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Abstract: Grafcet is a widely used model for the specification of logic control in manufacturing systems.
Compared to other modelling tools for Programmable Logic Controllers (PLC), it has the advantages of
manipulating simple concepts which are commonly used by control agents and engineers. This paper is a first
in a series of two papers that present an approach based on the use of the "Timed Transition Model (TTM) /
Real-Time Temporal Logic (RTTL)" formalism as a support to the analysis and verification of properties of
automated systems whose controllers are specified using Grafcet. In this paper, the modelled system is mapped
into a TTM, and the mapping function associates formal semantics to Grafcet and its interactions with the
controlled plant in terms of the TTM.
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1   Introduction
The design of manufacturing systems and the
development of their controllers are getting more
closely linked as the manufacturing environment is
becoming more automated [1], [2]. Controller
designers must be able to integrate machines and
material handling equipment in accordance with the
desired operational decision and control functions.
This requires the availability of adequate modelling
and validation tools in order to determine whether or
not the manufacturing system and its controller will
function in the desired manner.
     Grafcet [3], [4] o r sequential function charts is an
international standard used for the specification of
sequential control in manufacturing systems. The
graphical representation of Grafcet allows a clear
modelling of concurrency, synchronisations as well
as the inputs and outputs and their relations. This
makes Programmable Logic Controllers (PLCs)
more tractable and simplifies the simulation of the
control logic of the system. Many PLC builders
today use the Grafcet as a specification and/or as a
programming language. Among the large companies
using it widely or recognising it as an internal
standard are: Siemens, Renault, Peugeot, Michelin,
and others. Recent works also reported the use of
Grafcet to implement supervisory control
applications and to structure rule-based systems [5].
In spite of its advantages, Grafcet has long been
criticised because it was not supported by a formal
semantics that allows for unambiguous

interpretation of a given model, and that provides
means for the analysis and verification of safety,
liveness and timeliness properties of a given Grafcet
[6], [7].
     This paper is the first in a series of two papers
that present an integrated approach combining
features from Grafcet and the TTM (Timed
Transition Model) / RTTL (Real-Time Temporal
Logic) formalism in order to provide a global
framework for the validation of systems controlled
by Grafcet. The aim of the work presented in this
paper is to establish formal semantics for Grafcet
and for its interactions with the controlled systems.
After a review of Grafcet (section 2) and of the
TTM/RTTL framework (section 3), a mapping
function that associates formal semantics to Grafcet
controlled systems in terms of the TTM is presented
in section 4.

2   Grafcet
Grafcet is a discrete-event modelling tool that
integrates the ability of Petri nets for concurrent
modelling, and the use of variables and Boolean
functions to represent complex decisions. These
features, together with its simplicity to represent the
behaviour of control systems and its normative
character, explain its wide industrial
implementation. Grafcet consists in describing
parallel and synchronised sequences of elementary
operations applied to the plant with due



consideration to plant’s response. The basic
concepts of this model are quite clear and simple:
the step, the action, the transition and its associated
receptivity (Fig. 1).
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Fig. 1: Basic concepts of Grafcet

     The step, drawn as a square, represents a partial
state of the controller to which actions can be
associated. A step can be active or idle; associated
actions are performed when the step is active and
remain asleep when it is idle. A situation is given by
the set of active steps. The transition, represented as
a bar, links one (or several) previous step(s) to one
(or several) following step(s). It represents the fact
that the actions of the previous steps are followed by
the actions of the following ones and figures a
decision of changing system state. A logical
expression, called receptivity, is associated to each
transition. This expression manipulates Boolean
variables, corresponding to controller inputs or to
the activation state of individual Grafcet steps, and

events corresponding to the rising and falling edges
of input variables. A rising edge of a variable v is
given by ↑v, the falling edge is given by ↓v.
     The evolution of Grafcet is traditionally given by
the following evolution rules [4]:
- Rule 1: Grafcet initial situation is given by all of its
initial steps (drawn by a double square).
- Rule 2: a transition is firable if all of its previous
steps are active. A firable transition is fired if its
associated receptivity is true.
- Rule 3: the firing of a transition results in the
deactivation of its previous steps and the
simultaneous activation of its following steps.
- Rule 4: simultaneously firable transitions are
simultaneously fired.
- Rule 5: if a step is to be simultaneously activated
and deactivated, it remains active.
     Many extension, including the introduction of
macro-steps and partial Grafcets with forcing orders
hierarchy have also been introduced to consolidate
the modelling power of Grafcet [8].
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Fig. 2: Example: tank filling

