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Abstract: The purpose of our paper is to develop a (symbolic) computational algorithm for the optimisation f a
family of discrete events dynamic systems equipped with a multiobjective performance index. A discrete event
version of the Pontryagin’s Minimum Principle supports the algorithm. Unfortunately the miltiplier (dual
variable) can depends on the variations of the optimal control, hence, the solution of the Pontryagin Minimum
Principle requires treatments of a class a class varaitional inequalities, increasing the computational
complexity. For this reason a special attention is paid to the reduction of the complexity.
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1 Introduction
Problems of optimisation, for discrete event process
over discrete state space, arise very often in parallel
computing, supervisor, and control, integration of
industrial control systems, certain human systems, etc.
It is well know that the Pontryagin’s
Minimum Principle for discrete time process
has certain geometric limitation. The
Pontryagin’s Minimum Principle is false, in
general, without additional condition of
convexity. Considering this fact, it is very
surprising that a Pontryagin’s Minimum
Principle can be developed for a discrete
event dynamical systems without any
geometric structure. However, we have pay
for this scheme in the greater complexity of
the dual process, which will depend on both
the optimal process and its variation. Hence
instead of the pointwise optimisation of the
Hamiltonian, a variational inequalities must
be solve at each time. Variational
inequalities are minimised by simbolic
optimisation, which is a new with respect to
the “classical “ optimisation techniques of
[2], [4],  and [8].
Hybrid optimisation of plant performance, with respect
to supervisory control can be reduced into discrete
event optimisation.

Computer aided problem solving, tutoring, intelligent
dialog can based in optimisation over the associated
formal language as possible application, see [6].

2 A class of discrete event dynamical
system
Let Ω  be a finite alphabet of letters, events, etc.

*Ω denotes the set of all finite words, strings, including
the empty string, θ . The concatenation of strings is an
associative binary operation with the neutral element

θ . Hence, *Ω  is a monoide. A subset *L Ω⊂
containing the empty string θ  is a language.
2.1 Discrete dynamics induced by a language
( Ω⊂L )

Let Lu ∈ . A string *v Ω∈  is active at u if Luv ∈ .
Let us denote the subset of active strings at u, by L(u).
Analogously, Ω∈w  is an active event at Lu ∈ , if the
concatenation Luw ∈ . We notice that the letter w
defines a word of one letter, hence uw is well defined.

Ω⊂Ω )u(  is the subset of all active letters. The local

dynamics is a partial
mapping LLx:f →Ω , uw)w,u(f = , for all pair

(u,w) which satisfies the relation )u(w Ω∈ . Suppose

that u Luu u 1T10 ∈= −L , Ω∈−1T10 u,...,u,u . The

words ,u...uux 1i10i −=  i=0,1,...T, are all prefixes of

u. Suppose that  θ=0x , Lux...x T1 ∈= . Then u can

be obtained by the difference equation
θ==+ 0ii1i  x),u,x(fx .



Hence, we will suppose that all prefixes of
all elements of the language L, also belong to
L. In this case we say that L is prefix closed.
If L is prefix closed then all words of L can
be obtained by a difference equation in terms
of the local dynamics f. In this case

)v),v),...,v),v,u(f(f(...f(f)v,u(F 1T2T10
**

−−= (1),

defines a global dynamics, where 1T10 v...vvv −= .

Consider a family 1T10 ,...,, −ΩΩΩ  of finite alphabets and

the respective state spaces T10 X,...,X,X . A family of

partially defined mappings gives the local dynamics in
this case

1iiii XxX:f +→Ω , i=0,1,...,T-1.         (2)

iu Ω∈  is an active event, at the state iXx ∈ , if the pair

(x, u) belongs to the domain of fi.
Let the subset of all active events be denoted
by )x(iΩ , at all iXx ∈ , i=0,1, ...,T-1.

Let iX∈ξ  Then: jj1T1ii u ,u...uuu Ω∈= −+    (3), is an

admissible string at ξ , if )(u ii ξΩ∈ , ξ=ix  and if for

a j   xij ≥  is defined by the difference equation

, x),u,x(fx ijjj1j ξ==+     (4)

then )x(u jjj Ω∈  and xj+1 can also be computed by

the difference equation (4). The string T1ii  x... x x +  of

states is the trajectory, corresponding to the
string 1T1ii u...uuu −+= , which is called control. The

pair (x, u) is a discrete process.

