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Abstract: The purpose of our paper is to develop a (symbolic) computational algorithm for the optimisation f a
family of discrete events dynamic systems equipped with a multiobjective performance index. A discrete event
version of the Pontryagin’'s Minimum Principle supports the agorithm. Unfortunately the miltiplier (dual
variable) can depends on the variations of the optimal control, hence, the solution of the Pontryagin Minimum
Principle requires treatments of a class a class varationa inequdlities, increasing the computational
complexity. For this reason a specia attention is paid to the reduction of the complexity.
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1 Introduction

Problems of optimisation, for discrete event process
over discrete state space, arise very often in parale
computing, supervisor, and control, integration of
industrial control systems, certain human systems, etc.
It is well know that the Pontryagin's
Minimum Principle for discrete time process
has certain geometric limitation. The
Pontryagin’s Minimum Principle is false, in
general, without additional condition of
convexity. Considering this fact, it is very
surprising that a Pontryagin’s Minimum
Principle can be developed for a discrete
event dynamical systems without any
geometric structure. However, we have pay
for this scheme in the greater complexity of
the dual process, which will depend on both
the optimal process and its variation. Hence
instead of the pointwise optimisation of the
Hamiltonian, a variational inequalities must
be solve at each time. Variational
inequalities are minimised by simbolic
optimisation, which is a new with respect to
the “classical “ optimisation techniques of
[2], [4], and [8].

Hybrid optimisation of plant performance, with respect
to supervisory control can be reduced into discrete
event optimisation.

Computer aided problem solving, tutoring, intelligent
dialog can based in optimisation over the associated
formal language as possible application, see [6].

2 A class of discrete event dynamical
system

LetW be a finite aphabet of letters, events, etc.
W denotes the set of all finite words, stri ngs, including
the empty string, g . The concatenation of strings is an
associative binary operation with the neutral element
q. Hence W is a monoide. A subset L1 W
containing the empty stringq is alanguage.

2.1 Discrete dynamics induced by a language
(LT W)

Let ul L.Asring vi W isactiveat uif uvl L.
Let us denote the subset of active strings at u, by L(u).
Analogously, wi W isanactiveeventat ul L, if the
concatenation uw 1 L. We notice that the letter w
defines a word of one letter, hence uw is well defined.
Wu) I W is the subset of al active letters. The local
dynamics is a partial
mappingf : LXW® L ,f(u,w)=uw, for al pair
(uw) which satisfies the relation w1 W) . Suppose
that u=u, u,---u;,1 L, UgyUp,.,Ur, 1 W. The
words X; =UyU,...u; 4, i=0,1,..T, are al prefixes of
u. Suppose that x,=q, X,..X, =ul L. Then u can
be obtained by the difference  equation
X =T (X,0), %, =q.



Hence, we will suppose that all prefixes of
all elements of the language L, also belong to
L. In this case we say that L is prefix closed.
If L is prefix closed then all words of L can
be obtained by a difference equation in terms
of the local dynamics f. In this case

Fu™,v) =f(f(FEU,V,), V)0 Ve ,) V) (D),
defines a globa dynamics, where v =VvgVv,...V; ;.
Consider afamily W, W,,...,W,_; of finite alphabets and
the respective state spaces X, X,..X,. A family of
partially defined mappings gives the local dynamics in
this case

f: XxXW® X,,,i=0,1,..., T-1. 2

ul W is an active event, at the statex1 X, , if the pair
(X, u) belongs to the domain of f;.

Let the subset ofA al active events be denoted
byW,(x) ,adl x| X,,i=01,..,T-1.

Letx] X, Themu=uU;,,..U;,u; T W, (3),isan
admissiblestring atx , if u, T W,(X), x, =x and if for
a j®i x; isdefined by the difference equation
Xj+1:fj(xj!uj)1xi =X, (4

then u, T W, (x,) and xcan aso be computed by
the difference equation (4). The string X; X,,, ... X; of
states is the trgectory, corresponding to the
stringu=u,u.,...u;_,, which is caled control. The
pair (X, u) is adiscrete process.

2.2 Discrete dynamical system induced by
language.

Consider alanguage L1 W . Suppose that a function
j :L® Yis given. u,vli L are Nerode equivaent if
L(u)=L(v), and j (uw) =j (vw),wT L(u) = L(v).

The classes of equivalence are the states. Over the
obtained state space a (local) dynamics and an output
mapping are induced. The obtained dynamical system
isarealisation of the input-output mapping | .