2.1 Example - tank filling
A simple example, taken from David [3], is used to
illustrate the basic concepts of Grafcet. The process
in question (Fig. 2) includes two tanks used in a
similar way. Tank 1 is empty when the level is less
than b1 and is full when the level is greater than h1.
These conditions are given respectively by: b1=0 and
h1=1. At the initial state, both tanks are empty. If
push button m is pressed, both tanks are filled by
opening the inflow valves V1 and V2. When a tank is
full, filling stops (by closing the corresponding
inflow valve) and its contents start to be used (by
opening the corresponding outflow valve, W1 or
W2). When a tank is empty, the corresponding
outflow valve is closed. Filling may only start up
again when both tanks are empty and if the button m
is pressed.
     The Grafcet corresponding to this specification is
given in Fig. 3. Initially, steps 1 and 4 are active.
Transition 1 which follows these steps can be fired



as soon as its associated Boolean variable m has the
value 1. After this firing, steps 2 and 5 are active and
their associated actions (V1 and V2, respectively)
are performed. In this situation, transition 2 can be
fired if h1 =1, and transition 4 can be fired if h2 =1.
And so on. Concurrency is explicitly represented in
this model. Steps 1, 2 and 3 correspond to the states
of tank 1 (empty, during filling, and during
emptying, respectively) and steps 4, 5, and 6
correspond to the states of tank 2. The sequence of
states (or active steps) and Boolean conditions
leading from one state to another are quite apparent

 m

 V12

1 4

 W13
h1

 V25

 W26

h2

b'1 b'25

4

3

2

1

Fig. 3: Grafcet specification of tank filling

2.2 Temporal behaviour of Grafcet
The application of the five evolution rules of Grafcet
results in changing a Grafcet situation into another
situation. This new situation may be unstable (if
some transitions are firable in this situation) and
must change again before the occurrence of a new
input event. Issues related to reactivity, determinism
and stability have therefore been raised and led to
the definition of a new temporal framework in
which the modelling universe of Grafcet is
partitioned into an internal and an external time
scales that have no common measure [8], [9].  At the
external time scale, all changes of the values of the
receptivities associated with the transitions are
considered as soon as they occur and their
consequential reactions (the actions associated with
the next stable situation) are perceived as occurring
at the same time instant; this ensures the reactivity
of the model. At the internal time scale, a reaction
involves a number of consecutive internal evolutions
whose durations are as small as necessary; the
actions associated with intermediate unstable
situations do not affect the controlled plant. This
behaviour guarantees the determinism of Grafcet
since one and only one output scenario (activation
and deactivation of actions) may result from an
input scenario.

     In spite of their simplicity, Grafcet evolution
rules and the above temporal framework are not
sufficient to guarantee a unique interpretation of a
given Grafcet [10]. To remove persisting
ambiguities, the semantics of Grafcet have been
completed by an algorithmic "Grafcet player" [6]
which organises and explains the interactions
between the basic evolution rules and the two time
scales of the model. The semi-formal semantics
provided by this algorithm insures a deterministic
interpretation of Grafcet and reinforces its
synchronous and reactive nature. The mapping
function given in section 4.2 represents a formal
definition of this semantics in terms of Timed
Transition Model (TTM).
     The choice of the TTM formalism as a support
for associating semantics to Grafcet is motivated by
the fact that the TTM has rich semantics, including
the manipulation of different types of variables and
time. It presents a flexible model for representing a
set of concurrent processes, whether these processes
are hardware devices (e.g. pumps, valves and
reactors) or originate as programs in various real-
time programming languages, Petri nets, Statecharts,
or Grafcet. This flexibility allows to support both the
synchronous, reactive and deterministic nature of
Grafcet, and the asynchronous non-deterministic
nature of the controlled plant. Furthermore, the use
of temporal intervals is extremely useful for the
modelling of plant evolution times, since these times
cannot be precisely known during the specification
phase. The TTM is also an element of the
TTM/RTTL varification framework which will be
adapted in the second paper to provide a formal
validation support for Grafcet controlled systems.