2.2 Discrete dynamical system induced by
language.
Consider a language *L Ω⊂ . Suppose that a function

YL : →ϕ is given. Lv,u ∈  are Nerode equivalent if

L(u)=L(v), and L(v)=L(u) w),vw()uw( ∈ϕ=ϕ .

The classes of equivalence are the states. Over the
obtained state space a (local) dynamics and an output
mapping are induced. The obtained dynamical system
is a realisation of the input-output mapping ϕ .

Now, we detail the construction of a graded realisation
of the mapping ϕ . The length of a string is the number

of events in it: u Ω∈∈= − i1T10 u ,Lu...uu , then the

length of u, which is denoted by u , is T. θ = 0 .

Lv,u ∈  are equivalent if vu = , and u y v are

Nerode equivalent. Let us denote the class of u by [ ]u ,

and the set of all classes of elements of length i, by
iX .

Of course, [ ]θ=0x , consists of the unique string θ,

and { }00 xX = . The subset of the active strings at a

state [ ]u= x,Xx i∈  can be defined by L(x)=L(u).

Indeed, it does not depend on the representation xu ∈ .
Analogously, the set of active events at 

iXx ∈ , is the

subset )u()x( Ω=Ω , if [ ]u= x .

The local dynamics 1iii XxX:f +→Ω  is the partial

mapping [ ] [ ]vu)u,v(f)u,x(f ii == , defined over the

subset of pairs (x,u), )x(u Ω∈ .

The length vu =i+1, hence fi maps into 1iX + . If Ω  is

a finite alphabet, then the graded dynamic system can
be infinite, however all state spaces Xi are finite.  The
output mappings YX : ii →Φ , are defined by

[ ] (u)=)u(= (x) ii φΦΦ , which does not depend on

the representation [ ]ux = .

3 Optimisation over discrete dynamical
system
Consider a linear full ordering ≤ in Ζl. The ≤ is linear if
the subset P{x≥0} of the nonnegative elements is a
semigroup, with respect to the +, and the simplification
property holds. Let us consider a graded discrete
dynamical system 1iiii XxX:f +→Ω , with

l
TT X: Ζ→Φ , multiobjective criteria.

Now, we define the problem of optimisation. We say
that the admissible process ( )x u* *, , ***

0
*

1T1
u...uuu

−
= ,

)u,x(fx ***

ii1i
=

+
, i

*
0 Xx ∈ξ= , is optimal (minimal) if

for all admissible processes (x,u), uj = , the

inequalities )x()x( jji
*
jji ++ Φ≤Φ  hold if Tj ≤ and

)x()x( TTi
*

Ti ++ Φ≤Φ if Tj > .

Of course, we can optimise among the processes of
length T. Then, the optimality means that

)x()x( TT
*
TT Φ≤Φ .

Now, suppose that we also have the function
l

iii xX:g Ζ→Ω . Then the objective function can be

defined by

)u,x(g)x()u,x(J ii

1T

0i
iTT ∑

−

=
+Φ= .

The admissible process )u,x( **  is optimal if for all

admissible processes (x,u), )u,x(J)u,x(J ** ≤ .

It is well know that these two problems are equivalent.
The virtually more general second problem can be
transformed in to the first one.



3.1 Polynomial description of discrete
dynamical systems
Our hypothesis is that the alphabets and the
corresponding state spaces are finite. In this case all
functions can be considered polynomials. For this, all
sets of cardinality T can be identified by the set {0,1,
...,T-1}=ZT

 .
Hence, if the cardinality of iX , and iΩ  is in , and im
respectively, then the dynamics is a partial mapping.
Using the Lagrange interpolation at all points of the
domain of if , a polynomial representation for if  is

obtained. The polynomial is of degree at most 1n i −
in the indeterminate x, and of degree at most 1m i −  in

the second indeterminate.
The formulation of the adjoint equation and the poof of
the minimum principle involve the derivatives and
gradients of the functions. However, we can not use
these concepts. Replacing these classical
tools

*
1T1T

*
1j1jj

*
1j1j

*
00 uu,...,uu,vu,uu,,uu −−++−− ===== L ,

we introduce the concept of the Taylor residual. In the
continuous case the Taylor residual of the smooth
function f is defined by

∫ −+′=−=− )xy( dt )tyx(f)xy)(y;x(Rf)x(f)y(f .

