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Abstract: Target tracking is an attempt to estimate parameters that are changing with time.
Traditionally, multi-target tracking systems utilize algorithms like Kalman filter and its derivatives
Probabilistic Data Association Filter (PDAF) for a single target and Joint Probabilistic Data
Association Filter (JPDAF) for multitarget as deeply investigated by by Bar-Shalom and
Foortmann [3]. In this paper one considers a possibilistic re-formulation of JPDAF in the setting of
possibility theory [11]. The proposed approach is based on both the manipulation of fuzzy
quantities and the similarity calculations, which allows a re-formulation of joint association
probabilities. A simulation example will be shown.

Introduction:
Target tracking in cluttered environment is a
difficult problem because it referees to two
distinct level of uncertainty. The first one is
inherent to the measurement acquisition
which is modelled in the probabilistic setting
as a continuous random noise added to the
current estimate, and conveniently
propagated through the mathematical model
of the considered system. The second one
refers to the origin of measurement. In other
words, given the current measurement, we
can not assert that it is originated from the
considered target or another target, or it is
just a false alarm, i.e., clutter. This second
level may lead to a completely wrong result.
The earliest work in this topic uses a nearest-
neighbour approach. That is, if there is more
one contact-to-track association for a given
update, the contact nearest the predicted
measurement is used. This, of course, makes
a "hard" decision and does not account for
possibly incorrect decision. Bar-Shalom,
among others [2, 3] have deeply investigated
a family of algorithms where is ascribed a
probability value to each association target-
measurement when several measurements fail
in the validation gate. This includes PDAF
for single target tracking, JPDAF for

multiple targets. The latter acts as a natural
extension of the former where all the joint
events are considered. The process was
simplified by considering just the feasible
joints events, those for which there is at most
one hit per target and no two tracks
associated with the same hit. These
algorithms, among others have successfully
demonstrated their feasibility in high
cluttered situations including air traffic
management and military applications [3].
In contrast, even if fuzzy logic [4,11]has
demonstrated very successful application in
control and engineering designs, its use in
tracking problems is still quite limited, and
only few works may be founded in this
topics.  Horton and Jones [10] have proposed
to use fuzzy logic extended rule set for multi-
target tracking. The approach described here
uses a fruitful combination of  JPDAF and
possibility theory.

Joint Probabilistic Data Association
A detailed derivation of JPDA filter can be
found in [3, 8] and is just briefly described
here. Formally, assumes a linear system with
gaussian and zero mean random noise as

x(k|k) = A(k). x(k|k-1)+n1(k),   (1)
y(k|k) = C(k). x(k|k-1)+n2(k).   (2)



The update equation of Kalman filter
becomes
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And,
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Where )k(t
iβ is the probability that the i-th hit

comes from target t in track (the superscript t
stands for a target), )k(W t is the Kalman

gain and zi is the i-th hit at time k.
The update covariance matrix is given by
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)k(t
0β corresponds to the probability that

none of the measurements is originated from
the target t.

The probability calculations of the JPDA
filter is first done by determining the joint
probability of all feasible joint events. This
supposes that all the considered hits fail into
a validated gate up to some statistical
threshold ###. This means that the validated
measurement z fails in gate, which is set up
based on the predicted measurement from the
target )1k|k(ẑ − and the associated

covariance S(k):
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A feasible joint event is a non-conflicting
association of current targets with hits. This
assumes that: i) no two tracks are associated
with the same hits; ii) there is at most one hit
per target; iii) hits which are not associated
with hits are supposed clutter. Additional
requirements pertains to JPDA construction

may be summarized as:  i) there exists some
detection probability PD less than one that
target will be detected; ii) the measurement-
to-target association probabilities are
computed jointly across the targets; ii) the
association probabilities are computed only
for the latest set of measurements; iii) The
state of the targets conditioned on the past
observations are assumed independent; iv)
the past is summarized by an approximate
gaussian sufficient statistic -specified by
state estimate and covariance for each target-
.
Suppose that ###(k) corresponds to the
feasible joint event, Zk is the history of hits
up until time k, i.e.,         Zk  = {Z(1),
Z(2),…,Z(k)}. The probability of an event
given its hits' history is