3   TTM/RTTL Framework
The TTM/RTTL framework is a state-based, linear
discrete time, interleaved, asynchronous, and
explicit linear logic formalism [11]. It includes the
following elements:
     Semantic model of time: the notion of a possible
behaviour or trajectory of a system is given by an
infinite sequence alternating events and states. A
discrete notion of time is employed using an explicit
clock whose current time is represented by the non-
negative integer variable "t". The tick event, which
increments "t" by one, occurs infinitely often in the
trajectory and is interleaved with other system
events. Time bounds on events determine when they
may occur relative to the ticks.
     Timed Transition Model: TTM is basically an
asynchronous model that represents most real-time
features such as delays, time-outs, parallel



processing, communication through shared
variables, as well as message passing over channels.
A TTM is defined as a three-tuple (V ,Θ ,ℑ) where
V is the set of variables used, Θ is a predicate
asserting an initial condition on the variables and ℑ
is the set of all transitions (representing events). A
transition τ is a 4-tuple (eτ, hτ, lτ, uτ); where eτ is an
enabling condition, hτ is a transformation function, lτ

and uτ are constants representing the lower and
upper time bounds respectively. These bounds
indicate that a transition which is continuously
enabled over an interval of time does not actually
occur for lτ ticks of the clock, but must occur by uτ

ticks of the clock unless it becomes disabled. The
tick event corresponds to a distinct transition
belonging to ℑ. A spontaneous transition, with [0,
∞] time bounds represents an event that may occur
at any moment. However, it may also delay
occurring forever. Spontaneous transitions are useful
to represent situations where the designer initially
has no knowledge of the time bounds or to model
unpredictable behaviour in the plant, such as the
failure of a device. When more than one transition
are enabled and eligible (by virtue of their bounds)
to occur at a point in time, the order of firing is
chosen nondeterministically.
     Real Time Temporal Logic: RTTL is an
extension of Manna and Pneuli [12] untimed
temporal logic to timed systems. It is an expressive
language, used to specify the properties to be
verified in the semantic time model corresponding to
the TTM of a plant and its controller. RTTL is an
explicit clock logic because its expressions may
explicitly use the clock time variable "t". The basic
operators used in RTTL are: ¡ (next), U (until), ¨
(henceforth), ◊  (eventually), U (unless) and P
(precedes). These operators allow to specify
qualitative temporal properties. Quantitative
temporal properties (or timeliness properties), which
are used to specify exact time, maximum time,
minimal time and periodicity, can be expressed by
bounding the time interval of the operators. The
reader may refer to [13] for a detailed description of
the semantics of these operators.
     Verification via proof systems and heuristics:
The initial proof system of the TTM/RTTL provides
algorithms and an implemented verifier to check
whether all legal trajectories of a finite state TTM
satisfy a given RTTL specification. If a RTTL
property fails to hold, then the failing trajectories are
provided, making it possible to debug the system.
An advantage of RTTL is that no new temporal
operators are introduced. As a result, all the proof
rules of Manna-Pneuli temporal logic can be used

and other rules are added for the real-time part of the
reasoning. For infinite state systems, the RTTL has
theorem proving analysis techniques together with
heuristics that require interactive user guidance for
doing proofs using proof diagrams and weakest
preconditions. A proof diagram is an abstract view
of a state reachability graph that contains the
intuition of system execution without the distracting
proliferation of states.

4   Associating Semantics to Grafcet in
terms of TTM

This section presents the formal definition of the
function that maps Grafcet into an equivalent TTM.
The TTM transitions structure resulting from the
application of the mapping function is depicted in
Fig. 4. This structure insures a correct temporal
behaviour of Grafcet in terms of synchronism,
determinism and reactivity [6]. Synchronism is
achieved by using a zero-time-bounds TTM
transition for each possible internal evolution of
Grafcet, whether this evolution corresponds to the
firing of a single Grafcet transition or to a number of
Grafcet transitions simultaneously. Determinism is
guaranteed by associating exclusive conditions to
TTM transitions related to Grafcet evolutions, and
therefore only one internal Grafcet evolution may be
possible at a given instant. Reactivity is maintained
by giving priority to internal Grafcet evolutions (due
to [0, 0] time bounds) over input and output
communicating transitions (having  [0, 1] time
bounds) which, in turn, have higher priority over
plant evolution transitions (whose lower time
bounds are given by a positive integer). Therefore,
when a Grafcet situation resulting from an internal
evolution is unstable, the TTM transition
corresponding to the next internal Grafcet evolution
will occur before any enabled TTM communicating
transition. This cycle continues until a stable
situation is reached when all TTM transitions
corresponding to Grafcet evolutions are disabled. In
this case, the enabled output communicating
transitions will occur to transmit Grafcet actions
associated with the stable situation to the plant, and
to receive the next inputs from the plant.
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Fig. 4: TM transitions structure