For the monomial m(x,u)= lk ux , The Taylor residual is
defined by

)uv(ux)uv()xy(
j

1l

i

k

1ji
l

)xy(ux)uv()xy(
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However the residuals are not unique, for example:

)uv(vux                   

)xy(vxyuxvy
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also holds. For our objective the equality
)xy)(y;x(Rf)x(f)y(f −=−  has only importance,

hence









= ∑∑

−

=

−−
−

=

−−
1l

0i

1ilik
1k

0i

l1iki vux,vxy)v,y;u,x(Rm ,

plays the role of the gradient of m.

For a vector function, the Taylor residual is analogous
to the Jacobian. The partial residuals can also be
defined, analogously, to the partial derivation.
3.2 The adjoint equation
Now, consider two process, )u,x( ** , (x,u) of the

some length T. Then, the adjoint equation is

)x,x(Rp  ),y;u,x(fRpp T
*
TTTii

*
iix1ii Φ== + ,

where the trajectory T10 p...pp  of the adjoint equation

belong to ijlxnR + .
In terms of the adjoint trajectory, the value of the
residual of the multiobjective function at the final time
is given for

 )u,x(fp)v,x(fp)x()x( *
j

*
jj

1T

0j
1jj

*
jj

1T

0j
1j

*
TTT T

∑∑
−

=
+

−

=
+ −=Φ−Φ .

Now, fix an j and consider two admissible processes

)u,x( **  and (x,v), such that ,vu 0
*
0 =  ,...,vu 1

*
1 =

,vu 1j
*

1j −− =  ,vu*
j =  ,...,vu 1j

*
1j ++ =  1T

*
1T vu −− = . Then,

the residual of the multiobjective function at the final
time is

)u,x(fp)v,x(fp)x()x( *
j

*
jj1jj

*
jj1j

*
TTT T ++ −=Φ−Φ .

3.3 The Extension of Pontryagin’s Minimum
Principle.
Define the Hamiltonian function by

)u,x(pf)p,u,x,j(H **
j

** = .

Suppose that ** u,x  is an optimal process among the

admissible processes of length T. If ,uu 0
*
0 =

,...,uu 1
*
1 =  ,vu,uu *

j1j
*

1j == −−

1T
*

1T1j
*

1j uu ,...,uu −−++ == , v,jx  is the corresponding

trajectory, v,j
T

v,j
0

v,j p...pp = , is the solution of the adjoint

equation corresponding to the pair of processes

)u,x( ** , (x,u). Then

)p,v,x,j(H)p,u,x,j(H v,j
1j

*
j

v,j
1j

*
j

*
j ++ ≤

We notice that the difference equation and the adjoint
equation can be rewritten in terms of the Hamiltonian:

).x,p,u,x,j(HRp

),p,u,x,j(HRx
v,iv,i

1j
*
j

*
jx

v,i
j

v,i
1j

*
j

*
jp

*
1j

+

++

=

=

4 Symbolic algorithm for solution PMPE
Now, we show a symbolic algorithm in order to solve
the integer Pontryagin’s Minimum Principle. At each
step we need two routine.
1. The first reduces the degree of the polynomial, via
the Langrage interpolation.



2. The second routine is the kernel of the algorithm. It
consists in the optimisation of  variational inequality, of
the form:

[ ]0 ≤  p( , , ) f( , ) - f( , )ξ ξ ξu u u u* * ,

where ξ ∈ X  is a given state. We say that )(u* ξΩ∈
is a solution of the inequality, if it holds for all

)(u ξΩ∈ . In general, suppose that Ψ( )ξ is a solution

of the variational inequality; then we can define the
mapping UX: →Ψ . Of course, Ψ  can be
multifunction.