Now, we detail the construction of a graded realisation
of themapping ] . The length of a string is the number
of events in it: u=uyU,...u; 1 L,u, T W, then the
length of u, which is denoted by |u[,isT. |g| = 0.

u vl L are equivaent if |y=|v[, and uy v ae
Nerode equivalent. Let us denote the class of u by [u],
and the set of all classes of elements of length i, by X. .

Of course, X, :[q], consists of the unique string g,
and X, ={x,}. The subset of the active strings at a
state x7 X,,x=[u] can be defined by L(x)=L(u).
Indeed, it does not depend on the representation ul X .
Analogoudly, the set of active events at xi x,, is the
subset W(x) = Wu), if x=[u].

The local dynamics f : X, xW® X,,, is the partia
mapping f,(x,u) =f, (v],u) =[vu], defined over the
subset of pairs (x,u), ul WXx).

The length [vu| =i+1, hence fimapsinto X,;. If Wis
a finite aphabet, then the graded dynamic system can
be infinite, however al state spaces X; are finite. The
output mappings F,:X, ® Y, ae defined by
F.(xX)=F, ([u]) =f(u), which does not depend on
the representation x =[u] .

3 Optimisation over discrete dynamical
system

Consider alinear full ordering £ in Z'. The £ is linear if
the subset P{x30} of the nonnegative eements is a
semigroup, with respect to the +, and the smplification
property holds. Let us consider a graded discrete
dynamical system fi i X xW ® X4, with
F.:X,; ® Z', multiobjective criteria

Now, we define the problem of optimisation. We say
that the admissible process (x*,u*), u =uou.u
X =f(x’,u’), x;=xI X, is optimal (minimal) if
for al admissible processes (x,u), j=[u, the
G EF L (x;) hold if jETand
Fir () EF 1 (x)if [>T,

Of course, we can optimise among the processes of
length T. Then, the optimaity means that
Fr (G EF (X))

Now, suppose that we aso have the function
g,: X,XW ® Z' . Then the objective function can be
defined by

T1
‘](X7u):FT(XT)+é g (x;,u;).
i=0

inequalities F

i+j

The admissible process (x ,u’) is optimal if for all
admissible processes (x,u), J(x ,u") £ J(X, u) .
It is well know that these two problems are equivalent.

The virtualy more general second problem can be
transformed in to the first one.



3.1 Polynomial discrete
dynamical systems

Our hypothesis is that the aphabets and the
corresponding state spaces are finite. In this case al
functions can be considered polynomials. For this, al
sets of cardinality T can be identified by the set {0,1,
L T-13=Z5.

Hence, if the cardinality of X, , andW, is n,, and m,
respectively, then the dynamicsis a partial mapping.
Using the Lagrange interpolation at al points of the
domain of f., a polynomial representation for f. is

description  of

obtained. The polynomial is of degree a most n, - 1
in the indeterminate x, and of degree at most m; - 1 in
the second indeterminate.

The formulation of the adjoint equation and the poof of

the minimum principle involve the derivatives and
gradients of the functions. However, we can not use

these  concepts.  Replacing these  classica
tools
Ug = Uy, Uy = Uy, Uy SV, Uy = Uy, Upy = Uy,

we introduce the concept of the Taylor residual. In the
continuous case the Taylor residua of the smooth
function f is defined by

fly)- f()=RE(Gy)(y- x) = g &x +ty)dt(y- x).

For the monomial m(x,u)=x*u', The Taylor residual is

defined by

yov' - XU =

?:;H‘J‘ﬂg ety - wye '%y )
§|0|:|+|J+1gi£-j ;(y- X)i(v- U) Xkl Ill_(v U)

However the residuals are not unique, for exampl e

y“v' - xtu —gay'xk'l '%y X)

+ga x¥u'v i l—(v u)

aso holds. For our objectlve the equality
f(y)- f(x) =Rf(x;y)(y- X) has only importance,
hence
-1 -
Rm(x,u;y,v):(;:a%‘ y.Xk i-1y! é xkuiv' - 10
€ei=0 i=0 ﬂ

plays the role of the gradient of m.

For a vector function, the Taylor residua is analogous
to the Jacobian. The partial residuals can aso be
defined, analogoudly, to the partial derivation.

