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Abstract: This paper deals with some aspects of the Theory of Dynamical Systems applied to a model of
interespecific competition. A qualitative study is presented where the changes in the number and/or the
stability of the system´s equilibrium points is analized. The aim of this study is to stablish the different types
of bifurcations that can appear in our model.
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1.- Introduction. Justification of the
model.

The model we introduce is based on a
dynamical system which was firstly studied both
analitically and experimentally by Gause [4] as a
model of competition between two species. It
consists of the following two differential
equations for the population stock levels x and y:

In these equations r, s, K, L, α and β are positive
parameters with the following meaning:

- r and s are the intrinsic growth rates for
species x and y

- K and L are the environmental carrying
capacities or saturations levels for each species

-  α and β are a measure of the interaction
between the two species

An external resource is assumed to exist
that supports each population in the absence of the
other population according to a logistic law (P.F.
Verhulst, [1]). Much information about the system
can be obtained from a qualitative approach to the
system. An analysis of the isoclines shows distinct
types of equilibrium. Basically we can find two
situations: Competitive coexistence and
competitive exclusion. In the first case there is a
stable node Q = (x0, y0) with both x0 and y0 being
positive (See Figure 1a)1. In the second case
(Figure 1b) Q is a saddle point and two stable
equilibria (nodes) exist at (K,0) and (0,L). The
competitive outcome depends on the initial
population levels, because one of the species is
ultimately driven to extinction. Figure 1c shows
also competitive exclusion but only one stable
equilibrium exists either at (K,0) or at (0,L). One
of the species inevitably wins the competition.

                                               
1 Figures taken from Clark, W.[2]

C. p.194.

Gause´s equations are structurally stable
except for certain special cases, like in Figure 1d.
A small change in the position of the isoclines can
transform this diagram into a diagram of the type
shown in Figure 1b.

Though in certain cases the model
predicts the complete exclusion of either
population x or y, in the natural environment, a
population that is completely out- competed by
another population may find various refuges
where it can continue to survive, at least in a small
number.

Now let the population x be subject to
harvesting so that equation (1) becomes:

where E is the fishing effort and q is a catchability
coefficient.

We can extend the model assuming that
the fishing effort itself is a dynamic variable2 that
satisfies

where c, p, k are the fishing costs, the catch price
and a proportionality coeficient respectively.

The quotient   
pq

c
 is the zero- rent population

level.

Our model is now a three- dimensional
dynamical system which seems to be more
complex than the two- dimensional system (1):

                                               
2 Clark W. C.[2], p.322
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2.- Previous concepts about
bifurcations

The qualitative structure of the flow of a
dynamical system can change if parameters are
modified. In particular, new fixed points can
appear while others can disappear or their original
stability can change. These qualitative changes in
the dynamics are called bifurcations and the
parameter values at which they occur are called
bifurcation points.

We define some of types of the
bifurcations that may appear for n-dimensional
systems with n $2:

a) Saddle- node bifurcation
This is the basic mechanism for the

creation and destruction of fixed points. As a
parameter of the system increases or decreases,
the fixed points approach each other, then collide
and they finally disappear. Even after the fixed
points have disappeared, they continue to
influence the flow attracting the trajectories
towards a Aghost zone@.

b) Transcritical bifurcation
This type of bifurcation is held when as a

parameter varies, fixed points approach each
other, collide and then instead of disappearing
they swap their stability.

c) Pitchfork bifurcation
In this type of bifurcation, fixed points

tend to appear and disappear in symmetrical pairs.

d) Hopf Bifurcation
In this type of bifurcation a lost of

stability occurs because complex eigenvalues
cross the imaginary axis from left to right. There
are two types of Hopf bifurcations: supercritical
and subcritical. In terms of the flow in phase

space, a supercritical bifurcation occurs when a
stable spiral changes into an unstable spiral
sorrounded by a small, nearly elliptical limit cycle.
The subcritical case is always much more
dramatic. After the bifurcation, the trajectories
must jump to a distant attractor which could be a
fixed point, another limit cycle, the infnity or- in
three and higher dimensions a chaotic attractor
(which is, for example, the case of Lorenz
attractor).

3.- Calculus of fixed points.

Fixed points of system (4) are the
solutions of equation f(x) = 0, i.e.

The system has six fixed points:

P1= (0,0,0), P2= (K,0,0), P3= (0,L,0),

 







0 , 

KLrs+-

K)Lr(s--
 , 

KLrs+-

L)r+Ks(-
=4P

αβ
β

αβ
α

,

P5= 







Kpq

c)-r(qKp
 0,  ,

pq

c
2












Kspq

cLKLKsqp-rsc+srKqp+-
- , 

spq

c)psq+(-
L- , 

pq

c
=6P

2

βααβ

The Jacobian matrix of the vector field f is:
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4.- Some estimated parameters.

We have considered the real case of a
fishery that exploits population x (chup mackerel,
scomber japonicus3) which is competing with
population y (anchovy, engraulis encrasicolus4)
for the use of the same resource.

We have taken as a reference the
estimates presented for these two species in
García Del Hoyo (1997). Therefore we have
assigned the following values to the parameters of
the system:

K = 10000 Tons L = 1000 Tons
c = 15000 ptas/day p = 80000 ptas/Ton
r = 0.75 s = 0.35
k= 0.05

Our paper deals with the study of the
dynamics of the system as function of parameters
α, β y q.

