Some types of bifurcationsin a bioeconomic model
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Abstract: This paper deals with some aspects of the Theory of Dynamical Systems applied to a model of
interespecific competition. A qualitative study is presented where the changes in the number and/or the

stability of the system’s equilibrium pointsis anaized. The aim of this study is to stablish the different types
of bifurcations that can appear in our model.

Key- Words: fixed point, stability, limit cycle, bifurcations



1.- Introduction. Justification of the
modeél.

The model we introduce is based on a
dynamical system which wasfirstly studied both
andlitically and experimentally by Gause [4] asa
model of competition between two species. It
consists of the following two differentia
equations for the population stock levelsx and y:
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Inthese equationsr, s, K, L, a and b are positive
parameters with the following meaning:

- r and s are theintrinsic growth rates for
speciesx andy

- K and L arethe environmental carrying
capacities or saturations levels for each species

- a and b are ameasure of the interaction
between the two species

An external resource is assumed to exist
that supports each population in the absence of the
other population according to alogistic law (P.F.
Verhulgt, [1]). Much information about the system
can be obtained from a qualitative approach to the
system. An analysis of theisoclines shows distinct
types of equilibrium. Basically we can find two
situations.  Competitive  coexistence and
competitive exclusion. In the first case thereisa
stable node Q = (Xo, Yo) With both x and y, being
positive (See Figure 1a). In the second case
(Figure 1b) Q is a saddle point and two stable
equilibria (nodes) exist at (K,0) and (O,L). The
competitive outcome depends on the initia
population levels, because one of the species is
ultimately driven to extinction. Figure 1c shows
also competitive exclusion but only one stable
equilibrium exists either at (K,0) or at (O,L). One
of the species inevitably wins the competition.

! Figures taken from Clark, W.[2]
C. p.194.

Gause's equations are structurally stable
except for certain special cases, likein Figure 1d.
A small changein the position of theisoclines can
transform this diagram into a diagram of the type
shown in Figure 1b.

Though in certain cases the model
predicts the complete exclusion of either
population x or y, in the natural environment, a
population that is completely out- competed by
another population may find various refuges
whereit can continue to survive, at least in asmall
number.

Now let the population x be subject to
harvesting so that equation (1) becomes:

X =rX gﬁ-ig-a Xy-gEX (2)
e Kg

where E isthe fishing effort and q is a catchability
coefficient.

We can extend the model assuming that
the fishing effort itself is adynamic variable’® that
satisfies

E=KERX-2 (3)
Pd g

where ¢, p, k are the fishing costs, the catch price
and a proportionality coeficient respectively.

C

The quotient — is the zero- rent population
Pq

level.

Our model is now a three- dimensional
dynamical system which seems to be more
complex than the two- dimensiona system (1):

?Clark W. C[2], p.322
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2.- Previous
bifurcations

concepts  about

The qualitative structure of the flow of a
dynamical system can change if parameters are
modified. In particular, new fixed points can
appear while others can disappear or their origina
stability can change. These qualitative changesin
the dynamics are cdled bifurcations and the
parameter values at which they occur are called
bifurcation points.

We define some of types of the
bifurcations that may appear for n-dimensional
systemswith n &.-2:

a) Saddle- node bifurcation

This is the basic mechanism for the
creation and destruction of fixed points. As a
parameter of the system increases or decreases,
the fixed points approach each other, then collide
and they finaly disappear. Even after the fixed
points have disappeared, they continue to
influence the flow attracting the trajectories
towards a Aghost zone@

b) Transcritical bifurcation

Thistype of bifurcationisheld when asa
parameter varies, fixed points approach each
other, collide and then instead of disappearing
they swap their stability.

¢) Pitchfork bifurcation
In this type of bifurcation, fixed points
tend to appear and disappear in symmetrica pairs.

d) Hopf Bifurcation

In this type of bifurcation a lost of
stability occurs because complex eigenvaues
cross the imaginary axis from left to right. There
are two types of Hopf bifurcations: supercritical
and subcritical. In terms of the flow in phase

space, a supercritical bifurcation occurs when a
stable spiral changes into an unstable spiral
sorrounded by asmall, nearly dliptical limit cycle.
The subcritical case is always much more
dramatic. After the bifurcation, the trajectories
must jump to a distant attractor which could be a
fixed point, another limit cycle, the infnity or- in
three and higher dimensions a chaotic attractor
(which is, for example, the case of Lorenz
attractor).