Let N[###i(k)] be the normal distribution
with zero mean and covariance equals to a
covariance matrix of ###i (k), ### is the
number of clutter points, iτ is a binary hit

indicator, which takes a value one if the i-th
hit is assigned to a track and zero otherwise.
Let tδ  be a target indicator indicating
whether there is a hit associated with a target
t ( tδ =1), or not ( tδ =0). Let be the volume of
the extension gate. Then, the probability of
the joint event (see [3,8] for a full proof), is
given by
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where Nt is the number of targets, t
DP is the

probability of detection of target t.
Thus, if ###(###(k)) indicates whether track t
is associated with hit j in ###(k).
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A had hoc JPDAF formulation to get very
easily t

jβ 's values was pointed out by

Fitzgerald [7]as
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 B is a constant, which depends on clutter
density.

Possibilistic evaluation of joint
probabilities
The basis idea behind this evaluation is
related to the qualification of this probability.
Namely, the joint evaluation t

jβ  can be

viewed as a degree of pattern matching
between measurement j and target t, or a
confidence attributed to the association
(measurement j , target t).

First, let us recall that a possibility
distribution xπ may be viewed as the

membership function restricting the fuzzy set
of possible values of a variable x taking its
values in the universe of discourse X
(referential set). That is, xπ (s)=1 means that

the value s may completely be a candidate
estimate for the variable x, whereas xπ (s)=0

means that the assertion "x=s" is completely
impossible. This corresponds in some manner
to model the imprecision pertaining the value
ascribed to a variable x. The extent of s
values for which xπ (s) takes non zero

element represents the support of the
distribution. The extent for which xπ (s)=1

represents the core of the possibility
distribution. Usually, for the simplicity
purpose, the trapezoidal shape was widely
used. This defines two levels of imprecision:
the support determines extent to which, it is
impossible that values outside it are
considered in the sequel, while the core
defines the region where the most likely
values should lie. Possibility distribution is
related to ordinary set by the notion of α-cut
set determining the set of acceptable values
up to degree α. That is,

     { }α≥π∈=π α )s( X,s ,s)( xx

(see for instance [4] for more details about
possibility theory and related notions).
Now, in order to handle the tracking problem
in the possibility framework, one may notice
that the approach described here is not
completely separated with standard JPDAF
but considers the possibility approach only in
the heavy step of JPDAF, i.e., the calculation
of the joint probabilities. Thus, a
straightforward combination of both
probabilistic and possibilistic framework is
considered. To this end, one has first to get
possibility distributions. For this purpose,
considering the probability of measurement
according to a given target N kjν ( ) , one

constructs a possibility distribution using a
probability -possibility distribution. The
continuous transformation pointed out by
Dubois,  Prade and Sandri [6] was used.
Let p be a continuous unimodal probability
distribution, such that p is non-decreasing on
[a,xo] and non-increasing on [xo,b]. Let f be
a function from [a,xo] onto [xo,b] such that
f(x)=max{y, p(y) ≥ p(x)}. The possibility
distribution π, which minimizes the integral
of π over [a,b] and dominates p is defined as
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In the particular case of normal distribution,
a rational approximation of bounded interval
[a,b] is x xx x− +3 3σ σ,   where x x and σ

denotes respectively the mean and standard
deviation of the gaussian. Also, it is easy to
check that x-x2=f(x) and xxo = . Therefore,
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For x=xo, it is clear that π(xo)=1.
Once the distributions pertaining to each pair
measurement-target were obtained, we are
able to perform a similarity like operation.
Many researchers [1, 12] proposed a
similarity measure to quantify at what extent
we can say that a possibility distribution π1
is equal to π2 with regard to some chosen
criterion.