4.1 Symbolic algorithm
Our purpose is to solve the Pontryagin’s Minimum
Principle in terms of the solutions iΨ  of the variational

inequalities. Then, we also show an algorithm to
compute iΨ
Steps 1: i) Let us compute

))1T(u),1T(x(f)T(x *** −−= .  ii) u is replaced by

v in the previous expression for t=T-1, that is,
).v),1T(x(f)T(x *v,1T −=−

 iii) Compute the adjoint equation:

)).v),1T(x(f)),1T(u),1T(x(f(R        

))T(x),T(x(R)T(p
***

v,1T*v,1T

−−−Φ=

=Φ= −−

iv) The Hamiltonian
=1))]-(Tu1),-(Tf(x-v)1),-(TT)[f(x(p0 ***v1,-T≤

]
[ ]1))-(Tu1),-(Tf(x-v)1),-(Tf(x               

*v)1),-(Tf(x1)),-(Tu1),-(Tf(x[R      
***

***Φ=

v) Let us apply Routine 1 to reduce degree of the
polynomial
vi) Applying Routine 2, ),1T( ξ−Ψ=Ψ , is obtained

such that ))1T(x,1T()1-T(u ** −−Ψ∈  satisfies

the above inequality.
M
Steps T-i: Suppose that for i, ),1i()...,1T( ξ+Ψξ−Ψ
are constructed. Then, by induction it can be proven
that:  (1) )T  (x),...,2i(x),1i(x *** ++ ,

        (2) )T(x),...,2i(x),1i(x v,iv,iv,i ++ ,

(1) are polynomials of )i(x *  and )i(u *  and  (2) are

polynomials of )i(x *  and )i(u *  and  v. Therefore

)T(p),...,2i(p),1i(p v,iv,iv,i ++  are also polynomials

of  )i(x *  and )i(u *  and  v. Apply routine 1, in order

to reduce the degree of the polynomials. Let us apply
routine 2, a (possible multiobjective) function

),i( ξΨ=Ψ  is obtained, such that

))i(x,i()i(u ** Ψ∈  satisfies the above inequality.

Hence
[ ]

[ ](i))u(i),f(x-v)(i),f(x)v(i),u(i),x(p      

(i))u(i),f(x-v)(i),f(x)1i(p0
*****

***vi, =+≤

Applying routine 1, a polynomial function
),i( ξΨ=Ψ  is obtained, such that )).i(x(i,)i(u ** Ψ∈

The construction of the optimal processes in term of the
functions ),1T(),...,,,1(),,0( ξ−ΨξΨξΨ is easy:

M

M

)),1+i(x,1()1+i(u  ,))i(u),i(f(x)1+i(x

)),1(x,1()1(u  ,))0(u),0(f(x)1(x

),,0()0(u  ,)0(x

*****

*****

**

Ψ==

Ψ==

ξΨ=ξ=

Therefore, the optimal control and optimal trajectory
are obtained, for each instant of time. The construction
shows above can be considered as the generalisation of
the Riccati equation for discrete process.

5 Optimisation based on the solution of
Variational Inequalities
In the previous session a symbolic algorithm was
shown to obtain optimal controls. The symbolic
algorithm was based in two routines. The first routine
reduces the degree of the polynomials, obtained from
the Hamiltonian function (PMPE). The second routine
is an algorithm that gives the solution to the Pontryagin
Minimum Principle in terms of the function Ψ . In [1],
we have designed a tool in Mathematica in where the
VI is calculated for each instant of time. In this session
is given an algorithm in order to compute the solution
to the set of VI.

5.1 The min-max problem



The set of VI, in principle, can be converted in a min-
max problem. Then, optimisation is achieved by a two
phases method. In the first phase a minimum is
calculated. In the second phase a maximum is
calculated and if the maximum is less than zero, the VI
has solution(s), that is, our algorithm result will also
give up a criterion for the existence of the solution of
the min-max problem.
The principal idea of the optimisation will be presented
for a Boolean function f, defined over the set {-1,1}.
Then, defining a modified sign function by





≥
≤−

=
0,  tif 1

0  tif 1
)t(sign

))1(f)1(f(signu* −−∈  are the points, where f reaches
its minimum. We remark, that sign(0)={-1,1}.
Now, let us suppose that the cardinality of the domain

D of f is 
1k2 +
. Then, the bijection between {0,1,...,

1k2 +
-1} and the set of the k+1-vectors

}1,1{)u,...,u,u( k10 −∈ , is defined by

 ( ))u1(2...)u1(2)u1(2/1 k
k

10 −++−+− .
Hence, the function f can be considered as a function of

k+1 variable over 
1k}1,1{ +−  :