3.- Calculus of fixed points.

Fixed points of sysem (4) are the
solutions of equation f(x) = 0, i.e.
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The system has six fixed points:

P1=(0,00), P2=(K,00), P3=(0L,0),
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The Jacobian matrix of the vector field f is:
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4.- Some estimated parameters.

We have considered the real case of a
fishery that exploits population x (chup mackerel,
scomber japonicus®) which is competing with
population y (anchovy, engraulis encrasicolus®)
for the use of the same resource.

We have taken as a reference the
estimates presented for these two species in
Garcia Dd Hoyo (1997). Therefore we have
assigned the following values to the parameters of
the system:

K =10000 Tons L =1000 Tons

¢ = 15000 ptas/day p = 80000 ptas/Ton
r=0.75 s=0.35

k=0.05

Our paper dedls with the study of the
dynamics of the system as function of parameters

a,byq.

5.- Stability of the fixed points P1,
P2, P3 and P4.

Stahility analysis of points P2, P3 and P4
iseasy if we note that for them the fishing effort is
zero, so that the dynamicsis similar to that of the
bidimensional system (1). Equilibrium can be
reached at points P2, P3 or P4 in the way shown
in Figure1.

Dynamics near point P1 = (0,0,0) is not
outstanding though it can be shown that thisisa
saddle point because associated eigenvalues are:

|1=r>0
l,=s>0

% Houttuyn, 1782

* Linnaeus, 1758

-kc
= <

| 3=
Pq
Thus, the origin is an unstable node in
two directions and a stable node in one direction.

0

6.- Stability of point P5

Calculating the charpoly of the Jacobian
matrix (6) of the system (4) for point P5, we
obtain the associated eigenvalues as.

bc
—+s
Pq
cr+ \/cr (4ckK - 4k Kpg + cr
2Kpq
- cr+ \/cr(4ckK - 4k Kpq + cr2
2Kpq

We areinterested in studying the casesin
which these eigenvalues are negative real numbers
or complex numbers with negative rea part, so
that P5 is an attractive point.

It can be shown that | ;<00 q<%:q3

4ckK+cr
< =

If
4KK?p

q2 then |2,|3E|Dand
| ,<0.
Inthat case, | 3<0U q>Kip:q1.

Notethat <0, aways’. Hence, we

obtain the next classification for the associated
eigenvalues.

<0 Oh<q - O
>0z | 11>0,1<0, | 1:>0,1,<0, I3<0
[3>0
g<qs | 11<0,1 <0, |1:<0,1,<0,13<0
[3>0 P5isastable
node

Table 1a: Stability of point P5

® For the assigned values to parameters
r,s K,L,c pyk,thevaluesof g, and g, are:
h = 1.875=.10° and g, = 1.875703125=10",
The values of g; dependson b.



q>0
I 1>0, Re(l 2)<0, Re( | 3)<0

| 1<0, Re(l 2 )<0, Re( 1 3)<0
P5isastable spiral

Table 1b: Stability of point P5

Remak: If g = qy, then | 3 = 0 and linearization
about P5 would not predict the nature of thisfixed
point. The samewill apply for | 1 if g = gs. In both
cases it would be necessary the study of the
system restricted to the center manifold.

If 0=, thenl ;=1 3 are negative real numbers.

In Figure 2 we have represented a
trajectory starting from a point near P5 for values
a = 9.75x210% b = 1.62=10* and q =
1.8756=10° 1 (q,G2 ) . In this case P5 =
(9996.80, 0, 12.7918) s stable. Tragectory
approachs rapidily to P5. Note that this point is
closeto P2. We will seelater that these two points
collidefor valuesof g next to that in Figure 2.

Figure 3 showsthe samefor q= 710"
. PSisagtable spira in two directions and a stable
node in one direction. In this case, trgectory
spiralstowards P5 = (2678.57, 0, 7844.38) .

7.- Stability analysis for point P6.