3.2 The adjoint equation

Now, consider two process, (X ,u’), (xu) of the
some length T. Then, the adjoint equation is

P =PiuR.f; (X: UisYi), pr =RF T(X:"XT) ,
where the trgjectory p,p,...0; of the adjoint equation

Ixn

belongto R™™
In terms of the adjoint trgjectory, the value of the
residual of the multiobjective function at the final time
isgiven for

T-1 T-1
Fr(X)- FT(XT) = a.opj+1fj(xjvvj)' a»opjﬂfj(xjvuj) :

j= j=
Now, fix an j and consider two admissible processes
(x",u") and (x,v), such that Uy =Vv,, U, =V,,...,

U, =V, U =V, U,y =V, Up, =V, Then,
the residual of the multiobjective function at the fina
timeis

F T(XT) -F T(X*T) = pj+1fj(X;1Vj) - pj+1fj(X;1u;)'

33 The Extenson of Pontryagin's Minimum

Principle.

Define the Hamiltonian function by
H(j,x",u",p) = pf ,(x",u’).

Suppose that X*,u’ is an optimal process among the

admissible processes of length T. If u, =u,,

U; =Uy,..., U, =U.,uj =V,

jv

U;+1 = Uj+11---1 u;’-l =
=P
equation corresponding to the pair of processes
(x",u’), (x,u). Then

H(J XJ7U pJ+1)£ H(J XJ7V pJ+1

We notice that the difference equation and the adjoint
equation can be rewritten in terms of the Hamiltonian:

_R H(J inujipj+1
pj =R H(J! IE j’pj+l’X

u,,, x" is the corresponding

trajectory, p"’ pl, isthe solution of the adjoint

4 Symbolic algorithm for solution PM PE
Now, we show a symbolic agorithm in order to solve
the integer Pontryagin’'s Minimum Principle. At each
step we need two routine.

1. The firgt reduces the degree of the polynomial, via
the Langrage interpolation.



2. The second routine is the kernel of the algorithm. It
consistsin the optimisation of variational inequality, of
the form:

0 £ p(x,u’,u) [f(x,u) - f(x,u’)]|,

where x T X isagiven state. We say that u'T WX)
is a solution of the inequality, if it holds for all
ul W(X). In general, suppose that Y (X)is a solution
of the variational inequdity; then we can define the
mapping Y :X® U. Of couse, Y can be
multifunction.

4.1 Symbolic algorithm
Our purpose is to solve the Pontryagin’'s Minimum
Principle in terms of the solutions Y, of the variational

inequalities. Then, we aso show an agorithm to
compute Y,
Steps 1 i) Let us compute
X (T)=f(x"(T-12),u (T-1). ii) uis replaced by
v in the previous expresson for t=T-1, that is,
XTY(T) =f (X" (T-1),v).
iif) Compute the adjoint equation:
pT(T) =RF (X" (T),x"™(T)) =
=RF(f(x" (T-1),u (T-2),f(x (T-1),v)).
iv) The Hamiltonian
0L p™ (M[f(x (T-1),v)-f(x (T-1),u’ (T-1))] =
=RF[f(x" (T-1),u (T-2),f(x (T -1),v)]*
[fox" (T-1),v) - (x" (T -1),u" (T -1))]
V) Let us apply Routine 1 to reduce degree of the
polynomial
vi) Applying Routine 2, Y =Y (T- 1,x), is obtained
such that u (T-DT Y(T-1x (T-1) satisfies
the above inequality.

Steps T-i: Suppose that for i, Y (T - 1,x)...Y (i +1,x)
are constructed. Then, by induction it can be proven
that: (1) x (i +1),x (i +2),...,.x (T),

2 X" ([{i+2D,x"V (@i +2),..,x"(T),

(1) are polynomials of x" (i) and u' (i) and (2) are
polynomias of x (i) and u'(i) and v. Therefore
p"(i+2),p" (@i +2),..,p"(T) ae dso polynomias
of Xx'(i) and u’ (i) and v. Apply routine 1, in order
to reduce the degree of the polynomials. Let us apply
routine 2, a (possble multiobjective) function
Y =Y (i,x) is obtained, such that
u ()T Y (i,x (i) satisfiesthe above inequality.
Hence
O£ p™ (i +D[f(x" (),v) - (" (), u" ()] =

pO< (), " (), [f(x” (0),) - 10" (0),u” ()

Applying routine 1, a polynomia function
Y =Y (i,x) isobtained, such that u”(i)T Y (i,x" (i)).
The construction of the optimal processesin term of the
functions Y (0,x),Y (1, X,),..., Y (T - 1,X) is easy:

X (0) =x, u (0) =Y (0,x),
X' (D =f(x"(0),u"(0), u" () =Y @Lx (1)),

X (i +1) =f(x"(),u (), U (+D =Y LX (i+1),

Therefore, the optima control and optimal trajectory
are obtained, for each instant of time. The construction
shows above can be considered as the generalisation of
the Riccati equation for discrete process.