      Timed actions, stored actions, pulsed actions,
and forcing actions are not addressed in this paper
because a consensual interpretation of these actions,
within the frame of deterministic, synchronous, and
reactive semantics of Grafcet is not yet established.

4.1 Definition of Grafcet structure and
preliminary analysis

The mapping function, which is given in the
following sub-section, is based on a 4-tuple
definition of Grafcet structure: G = (V, X, T, I),
where:
     - V is the set of variables given by: V = Vin ∪
Vout, where Vin is the set of variables originating
from the plant and Vout is the set of binary variables
representing Grafcet actions.
     - X is the set of steps, X = {X1, X2, X3, ...}. The
actions associated to a step Xi , which are given by
the set "actioni ⊆ Vout", should be set to 1 when Xi

is active.
     - T is the set of Grafcet transitions, T = {t1, t2, t3,
...}. A Grafcet transition t ∈ T is defined by the 3-
tuple (XPR(t), XFO(t), ϕ(t) ), where XPR(t) is the set of
previous steps of t, XFO(t) is the set of following
steps of t and ϕ(t) is the receptivity associated to t.
     - I is the set of initial steps, I⊆ X.
For example, the Grafcet of Fig. 1-a is defined by:
     - Vin = {a, b, c, d};
     - Vout = {ACT1, ACT2, ACT3, ACT4};
     - X = {X1, X2, X3, X4, X5, X6, X7, X8}, action1 =
∅, action2 = {ACT1, ACT2}, action3 = {ACT1},
action4 = ∅, action5 = {ACT2}, action6 = {ACT3},
action7 = {ACT4}, action8 = ∅.
     - T = {t1, t2, t3, t4, t5, t6, t7}, t1 = ({X1}, {X2, X6},
↑d), t2 = ({X2}, {X3}, a+cd), t3 = ({X2}, {X4},
a’b’c), t4 = ({X4}, {X5}, ac), t5 = ({X6}, {X7},
a’b’c’), t6 = ({X7}, {X8}, b), t7 = ({X3, X5, X8},
{X1}, ↓d).
     - I = {X1}.
     Based on the set of Grafcet transitions, T, the
following definitions are introduced to be used in
the Grafcet to TTM mapping function:
1) T* = 2T-∅ , is the set of all the sets, excluding the

empty set, in which each transition t∈T occurs at
most once. Example: if T = {t1, t2, t3} then T* = {
{t1}, {t2}, {t3}, {t1, t2}, {t1, t3}, {t2, t3}, {t1, t2, t3} }.

2) {ti , tk} ∈ sim  IFF ti, tk ∈T  are correlated and
non-contradicting transitions, where:
- ti, tk ∈T  are correlated if Grafcet structure and

plant dynamics allow them to fire
simultaneously.

- ti, tk ∈T are contradicting if ( ( (ϕ(ti)=true) ⇒
(ϕ(tk)=false)) and ( (ϕ(tk)=true) ⇒(ϕ(ti)=false))).

This definition implies that: ∀ti ∈T : {ti, ti} ∈ sim.
The calculation of correlated and non-
contradicting transitions will be illustrated by
means of the Grafcet given in Fig. 1-a. The
structure of this Grafcet implies that when step 1 is
active, all other steps are idle. Therefore, each of
the transitions t1 and t7 (which deactivates and
activates step 1, respectively) can not fire
simultaneously with any other transition. When
step 1 is idle, the distribution structure of this
Grafcet implies that:
- steps 6, 7 and then 8 are activated sequentially.