The qualitative study of stability for point
P6 as a function of the parameters g, a and b
becomes difficult due to the expressions shown by
the associated eigenvalues as functions of these
parameters. Because of the above reasons we have
made use of anumerical study of some particular
cases. Taking as areference a preceding paper® in
which point P6 was studied for some values of q,
a and b, we havefixeda = 9.75 =10“ and b =
1.62 =10* and we have made a numerical
anaysis’ for values of g from 0to 1 with step 10
° Table 2 is a summary of the obtained results,
The value g; is the same as in Table 1(gs
=0.0000867857 for the assigned value of b ) and

g4 = 0.0002980886049 and gs = 0.00032.

®VilchezL.M.L., Vdlasco M., F.,
GarciaDel Hoyo J.J.[11].

! Programming with Mathematica

0<g<as B<q<0
Eigenvalues | Re(l 1) =Re(l ) <0, | Re(l ) =Re(l ») <0,
sign 15>0 13<0
Nature of Saddle point Stable spiral
point P6

Table 2a: Stability of point P6

0a<0<0s Os<q<1

Re(l 1) =Re(l 2)>0,13>0 | 11<01,<0 | 3>0

Unstable spiral Unstable Node

Table 2b: Stability of point P6

In Figure 4 we have represented a
trajectory starting from an initial point next to P6
for g = 9=10° =71 (gs,qs ). In that case P6 is a
stable spiral intwo directions and a stable node in
one direction. The trgectory spirals towards P6 =

(2083.33, 35.71, 6210.31).

8.- Two transcritical bifur cations.

Inthelight of resultsin Table 1 and 2, we
come to the conclusion that there are two
transcritical bifurcations, one between points P2
and P5, and another between P5 and P6.

A) Transcritical bifurcation between points P2
and PS.

If we notice that the associated
eigenvaluesfor point P2 = (K,0,0) are:

|1=-r<0
|2=S-bK

5

|3=kg 'iz

Pa g

it can be shown that P2 is a stable node if

b >3 and q < LK= 0. , and a saddle point
p

K
otherwise.

If b :E or g = ¢ then one of the eigenvalues



| 1or I, would be zero. Therefore, linearization
would not predict the nature of the critical point
and it would be necessary the study of the system
restricted to the center manifold.

Comparing these results with those of
S
Tablel for point P5, we find that for b > P and

0<g<q, fixed point P2 is a stable node and
P5 isasaddle point. For g = g, both points collide
andfor g; <g<q, they exchange their stability
and become saddle and node point respectively.

Table 3isasummary of these results.

S a<a 0 < < min(dp, )
b >—
K
Eigenvalues | 1<0, 1,<0, | <0 11<0, I,<0, | 5
sign and nature Stable node >0
of point P5 Saddle point
Eigenvalues 1 1<0, 1,<0, | 3 <0 11<0, I,<0, | 3
sign and nature Saddle point <0
of point P5 Stable node

Table 3: Transcritical bifur cation between
points P2 and P5

Remark: Notethat g, < g, aways and in the case
we are studing ( b > E) it can be shown that
01 < Qs.

B) Transcritical bifurcation between points PS5 y
P6.

In the light of the results from Tables 1
and 2 we come to the conclusion that, for values
of a=975210" and b = 1.62=10", there
exists adso a transcritical bifurcation between

bc
points P5 y P6 for the vaue g = gz =§ =

8.7178=10".

Notice that for g,< g < gs thefirst point
is a saddle point and the second one is a stable
spiral in two directions and a stable node in one
direction. It can be shown that the two points
callide for g = gz and for gs < q <, they exchange
their stability. See Table 4 for a summary.

02< Q<03 03< Q<04
Eigenvalues | Re(l ;1) =Re(l ,) <0, 11>0, Re(l ;) =
sign and | 3<0 Re(l 3) <0
nature of Stable spiral in two Saddle point
point PS directions, stable
nodein one
Eigenvalues | 150, Re(l ) = Re(l 1) =Re(l »)
signand Re(l 3) <0 <0, 1 5<0
nature of Saddle point Stable spiral in
point P6 two directions,
stablenodein one

Table4: Transcritical bifurcation between
points P5 and P6

Figure 5 shows two trgjectories starting
a points next to P5 and P6 respectively for a
value of q greater than the bifurcation value gs.
Notice how the trgectory starting near P5
(unstablein that case) moves away from it and is
finaly attracted towards P6 (stable spiral).