5 Optimisation based on the solution of

Variational Inequalities

In the previous session a symbolic agorithm was
shown to obtain optima controls. The symbolic
algorithm was based in two routines. The first routine
reduces the degree of the polynomials, obtained from
the Hamiltonian function (PMPE). The second routine
is an agorithm that gives the solution to the Pontryagin
Minimum Principle in terms of the function Y . In [1],
we have designed a tool in Mathematica in where the
V1 is calculated for each instant of time. In this session
is given an agorithm in order to compute the solution
to the set of VI.

5.1 The min-max problem



The set of VI, in principle, can be converted in a min-
max problem. Then, optimisation is achieved by a two
phases method. In the first phase a minimum is
caculated. In the second phase a maximum is
calculated and if the maximum is less than zero, the VI
has solution(s), that is, our algorithm result will also
give up a criterion for the existence of the solution of
the min-max problem.
The principal idea of the optimisation will be presented
for a Boolean function f, defined over the set {-1,1}.
Then, defining amodified sign function by

ian(t) = i-1lif t£0

SO =1 i s g,

ul sgn(C-2- D) ge the points, where f reaches
its minimum. We remark, that sign(0)={-1,1}.
Now, let us suppose that the cardinality of the domain

D of fis 2. Then, the bijection between {0,1,...,
2.1 the set of the k+l-vectors
(Ugs Usrees U T - 18 s diefined by

1/2(1- u,) +2(- u,) +...+2@1- u,))

and

Hence, the function f can be considered as a function of
k+1 variable over - N :

(Up,Ug,.su) ® f(ugy,uy,...,u) =f,(uy, uy,...,u,)

1.8) Fixed Uor-ste1  the minimum of the function

U ® T(Ug Ut Ud can be  expressed by  the
multifuction:

Ug* (Uo, Uy, ..., Uk1)=SIgN[fo(Uo,Uy,...,Uk1,-1) = fo(Uo,Us,
ceey Uk.l,l)] .

Infact, if

fo(Uo,Us,...,Uk,-1) = fo(Uo,uy, .uUc,1),  then

U* (Uo,Ug, ..., Uc1)={-1,1} for al values of ug,Uuy, ...,Uk1
( fo =constant).

1.b) Let us define

f1(Uo, Us, .., Uk-1) =Fo(Uo,Us, ..., Uk-1, Uk* (U, U, ..., Uk.1)).

2) The general construction. Let us suppose, that the
. k+i- A
ith function T 128" ® A s defined. Then, for

n k-i
fixed (Uo,U1, ...,Uk1) {-1% , let us consider the

function Yk ® TilUor Uit Ui) That achieves its

minimum a  Uc*(Ug,...,Uci-1)=  Sign[fi(Uo,...,Uki-1,-1)-
fi(Uo,...,Uk.i.l,l)] .

Then, we can define the (multi-)function fi.1(Uo,...,Uk.-
1)=fix1(Uo, ..., Uiii-1, Ui* (Uo,...,Uk-i-1))-

The agorithm is defined if:

1. i=k, and Yo ® Tu(Uo)
ug*! sign[fi(-1)-f(1)].
2. i<k, fi(Uo,Ul,...,Uk.i.l,-l) = fo(Uo,Ul,..., uk-i-111)- Then,
for all (UosUpees UDT {135 ¢ 5o congant and at
al pointsisminimal.
ug* ! signffi(-1)-f(D]! {-1.1}
(Ug,uy) ={(uy,u,);uy I Uy,

u, T sign(f, ,(uy,-D - f (U, D)1 {-13°

achieves its minimum at

(g, Uy, U ) ={(Ug, Uy, Uy );

(Ugs Uy, Uy )T (UG, Uy, Ui ),

u, T sign(f, (Ug, Uy, U0 D - L (Ug, Uy, U, D))}
1 {-13*

The st of al
(U, Uy, Uy ) T {- 134 defined recursively.

At thefirst step the VI which defineYT-l, has the form
p(v, v) 3 p(u*, v) (1).

The other VI has the form

p(u*,v, v) 3 p(u*, u*, v) (2).