Therefore, transitions t5 and t6 can not fire
simultaneously,

- steps 4 and 5 are activated sequentially.
Therefore, transitions t3 and t4 can not fire
simultaneously.

Thus, correlated Grafcet transitions are given by
the couples : (t2, t3), (t2, t4), (t2, t5), (t2, t6), (t3, t5),
(t3, t6), (t4, t5), (t4, t6). Among these couples, (t2, t5),
(t3, t5), (t3, t6), and (t4, t5) represent contradicting
transitions because the two receptivities of each of
these transition couples can never become true
simultaneously. Therefore, the couples of Grafcet
transitions that can be simultaneously firable are
given by: sim = { {t1, t1}, {t2, t2}, {t2, t3}, {t2, t4},
{t2, t6}, {t3, t3}, {t4, t4}, {t4, t6}, {t5, t5}, {t6, t6}, {t7,
t7} }.

3) T ∈ sim~  if T ∈T* and ( ∀ ti ∈ T , ∃ tk ∈ T  such
that {ti, tk} ∈ sim ). Each element of sim~  is a set
that contains either a single Grafcet transition, or a
number of Grafcet transitions each of which is
simultaneously firable with at least another
transition of the same set.
For the above example, sim~= { {t1}, {t2}, {t3}, {t4},
{t5}, {t6}, {t7}, {t2, t3}, {t2, t4}, {t2, t6}, {t4, t6}, {t2, t3, t4},
{t2, t3, t6}, {t2, t4, t6}, {t2, t3, t4, t6} }.

4) TMAX = {T∈sim~  : ∃ Ti∈sim~  such that T⊂Ti}; this
is the set containing the maximum elements of

sim~ . For the previous example, T MAX  = { {t1},

{t5},  {t7}, {t2, t3, t4, t6}}.

5) ∀Tm ∈ T MAX: Tm MAX*= {T ∈2 Tm  such that

∀ti, tk ∈ T : {ti, tk} ∈ sim }. Each element of

Tm MAX* is a set that contains either a single

Grafcet transition or a number of simultaneously
firable Grafcet transitions that are contained in Tm.

For the same example: T 1
MAX* ={{t1}}, T 2

MAX* =

{{t5}}, T 3
MAX* = { { t7}}, and T 4

MAX* = { {t2},



{t3}, {t4}, {t6}, {t2, t3}, {t2, t4}, {t2, t6}, {t4, t6}, {t2, t4, t6}
}.

     This preliminary analysis of Grafcet structure
allows the mapping function to limit the number of
TTM transitions corresponding to the internal
evolution of Grafcet to only those evolutions that
may potentially occur. For the above example, this
analysis results in identifying 13 possible evolutions

(a single evolution for each of: T 1
MAX* ,

T 2
MAX* and T 3

MAX* , and 9 evolutions for T 4
MAX* ).

If this analysis is not carried out, then the
synchronous and parallel nature of Grafcet would
imply the calculation of 27=128 TTM transitions to
cater for all evolution possibilities of Grafcet. This
economy in the number of calculated TTM
transitions also allows a substantial reduction in
proofs’ complexity (see the second paper).

4.2 Mapping function
The global TTM of the system under development
includes a TTM equivalent to Grafcet, TTMG = (VG ,
ℑG , ΘG), and a TTM representing the plant, TTMp
= (Vp, ℑp, Θp). These two concurrent TTMs
communicate by means of input and output TTM
transitions which are generated systematically. Input
transitions (given by the set ℑin) allow the Grafcet to
receive the values of input variables from the plant.
Output transitions (given by the set ℑout) transmit
Grafcet actions to the plant. Figure 4 gives a layout
of TTM transitions structure obtained by applying
the mapping function and the rules presented in the
following two sub-sections.

4.2.1   Grafcet to TTM mapping function
The function ‘ƒ: G → TTMG’ is defined by the
following mappings:
     - variables mapping: The set of variables of
TTMG is defined by VG = {V, X, Edge}, where:
• V and X have the same definition as in §4.1. Each

Xi ∈ X is a binary variable that is set to 0 when
the corresponding step is idle and to 1 when the
step is active.