)u,...,u,u(f)u,...,u,u(f)u,...,u,u( k100k10k10 =→

1.a) Fixed 1k0 u,...,u − , the minimum of the function
)u,u,...,u(fu k1k0k −→ can be expressed by the

multifuction:
uk*(u0,u1,...,uk-1)=sign[f0(u0,u1,...,uk-1,-1) - f0(u0,u1,
...,uk-1,1)].
In fact, if
f0(u0,u1,...,uk-1,-1) = f0(u0,u1, ...,uk-1,1), then
uk*(u0,u1,...,uk-1)={-1,1} for all values of u0,u1, ...,uk-1

( 0f =constant).
1.b) Let us define
f1(u0,u1,...,uk-1)=f0(u0,u1,...,uk-1, uk*(u0,u1,...,uk-1)).

2) The general construction. Let us suppose, that the

ith function ℜ→− −+ 1ik
i }1,1{:f  is defined. Then, for

fixed (u0,u1, ...,uk-1) 
ik}1,1{ −−∈ , let us consider the

function )u,u,...,u(fu ik1ik0iik −−−− → . That achieves its
minimum at uk-i*(u0,...,uk-i-1)= sign[fi(u0,...,uk-i-1,-1)-
fi(u0,...,uk-i-1,1)].
Then, we can define the (multi-)function fi+1(u0,...,uk-i-

1)=fi+1(u0,...,uk-i-1, uki*(u0,...,uk-i-1)).
The algorithm is defined if:

1. i=k, and )u(fu 0k0 → achieves its minimum at
u0*∈sign[fk(-1)-fk(1)].
2. i<k, fi(u0,u1,...,uk-i-1,-1) = f0(u0,u1,..., uk-i-1,1). Then,

for all 
1ik

k10 }1,1{)u,...,u,u( +−−∈  fi is constant and at
all points is minimal.
u0*∈sign[fk(-1)-fk(1)] ⊂ {-1,1}

2
01k01k

*
1

*
0010

*
1

*
0

}1,1{))}1,u(f)1,u(f(signu             

,uu);u,u{()u,u(

−⊂−−∈
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1ik10i1ik10i
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1ik
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))}1,u,,u,u(f)1,u,,u,u(f(signu

),u,,u,u()u,,u,u(

);u,,u,u{()u,,u,u(
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−−−−
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∈
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LL
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The set of all minimal solution is
1k*

ik
*
1

*
0 }1,1{)u,,u,u( +

− −⊂L  defined recursively.

At the first step the VI which define 1T−Ψ , has the form
p(v, v) ≥ p(u*, v) (1).
The other VI has the form
 p(u*,v, v) ≥ p(u*, u*, v) (2).
Both inequalities can be solved by using the given
optimisation procedure:
(i) Let us fix u*. Then, consider the function

)v,u(p)v,v(pv *−→ , and compute its minimum as
the function of u*:

)u(P))v,u(p)v,v(p(min **

v
=−

If there exists u* such that )u(P0 *≤ , then u* is the
solution of the VI. However, all solutions of the VI are

those u*, which satisfy the inequality )u(P0 *≤ .
(ii) The solution of (2) can be obtained analogously.
Let us fix u* and consider the function

)v,u,u(p)v,v,u(pv *** −→  then
)u(P))v,u,u(p)v,v,u(p(min ****

v
=−

, u* is solution

of (2) if only if )u(P0 *≤ .

We notice that, if 
0)u(Pmax *

u*
<

, then the VI have no
solutions.
2. The direct implementation of that algorithm can be
result overflow of the memory for relative small
problem.
6 Reduction of the complexity

*u



In this section a computational implementation will
show, after a carefull analysis of the symbolic
algorithm. The computation will be realised in two
states: (i) reduction of the complexity by manipulation
of the polynomials in question, (ii) using explicit
symbolic expressions.
6.1 Reduction of the complexity by manipulation
of polynomials.