In order to take into account the overlapping
between distributions in one hand and the
separations of distribution centers in other
one, one proposes to use a similarity index
introduced in [12].
Let π1 and π2 be two possibility
distributions, [a1i,b1i], [a2i,b2i] be two
intervals corresponding to αi level. Let
β β1 2,  be the narrowest interval

encountering π1 and π2.
 Let ∆( )αi  be the normalized distance
between the two intervals of ###i-cut defined
as

∆( )αi = 
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The similarity measure SM is then defined as
follows:
 SM = χ.∆1 +(1-χ).∆*.
Where
 0 ≤  χ  ≤ 1
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### is a parameter modeling the importance
given to the overlap relative to that of the
separation between distribution centers.
∆1 is a normalized summation of the
dissemblance of the two distributions at each 
α-cut level. ∆*  is a normalized separation of
the centers of the two distributions.
The choice of the parameter χ is related to
the probabilistic threshold γ in (7). This
means that the similarity index may be
viewed as selection tool to obtain a set of
feasible matrices as JPDAF does. The next
step consists to perform Fitzgerald's
formulation given in (12) (with simplification
B=0). For this end, one uses a parametrized
representation of possibility distribution in
terms of L-R representation (see [4]). That
is, normal distribution leads to point valued
possibility after the use of transformation
(14) (which is quite pre-expected) since the
transformation preserves all the symmetries
ascribed to a probability distribution, and the

obtained shape is quite close to the initial
one. Therefore, any possibility distribution
may be represented as LRx ),,m( βα=π  such

that
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Where in our case L=R, and provided from
(14). One also uses approximated formulas
for division of LR representations. That is,
for

LR222xLR111x ),,m(  and  ),,m(
21

βα=πβα=π

LR2
2

2112
2

2

2121

2

1
xx

LR212121xx

LR212121xx

)
m

m.m.
,

m

m..m
,

m

m
(

),,mm(

),,mm(

21

21

21

β+αα+β
≈π÷π

α−αβ−α−=π−π

β+βα+α+=π+π

Notice that the performance of the previous
formulation is quite fast and leads at each
time increment k to a possibilistic quantity
pertaining to each joint probability t

jβ . Thus

to generate a single value, a defuzzification
procedure is required. Moreover, one may
also go further such that t

jβ  is kept in its

possibilistic form and perform the relation
(3) and (5) using L-R representation. This is
not considered in this paper.  Finally, the
general scheme is described in fig. 1
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Figure 1. General Scheme

Simulations setting
The simulations were done for two and three
targets modelled as constant velocity objects
in a plane with process noise that can



account for slight changes in the velocities.
The two trajectories cross after few seconds.
The state vector consists in position and
velocity components [ ] ' yy    x  xX &&= .

The system corresponds to the constant
velocity moving and the measurement to the
noised true target positions (x,y) with
Rii=0.0225 and Qii= 4.10-4, and then adding
clutter measurements (supposed Poisson
distributed with λ=1). Initial estimate of the
state was obtained by two points differencing
of the observations with a corresponding
covariance matrix [3]. The state estimations
are pictured with circles. The true
measurements and true trajectories are also
pictured. Notice that the obtained tracking is
quite acceptable. Moreover, this result is
very close to those obtained by Chang and
Bar-Shalom using JPDAF with possibly
unresolved measurements.

Figure 2. Example of target crossing tracking

In figure 3, one considers errors behaviour
over a time for both targets using standard
JPDAF and the new one after running several
Monte Carlos simulations at each increment
time. The result shows that outcomes
provided by both algorithms are quite close
to each other.

Figure 3. Error behaviour over time for both target.
1stands for possibility-based approach and 2 for

JPDAF based approach.

Conclusion
In this paper, we have focused on a fruitely
combination of probabilistic and possibilistic
settings in order to perform a tracking task in
the light of Joint Probabilistic Data
Association Filter. Our approach considers
the modification of joint probabilities
evaluations by considering the similarity
between possibility distributions obtained via
probability transformation for each pair
target-measurement. Then feasible events are
obtained by means of similarity
performances. Next, the joint probabilities
are evaluated considering Fitzgerald's had
hoc formulation, and finally come back to the
standard JPDAF formulation. An example of
crossing targets was proposed.
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