• Edge is an integer variable. Each of the possible
values of Edge corresponds to the occurrence of a
rising or a falling edge of a distinct input variable;
the correspondence is defined by associating two
constants to each input variable as follows:

- ∀v∈Vin: define vre∈N+ and vfe∈N- such that
vre= -vfe

- ∀v, v’∈ Vin : if v≠v’ then vre≠v’re.

     The interpretation of the different values of
Edge is as follows:

• Edge=0, no input event has occurred since the last
evolution of Grafcet;

• Edge= vre, input event corresponding to the rising
edge of the variable v has occured;

• Edge= vfe, input event corresponding to the falling
edge of the variable v has occured.
      Only one value can be assigned to Edge at a
given instant because the reactivity of Grafcet and
the asynchronous nature of the controlled plant
imply that two input events cannot occur
simultaneously [8]. For the Grafcet of Fig. 1-a, the
values of Edge range between -4 and 4; the
correspondence between these values and the
edges of input-variables may be defined as
follows: are =1, afe = -1, bre =2, bfe = -2, cre =3, cfe = -3,
dre =4, dfe = -4.

- initial state mapping: The initial condition ΘG is
given by the following mappings:
1) ∀Xi ∈ X : Xi = 1 if Xi ∈ I , else Xi = 0; step

variables corresponding to the initial steps are set
to one and the others to zero.

2) ∀v∈Vout , ∀Xi ∈I : v=1 if v∈actioni, otherwise
v=0. Actions of initial steps are performed.

3) Edge=0; no input event occurs during
initialisation.

     For Grafcet of Fig. 1-a, the state of the
corresponding TTM after initialisation is given by:
X1=1, ∀i=2 to 8: Xi =0, ACT1=0, ACT2=0,
ACT3=0, ACT4=0, Edge=0.
     - transitions and actions mapping: Each
transition of TTMG represents a single possible
evolution of Grafcet and corresponds to an element

of Tm MAX* (defined in §4.1). Such transitions are

generated as follows :

∀Tm ∈ T MAX , ∀S ∈ Tm MAX* : generate the

transition T = ( eT  , hT , 0, 0) ∈ ℑG  , where:
• the bounds [0, 0] allow to guarantee the

synchronism of Grafcet evolution.
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where ϕ‘(t) corresponds to a rewriting of the
expression of the receptivity ϕ(t) in which each of
the rising edges ↑v is replaced by the logical test



(Edge=vre) and each of the falling edges ↓v is
replaced by the logical test (Edge=vfe). The
condition eT represents Grafcet situation that leads
to the firing of all the transitions of a set

S∈ Tm MAX* . This condition is true when all of

these transitions are firable (their previous steps
are active and the associated conditions are true)
provided that all the other transitions belonging to

the corresponding maximum element in T MAX

are disabled. The case in which one of these other
transitions is also enabled implies that another

superior set of Tm MAX*  is firable and hence the

evolution under consideration is disabled by virtue
of the second term of eT. Therefore, TTMG is
rendered deterministic since only one of its
transitions is enabled at a given situation and
corresponds to the simultaneous and immediate
firing (due to the zero time bounds) of all the
firable Grafcet transitions

• The transformation function hT is given by three
consecutive mappings:
1) ∀Xi ∈X :    
- Xi = 1, if ∃ t∈ S such as  Xi ∈ XFO(t),
- Xi = 0 , if ( ∃ t∈ S such as ( Xi ∈ XFO(t) ) ∧ ( ∃t'

∈ S such as (Xi ∈ XPR(t') ) )
2) ∀v∈Vout, ∀t ∈ S :
- v=1 if  ∃Xi ∈ XFO(t) such that v∈actioni,
- v=0 if ( (∃Xi∈XPR(t) such that v∈actioni) and

(∃Xj∈XFO(t) such that v∈actionj)) ,
- v is not modified , otherwise.
3) Edge = 0.

The first mapping represents the activation and
deactivation of Grafcet steps (according to rules 3
and 5 of Grafcet), whereas the second mapping sets
the actions of the activated (deactivated) Grafcet
steps to 1 (to 0). The fact that the internal evolutions
take zero time in the external time scale and that
delays are associated to the output communicating
transitions (Fig. 4) guarantees that the actions
updated during those evolutions will not directly
influence the plant; only the actions corresponding
to a stable situation will be effectively transmitted to
the plant. The third mapping resets the variable Edge
to reflect the fact that events can only be observed at

the instant when they occur and then they
immediately disappear.
     The first part of table 1 shows the TTM transition
set ℑG corresponding to the possible evolutions of
the Grafcet depicted in Fig. 1-a. In this table, a TTM
transition labelled Ttx corresponds to the firing of
Grafcet transition tx. A TTM transition labelled Ttxty

corresponds to the simultaneous firing of Grafcet
transitions tx and ty.