Let us consider a generic monomial 
k10

k10 uuu ααα L  of

the polynomial )u,,u(p k0 L . The domain of the
polynomial function defined by the polynomial

)u,,u(p k0 L  is 
1k}1,1{ +− , therefore, for all vectors

1k}1,1{u +−∈ ,
k10k10

k10k10 uuuuuu αααααα = LL , where
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even     is  if ,0
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The general form of the polynomials of 2
indeterminates, after the described reduction can be
written in

00101010101110 auauauua)u,u(g +++= .

Let us consider the subset 
}k,,1,0{}i,,i{i l1 LL ⊂=

− ,

which is naturally ordered l21 iii <<< L . Then, there
exits a natural bijection of the set of all subsets

}k,,1,0{i L⊂
−  into the set of all binary numbers of
k+1 digits, by

1k1i1i1i1                              

)i(B00100100100i

l21 ++++
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=↔ LLLL
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can be rewritten by
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6.2 The algorithm

Let )u,...,u,u(g n101n+  be a polynomial. Then,
[ ])0,u,...,u(g)1,u,...,u(gSignu 1n01n1n01n

*
n −+−+ −−= .

For }k,...,1,0{i ∈ ,

we will define new polynomial, )u,...,u,u(g ik201ik −+− ,

with 
ik2 −
 coefficient from the lineal relationships

following:
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Evaluate in domain, we have:
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Rewriting, we have















 −−−−

=























−

+−+−

+−+−

−−−−

−−−−

))1,...,1(u,1,...,1(g

))1,...,1(u,1,...,1(g

a

a

AA

AA

*
1ik1ik

*
1ik1ik

0...0b

1...1b

1ik1ik

1ik1ik

M

M

where 







−
=

11

11
A1

.
Then
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7 Example
Let us f(u) a polynomial function over the domain

,5,6,7}{0,1,2,3,4D = . The transformed domain D

could be represented by }1,1{u,u,u 321 −=∈U  such
that:
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},1,1,1{3 },1,1,1{2 },1,1,1{1 },1,1,1{0

≈−≈−≈−−≈
−≈−−≈−−≈−−−≈

The matrix of the linear system equation is:

































=































=





























































−−
−−

−−

−−
−−

−−

−−
−−

−−

−−−−
−−
−−
−−

g(1,1,1)

g(1,1,-1)

g(1,-1,1)

g(1,-1,-1)
g(-1,1,1)

g(-1,1,-1)

g(-1,-1,1)

)g(-1,-1,-1

f(7)

f(6)

f(5)

f(4)
f(3)

f(2)

f(1)

f(0)

a

a

a

a
a

a

a

a

1111

1111

1111

1111

1111

1111

1111

1111
1111

1111

1111

1111

1111

1111

1111

1111

000

001

010

011

100

101

110

111

3
22

22 A
AA

AA
=







−

. Then, the polynomial g(u)  is
given for:
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The running of algorithm in Mathematica produce the
following result.
Polynomial :a[0] + a[4] u[1] + a[2] u[2] +
 a[6] u[1] u[2] + a[1] u[3] + a[5] u[1] u[3] +  a[3] u[2]
u[3] + a[7] u[1] u[2] u[3]
****************************
u*[3] :-Sign[a[1] + a[5] u[1] + a[3] u[2] +
a[7] u[1] u[2]]
---------------------------------
Auxiliary polynomial
b[0]+b[2] u[1] + b[1] u[2] + b[3] u[1] u[2]
****************************
u*[2] :-Sign[a[2] + a[6] u[1] + Sign[a[1] + a[5] u[1]]
(a[1] + a[5] u[1]) - Sign[a[1] + a[3] + a[5] u[1] + a[7]
u[1]] (a[1] + a[3] + a[5] u[1] + a[7] u[1])]
Auxiliary Polynomial : b[0] + b[1] u[1]
****************************
u*[1] :-Sign[a[4] + a[1] Sign[a[1] - a[3] Sign[a[2] +
a[1] Sign[a[1]] - (a[1] + a[3]) Sign[a[1] + a[3]]]] +
Sign[a[2] + a[1] Sign[a[1]] - (a[1] + a[3]) Sign[a[1] +
a[3]]]
(a[2] - a[3] Sign[a[1] - a[3] Sign[a[2] + a[1] Sign[a[1]]
- (a[1] + a[3]) Sign[a[1] + a[3]]]]) - a[1] Sign[a[1] +
a[5] - a[3] Sign[a[2] + a[6] + (a[1] + a[5]) Sign[a[1] +
a[5]] - (a[1] + a[3] + a[5] + a[7]) Sign[a[1] + a[3] +
a[5] + a[7]]] - a[7] Sign[a[2] + a[6] + (a[1] + a[5])
Sign[a[1] + a[5]] - (a[1] + a[3] + a[5] + a[7]) Sign[a[1]
+ a[3] + a[5] + a[7]]]] - a[5] Sign[a[1] + a[5] -
a[3] Sign[a[2] + a[6] + (a[1] + a[5]) Sign[a[1] + a[5]] -
(a[1] + a[3] + a[5] + a[7]) Sign[a[1] + a[3] + a[5] +
a[7]]] -        a[7] Sign[a[2] + a[6] + (a[1] + a[5])
Sign[a[1] + a[5]] - (a[1] + a[3] + a[5] + a[7]) Sign[a[1]
+ a[3] + a[5] + a[7]]]] -