9.- A Hopf Bifurcation.

If welook at Table 2 we will seethat for
g < g4, the equilibrium point P6 is a stable spira
in two directions and a stable node in one direction
because of the associated eigenvalues are two
conjugated complex numbers with negative rea
parts and a negative rea eigenvaue. However, for
values of q > g, Situation is reversed and P6
becomes an unstable spiral. The complex
eigenvalues cross the imaginary axis and their redl
parts become positive. Thisisthefirst signthat a
Hopf bifurcation may exist. In order to confirm
this bifurcation, we should find some limit cycle
surrounding P6. Numerical integration® of the
system shows that when P6 becomes unstable, a
smal| attractive limit cycle appears surrounding it.
In this case we can confirm that it is a supercritical
Hopf bifurcation.

In Figure 7 it can be seen thislimit cycle.
Figure 8 shows a trgectory starting at a point
closeto P6 = (629°008, 708 859, 39" 205), exactly
at point PO = (629, 7088, 39°2). As it can be
noticed, this trajectory is repelled in spira from
P6 towards the limit cycle. Figure 9 shows a
trgjectory with initial values at a point close to the

8 With ODE Software[8]. Figures have
been plotted with this software too.



limit cycle but externa to it (exactly at PO = (630,
709, 40). Thistrgectory isinmediately attracted
by the limit cycle.

It isimportant noting that al the previous
properties exist locally but not globally, i.e. they
hold in aneighbourhood of the limit cycle and the
fixed point.

Aswe move away from a neighbourhood
, the situation can be completely different like the
one shown in Figure 10. In this figure it can be
seen how atrgjectory starting at point PO = (735,
715, 45) (out of the basin of attraction of the limit
cycle) is attracted by one of the other equilibrium
points of the system, the point P2 = (0, 1000,0).

We have calculated the period T of the
2p

limit cycle, T = ——, where w represents the
w

frequency of the limit cycle that can be calculated
by the formula® w=Im(l ) where| isthe complex
eigenvalue associated to point P6 for the
bifurcation value q = q.

We must stand up that we have made a
numerical analysis. Hence the results are not exact
and we should redlize that there is a small
neighbourhood of g4 such that if g is next to g,
there will be another limit cyclefor g. In Figurell
we have represented some of these limit cyclesfor
values of g in a neighbourhood of g, with a
radium less than 107,

10.- Final remarks.

The preceding study has shown some
dinamical properties of system (4) in accordance
with parameters values. In the present section we
would point out some final remarks:

1) Some parameters, like ¢ or p, are changing
constantly and they depend on some economic
restrictions. Therefore, if we consider that the
catch price does not vary with time, it does not
correspond with redlity, but we must consider that
making a qualitative study with a great number of
parametersis difficult and it is necessary to make
use of numerical simulations. For simplicity itis
convenient to assing fixed values to the

% Strogatz [9],p.51.

parameters. Our next goal isto change the values
of the parameters on some intervals and to show
all the dynamical possibilities of our system.

2) A problem arises when we try to put the
theoretical study into practice. Do results solve
our problems in the real enviroment? After
analizing the transcritical bifurcation between P2
and P5 we have noticed that for g<g, an
equilibrium point appear at
ps= &0 0,1(@KP-90

Pq aKp g

whose third coordinate (which represents the
fishing effort) is negative. Thisis not possiblein
reality. Something similar occurs between P5 and
P6, for the bifurcation value g=qgs. The second
coordinate of point

P6= Pc | (-psarbo) -srKoprrsct aLKsgp-aLKbc®

&pq spq o° Ksp P

iS negative

Let us remark again that this is a
theoretical study. Probably for some other models
with different valuesfor a and b we would obtain
different conclusions.

3) Thisisamathematical approach to abiologica
model. Our next aim isto apply it to a model of
optima management of the resource (by using the
Optima Control Theory). Then it will become a
complete bioeconomic modd . In such amodd we
would try to study the optimal exploitation paths.



11.- Figures.
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