4.2.2   Plant and communicating transitions
The plant can be modelled using extended automata
which correspond to a graphical representation of
TTMp [13]. Other asynchronous models such as
Petri nets can also be used to model the plant since
they can be easily translated into TTM. The only
imposed constraint within the frame of our approach
is that the enabling intervals and the lower time
bounds of plant transitions should not be equal to
zero (Fig. 4), and that each input variable and action
of Grafcet has a corresponding image variable in
TTMp.
     For a given TTMp to interact with TTMG, the
following communicating transitions are
systematically generated:
- ∀V ∈Vout : create the transition TV = (true, [v :

V], 0, 1) ∈ ℑout , where v ∈Vp is the image
variable of V in the plant.

- ∀u ∈Vin : create transitions Tu0 , Tu1 ∈ ℑin , where:
Tu0 = (U=0∧u=1, [u:0, Edge:ufe ], 0, 1) and Tu1 =
(U=1∧u=0, [u:1, Edge:ure], 0, 1). The plant’s
variable U ∈Vp represents the image of input
variable u. Tu0 is dedicated to the reception of the
falling edge of u; it sets u to zero. In a similar way,
Tu1 sets u to 1 upon the occurrence of the rising
edge of u. These transitions also update the
variable Edge so as to indicate the occurrence of
the relevant edge.

     The second and third parts of table 1 give the
communicating input "ℑin" and output "ℑout" TTM
transitions, respectively, for the Grafcet of Fig. 1-a.
For a given system under development, a fourth part
must be added to this table to represent the
transitions of TTMp.

Transition
sets

label condition transformation l u

Tt1 X1∧Edge = 4 X1:0, X2:1, X6:1, ACT1:1, ACT2:1, ACT3:1, Edge:0 0 0
Tt2 X2∧(a∨(c∧d))∧ ¬(X2∧(¬a∧¬b∧c)∨

(X4∧(a∧c))∨(X7∧b))
X2:0, X3:1, ACT1:1, ACT2:0, Edge:0 0 0

Tt3 X2∧(¬a∧¬b∧c)∧¬(X2∧(a∨(c∧d))) X2:0, X4:1, ACT1:0, ACT2:0, Edge:0 0 0
Tt4 X4∧(a∧c)∧¬( X2∧(a∨(c∧d))∨(X7∧b)) X4:0, X5:1, ACT2:1, Edge:0 0 0
Tt5 X6∧(¬a∧¬b∧¬c) X6:0, X7:1, ACT3:0, ACT4:1, Edge:0 0 0

ℑℑG Tt6 X7∧b∧¬(X2∧(a∨(c∧d))∨(X4∧(a∧c))) X7:0, X8:1, ACT4:0, Edge:0 0 0



Tt7 X3∧X5∧X8∧Edge=-4 X1:1, X3:0, X5:0, X8:0, ACT1:0, ACT2:0, Edge:0 0 0
Tt2t3 X2∧(a∨(c∧d))∧X2∧(¬a∧¬b∧c) X2:0, X3:1, X4:1, ACT1:1, ACT2:0, Edge:0 0 0
Tt2t4 X2∧(a∨(c∧d))∧X4∧(a∧c)∧¬(X7∧b) X2:0, X3:1, X4:0, X5:1, ACT1:1, ACT2:1, Edge:0 0 0
Tt2t6 X2∧(a∨(c∧d))∧X7∧b∧¬ (X4∧(a∧c)) X2: 0, X3: 1, X7: 0, X8: 1, ACT1: 1, ACT2: 0, ACT4: 0, Edge:0 0 0
Tt4t6 X4∧(a∧c)∧X7∧b∧¬(X2∧(a∨(c∧d))) X4:0, X5:1, X7:0, X8:1, ACT2:1, ACT4:0, Edge:0 0 0
Tt2t4t6 X2∧(a∨(c∧d))∧X4∧(a∧c)∧X7∧b X2:0, X3:1, X4:0, X5:1, X7:0, X8:1, ACT1:1, ACT2:1, ACT4:0, Edge:0 0 0
Ta0 A=0∧a=1 a :0, Edge :-1 0 1
Ta1 A=1∧a=0 a :1, Edge : 1 0 1
Tb0 B=0∧b=1 b :0, Edge :-2 0 1
Tb1 B=1∧b=0 b :1 Edge : 2 0 1