 Sign[a[2] + a[6] + (a[1] + a[5]) Sign[a[1] + a[5]] -
(a[1] + a[3] + a[5] + a[7]) Sign[a[1] + a[3] + a[5] +
a[7]]] (a[2] + a[6] - a[3] Sign[a[1] + a[5] - a[3]
Sign[a[2] + a[6] + (a[1] + a[5]) Sign[a[1] + a[5]] -
(a[1] + a[3] + a[5] + a[7]) Sign[a[1] + a[3] + a[5] +
a[7]]] - a[7] Sign[a[2] + a[6] +              (a[1] + a[5])
Sign[a[1] + a[5]] - (a[1] + a[3] + a[5] + a[7]) Sign[a[1]
+ a[3] + a[5] + a[7]]]] - a[7] Sign[a[1] + a[5] - a[3]
Sign[a[2] + a[6] + (a[1] + a[5]) Sign[a[1] + a[5]] -
(a[1] + a[3] + a[5] + a[7]) Sign[a[1] + a[3] + a[5] +
a[7]]] - a[7] Sign[a[2] + a[6] + (a[1] + a[5]) Sign[a[1]
+ a[5]] - (a[1] + a[3] + a[5] + a[7]) Sign[a[1] + a[3] +
a[5] + a[7]]]])].

8 Conclusion
In this paper, The method is an algorithm is presented
for the optimisation of a class of DEDS equipped with
multiobjective criteria based on the solution of VI
obtained from the Pontryagin’s Minimum Principle.
These algorithms have explicit symbolic expression.
Hence we can calculate the optimal solutions by
substitution.

Reference:
[1] J. Cardillo “ Optimización de sistemas a eventos
discretos usando el Principio de  Mínimo de
Pontryagin”, Universidad de los Andes, Facultad de
Ingeniería, Postgrado Ingeniería de Control, Mérida,
Venezuela, Marzo 1994.
[2] K.V.Mital “ Métodos de Optimización en
Investigación de Operaciones y Análisis de Sistemas,
Universidad de Roorkee, Editorial Limosa, México,
1984. Pp 211-237.
[3] Caines, P. E.  y Wei Y. J., On MarKovian
Fragments of Cocolog for logic control systems,
Proceedings of the 31st IEEE CDC, Tucson, AZ,
December    1.992.
[4] D. Fayard and G. Platean, Resolution of 0-1
problem Knapsack Problem Comparison of Methodos,
Mathematical Programming, vol. 8, 1975.



[5] O. V. German y D. V. Ofitserov, Problem Solving:
Methods Programing and future Concepts,
Washintong: State University of Informatics and Radio
Electronics Minsk, Republic of Belarus Catholic
University of America, 1995.
[6] P. J. Ramadge, and W. M. Wonham, Supervisor
control of a class of discrete event process, Siam J.
Control and Optimisation, vol. 25, Nº 1, January 1987.
[7] W. M. Wonham and P. J. Ramadge, On the
supremal controllable sublanguage of a given language,
Siam J. Control and Optimisation, vol. 25, Nº 3, May
1987.
[8] Raja Sengupta, and Stephanie Lafortune, An
optimal control theory for dicrete event systems, Siam
J. Control and Optimisation, vol. 36, Nº 2, January
1998.


