we used a 2cm long KTP
crystal cut for type II phase matching; the pump
laser (delivering 45ps pulses at 1064nm with 10Hz
repetition rate) was focused into the input face of the
KTP crystal with a spot size of 22microns
(FWHMI).
     Before entering the nonlinear crystal, the linear
polarization of the pump beam could be rotated by
means of a half wavelength plate, thus allowing to
change the relative intensity of the beam along the
extraordinary and the ordinary axes of the
birefringent crystal (i.e. allowing to change the
imbalance). The light at the output of the KTP
crystal was then imaged onto a CCD camera where
we measured the beam output width at the
fundamental frequency (while the second harmonic
components was stopped by filtering). For a given
phase mismatch and imbalance we then plotted the
output width as a function of the input intensity and
we defined the threshold for soliton formation as the
input intensity where the output beam width is 125%
of the input one. We then repeated this procedure for
different imbalances of the input beam. The results
are summarized in figure 1 and 2, where the
intensity is in GW/cm2 and θ (-π/4) is the oreintation
of the linearly polarized input beam with respect to
the ordinary axis of the crystal.

0 5 1 0 1 5 2 0 2 5 3 0 3 5

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0

θ

In te n s i t y

Figure 1: experimental (dots) and analytical
(continuous line) threshold curve defining the
existence region for solitons. The phase mismatch
here is –3 π

Figure 1 refers to a phase mismtach  ∆k L =-3 π .
We can see, as already reported in [14], that the
threshold for soliton formation increases with
increasing imbalancing. Moreover we note that the
change in the imbalance is also responsable for a
continuous space displacement of the output soliton

beam (the phenomenum known as walking soliton).
In the figure the points corresponds to the
experimental results and the continuous line refers to
the analytical results, obtained in the framework of a
variational approximation [13].
Figure 2 refers to a phase mismtach ∆k L = 3 π.
Contrary to the previous case, we see that the
minimum energy for soliton formation is not at zero
imbalance; this is due to the existence of a forbidden
region for soliton formation near the zero imbalance
situation, where the solitary wave requires bigger
intensity to be sustained. This is in agreement with
the analyses reported in the first part of this paper
and also with the exact numerical solution obtained
in the framework of a variational approximation
[13]. Note also that the shape of this existence curve
depends crucially on the beam width at input;
reducing the width of the input beam, in fact, the
forbidden region observed in figure 2, shrinks and
tends to disappear.
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Figure 2: experimental (dots) and analytical
(continuous line) threshold curve defining the
existence region for solitons. The phase mismatch
here is 3 π

If, for a given input intensity (14 GW/cm2 in figure
2), we change continuously the input imbalance we
can move from a region where solitons exist (at non
zero positive imbalance) to a region of non
existence (near the balanced case) and then again
into an existence region.
Correspondingly the soliton beam at output shifts
abruptly in space from left (figure 3a, corresponding
to point A in figure 2) to right (figure 3c,
corresponding to point C in figure 2). In the



intermediate region solitons do not exist (figure 3b,
corresponding to point B in figure 2).

Figure 3a

Figure 3b

Figure 3c
Figure 3: experimentally observed output beam
shape at the fundamental frequency for an input
intensity of 14GW/cm2 at different input imbalances
(-40 corresponds to fig. 3a, 00 corresponds to fig. 3b
and 40 corresponds to fig. 3c).

4   Conclusion
In conclusion we have presented an experimental
and theoretical analysis of the threshold energy for
vector soliton formation in a KTP crystal. We have
shown that depending on the sign of the phase
mismatch the minimum intensity for soliton
formation can be at zero or at non zero input
imbalance. A good qualitative agreement between
theory and experimental results is observed.
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