ℑℑin Tc0 C=0∧c=1 c :0 Edge :-3 0 1

Tc1 C=1∧c=0 c :1 Edge : 3 0 1
Td0 D=0∧d=1 d :0 Edge :-4 0 1
Td1 D=1∧d=0 d :1 Edge : 4 0 1
TACT1 true act1 : ACT1 0 1

ℑℑout TACT2 true act2 : ACT2 0 1

TACT3 true act3 : ACT3 0 1
TACT4 true act4 : ACT4 0 1

Table 1 : TTM transitions corresponding to Grafcet of Fig. 1-a together with its inputs and outputs

5   Conclusion
Grafcet is a widely used model for the specification
and the implementation of sequential controllers.
This paper is the first in a series of two papers that
propose an integrated approach combining features
from Grafcet and the TTM/RTTL formal
framework. The objective is to allow users to
specify system controller through a user friendly
interface given by Grafcet and to provide rapid
feedback on system properties for candidate designs.
The approach presented in the paper is based on the
use of a set of rules for mapping Grafcet logical
model specifications into TTM. The mapping rules
allow to generate a Timed Transition Model that
brings together both the synchronous, reactive and
deterministic semantics of Grafcet, and the
asynchronous non-deterministic semantics of the
plant. Preliminary analysis of Grafcet structure and
receptivities enables the mapping function to limit
the number of generated TTM transitions. The
second paper will present a proof system that is
dedicated to the verification of TTM corresponding
to Grafcet controlled systems.

References:
[1] Ramadge, P.J. and W.M. Wonham, The control

of discrete-event systems, Proc. IEEE, Vol.77,
1989, pp. 81-97.

[2] Zaytoon, J. and G. Villermain Lecolier, Two
methods for the engineering of manufacturing
systems, Control Engineering Practice, Vol.5,
1997, pp. 185-198.

[3] David, R., Grafcet: A powerful tool for
specification of logic controllers, IEEE Trans
Control Systems Technology, Vol.3, 1995,

pp.253-268.
[4] IEC, Preparation of function charts for control

systems, International Electrotechnical
Commission: Publication 848, 1988.

[5] Arzén, K.E., Grafcet for intelligent supervisory
control applications, Automatica, Vol.30, 1994,
pp.1513-1525.

[6] Lhoste, P., J.M. Faure, J.J. Lesage and J.
Zaytoon, Comportement temporel du Grafcet,
European Journal of Automation, Vol.31, 1997,
pp. 675-711 (in French).

[7] Zaytoon, J., J.J. Lesage, L. Marcé, J.M. Faure
and P. Lhoste, Vérification et validation du
Grafcet, European Journal of Automation,
Vol.31, 1997, pp. 713-740 (in French).

[8] UTE, Function charts GRAFCET - extension of
basic principles. Union technique d'Electricité:
Publication UTE C03-191, 1993.

[9] Frachet, J.P. and G. Colombari, Elements for a
semantics of the time in Grafcet and dynamic
systems using non-standard analysis, Automatic
Control Production Systems A.P.I.I., Vol.27,
1993, pp. 107-125.

[10] Lhoste, P., H. Panetto and M. Roesch, Grafcet:
from syntax to semantics, Automatic Control
Production Systems A.P.I.I., Vol.27, 1993, pp.
127-141.

[11] Ostroff, J.S. and W.M. Wonham, A framework
for real-time discrete event control, IEEE Trans
Automatic Control, Vol.35, 1990, pp. 386-397.

[12] Manna, Z. and A. Pnueli, The temporal logic of
reactive and concurrent systems, Springer,
Berlin, 1992.

[13] Ostroff, J.S., Temporal logic for real time
systems, Wiley, London, 1989.