Both inequalities can be solved by using the given
optimisation procedure;

(i) Let us fix u*. Then, consider the function
V® p(v,v)- p(u’,v)
the function of u*:
min(p(v,v) - p(u’,v)) = P(U’)

u

minimal solution is

, and compute its minimum as

If there exists u* such that O£ P(u ), then u* is the
solution of the VI. However, al solutions of the VI are

those u*, which satisfy the inequality O£ P(U) .
(ii) The solution of (2) can be obtained analogoudly.
Let us fix u* and consider the function

v® p(u,v,v)- pu,u,v) then

min(p(u’, v,v) - p(u’,u’,v)) = P(u’) : :

v , U* is solution
of (2) if only if O£ P(U)

. . MaxP(u’) <0

We notice that, if v
solutions.
2. The direct implementation of that algorithm can be
result overflow of the memory for relative small
problem.
6 Reduction of the complexity

, then the VI have no



In this section a computational implementation will
show, after a carefull analysis of the symbolic
algorithm. The computation will be redlised in two
states: (i) reduction of the complexity by manipulation
of the polynomials in question, (ii) using explicit
symbolic expressions.

6.1 Reduction of the complexity by manipulation
of polynomials.

UZOU? Syl

Let us consider a generic monomia ko of

The domain of the
function defined by the polynomial

the polynomial P(Ug, =, Uy)

polynomial
K+

(U, ) g {-1T 1, therefore, for al vectors

ag — ay

Ul {- L' ugouf U S ugu U e
- _10,if a,is even
"1 1ifa,is odd
p(Uo,”-,Uk) = é ai1~-i,ui1 "'ui,
Hence {ig-4}1 {0k} (3)
For example
%3 3 i i - i
u,+u)" =& B> =
i@l g
430, 0 el o)
=§g.i22|:uz+?gg. _2|1_+ul
i=0 2I 7] 1] i=0 2I +lg 1]
The generd form of the polynomids of 2

indeterminates, after the described reduction can be
writtenin

g(uo’ ul) =a,Ugu; +a,U, +ag U, +ay i

i={i i i 01,k

Let us consider the subset {la, i {OL },
which is naturally ordered 't <'2 <" <!/ Then, there
exits a natural bijection of the set of all subsets
!i {ofl"'fk}

k+1 digits, by
i « 0---010---010---010---0=B(i)

into the set of al binary numbers of

1 i+l i+l i+l k+1
.
u; =O uil
Lee = = . Then, the polynomial P(Ug, -+, )
can be rewritten by
1.1
P(Ug, U )= A gl = @ &gy,

.ii {0,++k} b=0---0

6.2 The agorithm

Let Jna(UosUyyenis ) be a polynomial. Then,

U; = - Sign[g,..(Ug,esU, 1. D) - 9n+1(U01---1Un.110)]_
For il {O,J,...,k}1

we will define new polynomid, gk-i+1(u0’u2""’uk-i),
with 2" coefficient from the linead relationships
following:

gk-i(uo’ul""’uk-i) = gk-i+1(u07u1""’uk-i’

uk-i+1(u07 ul""’uk-i))
Evauate in domain, we have:

O (- Lo Ler D =0y (- L LU (- Lo D)

0 L) = 0y @ L Uy (4.)
Rewriting, we have

a. ,0

A, Aca® b-lmlf
x* -

gAk-i-l Ak-i-ld} ‘ -
€00 g

el Ler LUy (- L DO

&
¢ :
& Gou@olu ,@.D) 4

1 18
Alzée 9
where 1 1@_
Then

u:(-i =- Sign[gk-i (u01 ul""’uk-i-17l) -

- gk-i(ul’UZ""’uk-l-l’o)]

7 Example
Let us f(u) a polynomia function over the domain

D={0123456.7} The transformed domain D

Uy, U, up T U ={-13

could be represented by such

that:
0»{-1-1-1,1»{-1- 11,2 »{- 11- T,3»{- 111,
4»{1-1-1,5»{1-13,6 »{11-J,7» {113,

The matrix of the linear system equation is:



TSI So-11-1)7
¢f(®+_co(-111) +

Sign[a[2] + &[6] + (a[1] + &[3]) Sign[a[1] + &3] -
(&[1] + &3] + &S] + &7]) Sign[a[1] + &3] + &[5] +
a7 (2] + a6] - a3] Signa1] + a5 - a3
Sign[a[2] + 6] + (a[1] + &5]) Sign[a1] + &3] -

1l 1 1 -1 1 -1 -1 105@1110 2#(0)0 a9(-1-1-1¢
gl 1 -1 -1-1-1 1 la,+ D+ ¢o¢1-11)+
¢1 -1 1 -1 1 -1 I~
8-1 1 -1 -1 1 1 1dag-_
¢1 -1-11 1 -1 -1 1%a,* i@ Qg(l 11t
$-1-1 11 -1-1 1 La,: g ¢od-1 >
¢-1 1 -11 -1 1 -1 1%a,~ %(@6)T Sg(11l- 1)-
g 1 1 11 1 1 1 @amg %(7)2, g 9(L1l) 5
EeAAZ 222:A3 . ,

2 20 . Then, the polynomia g(u) is
given for:

g(ul’ u2 4 u3) = a111u1u2u3 + a110u1u2 + a101u1u3 +

a100u1 + a011u2u3 + a010u2 + a001u3 + aOOO

The running of agorithm in Mathematica produce the
following result.

Polynomia :a[0] + a[4] u[1] + &a2] u[2] +

a[6] u[1] u[2] +a[1] u[3] + &3] u[1] u[3] + &3] u[Z]
u[3] +a[7] u[1] u[2] u[3]

u*[3] :-Sign[a[1] + &[5] u[1] + a[3] u[2] +

a[7] u[1] u[2]]

Auxiliary polynomial
b[O]+b[2] u[1] + b[1] u[2] + b[3] u[1] u[2]
u*[2] :-Sign[a[2] + &[6] u[1] + Sign[a[1] + a[5] u[1]]
(a[1] + &[5] u[1]) - Sign[a[1] + &3] + &[5] u[1] + &[7]
u[1]] (a[1] + &3] +&[5] u[1] + a[7] u[1])]
Auxiliary Polynomial : b[Q] + b[1] u[1]
u*[1] :-Signfa[4] + &1] Sign[a[1] - a[3] Sign[a[2] +
a[1] Sign[a[1]] - (a[1] + &[3]) Sign[a[1] + a[3[]]] +
il['g]r][]a[Z] + (1] Sign[a[1]] - (a[1] + &[3]) Sign[a[1] +
3
(&[2] - a[3] Sign[a[1] - a[3] Sign[a[2] + &[1] Sign[a[1]]
- (a[1] + a[3]) Sign[a[1] + &3]]]]) - &[1] Sign[a[1] +
a[5] - &3] Sign[a[2] + a[6] + (a[1] + &a[5]) Sign[a[1] +
a[S]] - (a[1] + &3] + &3] + &[7]) Sign[a[1] + &[3] +
a[5] + a7]]] - 7] Sign[a[2] + 6] + (a[1] + &3])
Sign[a[1] +&[3]] - (a[1] + &3] + &[5] + a[7]) Sign[a[1]
+ @3] + &5 + g7]]]] - a5 Sign[a[1] + &3] -
a[3] Sign[a[2] + &[6] + (a[1] + a[5]) Sign[a[1] + &[3]] -
(e[1] + &3] + a[5] + a[7]) Sign[a[1] + &3] + a[5] +
a7l - a[7] Sign[a[2] + a[6] + (a[1] + a[9])
Sign[a[1] + &[3]] - (a[1] + &[3] + &[5] + a[7]) Sign[a[1]
+a[3] +a[5] +&7]]]] -

(&[1] + &3] + &S] + &7]) Sign[a[1] + &3] + &[5] +
a7]] - a7] Sign[&[2] + a[6] + (&[1] + &3]
Sign[a[1] + &[5]] - (&[1] + &3] + &[5] + &[7]) Sign[a[1]
+ 3] +&5] + d7]]]] - a7] Sign[a[1] + &[5 - 3|
Sign[a[2] + &[6] + (1] + &5]) Sign[a1] + &3] -
(@1] + &3] + &S] + &7]) Sign[a[1] + &3] + &[5] +
a7]] - &7] Sign[a[2] + &[6] + (a[1] + &[5]) Sign[a[1]
+8[5]] - (a[1] + &3] + &[5 + a[7]) Sign[a[1] + &3] +
a[s] + & 71]ID]-

8 Conclusion

In this paper, The method is an algorithm is presented
for the optimisation of a class of DEDS equipped with
multiobjective criteria based on the solution of VI
obtained from the Pontryagin’s Minimum Principle.
These agorithms have explicit symbolic expression.
Hence we can calculate the optima solutions by
substitution.
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