5.- Stability of the fixed points P1,
P2, P3 and P4.

Stability analysis of points P2, P3 and P4
is easy if we note that for them the fishing effort is
zero, so that the dynamics is similar to that of the
bidimensional system (1). Equilibrium can be
reached at points P2, P3 or P4 in the way shown
in Figure 1.

Dynamics near point P1 = (0,0,0) is not
outstanding though it can be shown that this is a
saddle point because associated eigenvalues are:

λ1  = r > 0
λ2 = s > 0

                                               
3 Houttuyn, 1782

4 Linnaeus, 1758

λ3 =
pq 

kc-
 <0

Thus, the origin is an unstable node in
two directions and a stable node in one direction.

6.- Stability of point P5

Calculating the charpoly of the Jacobian
matrix (6) of the system (4) for point P5, we
obtain the associated eigenvalues as:

We are interested in studying the cases in
which these eigenvalues are negative real numbers
or complex numbers with negative real part, so
that P5 is an attractive point.

It can be shown that 
sp

c
 <q  0 <1
β

λ ⇔ = q3

If  q < q=
pkK4

crckK+4
22

    then   λ2 , λ3  0 ú and

 
λ2 < 0.     

In that case,  λ3 < 0 ⇔ q =
Kp

c
 > q 1 . 

Note that    q1 < q2   always5. Hence, we
obtain the next classification for the associated
eigenvalues:

 q < q1 q1 < q # q2

q > q3 λ1 >0, λ2<0,
 λ3 > 0

λ1 >0, λ2<0,  λ3 < 0

q < q3 λ1 <0, λ2<0,
 λ3 > 0

λ1 <0, λ2<0, λ3 < 0
P5 is a stable
node

Table 1a: Stability of point P5

                                               
5 For the assigned values to parameters

r, s, K, L, c, p y k, the values of q1 and q2 are:    
q1 = 1.875@10-5 and q2 = 1.875703125@10-5.
The values of q3 depends on β.
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q > q2

λ1 >0, Re(λ2 )<0, Re( λ3 )<0

λ1 <0, Re(λ2  )<0, Re( λ3 )<0
P5 is a stable spiral

Table 1b: Stability of point P5

Remak: If q = q1, then λ3 = 0 and linearization
about P5 would not predict the nature of this fixed
point. The same will apply for λ1 if q = q3. In both
cases it would be necessary the study of the
system restricted to the center manifold.

If q = q2, then λ2 = λ3 are negative real numbers.

In Figure 2 we have represented a
trajectory starting from a point near P5 for values
 α = 9.75@10-4, β = 1.62@104 and q =
1.8756@10-5 0 (q1,q2 ) . In this case P5 = 
(9996.80, 0, 12.7918)  is stable. Trajectory
approachs rapidily to P5. Note that this point is
close to P2. We will see later that these two points
collide for  values of q next to that in Figure 2.

Figure 3 shows the same for  q = 7@10-5

. P5 is a stable spiral in two directions and a stable
node in one direction. In this case, trajectory
spirals towards P5 = (2678.57, 0, 7844.38) .

7.- Stability analysis for point P6.

The qualitative study of stability for point
P6 as a function of the parameters q, α and β
becomes difficult due to the expressions shown by
the associated eigenvalues as functions of these
parameters. Because of the above reasons we have
made use of a numerical study of some particular
cases. Taking as a reference a preceding paper6 in
which point P6 was studied for some values of q,
α and β, we have fixed α = 9.75 @10-4, and  β =
1.62 @10-4 and we have made a numerical
analysis7 for values of q  from 0 to 1 with step  10-

9. Table 2 is a summary of the obtained results.
The value q3 is the same as in Table 1(q3

=0.0000867857 for the assigned value of β ) and

q4 = 0.0002980886049 and  q5 = 0.00032.
                                               

6 Vílchez L.,M.L., Velasco M., F.,
García Del Hoyo J.J.[11].

7 Programming with Mathematica

0 < q < q3 q3 < q < q4

Eigenvalues
sign

Re(λ1) = Re(λ2) < 0,
λ3 > 0

Re(λ1) = Re(λ2) < 0,
λ3 < 0

Nature of
point P6

Saddle point Stable spiral

Table 2a: Stability of point P6

q4 < q < q5 q5 < q < 1

Re(λ1) =Re(λ2)>0, λ3 > 0 λ1<0 λ2<0  λ3 >0

Unstable spiral Unstable Node

Table 2b: Stability of point P6

In Figure 4 we have represented a
trajectory starting from an initial point next to P6
for q = 9@10-5 0 (q3,q4 ). In that case P6 is a
stable spiral in two directions and a stable node in
one direction. The trajectory spirals towards P6 =
 (2083.33, 35.71, 6210.31).

8.- Two transcritical bifurcations.

In the light of results in Table 1 and 2, we
come to the conclusion that there are two
transcritical bifurcations, one between points P2
and P5, and another between P5 and P6.

A) Transcritical bifurcation between points P2
and P5.

If we notice that the associated
eigenvalues for point P2 = (K,0,0) are:

λ1  = -r < 0
λ2 = s- βK

λ3 = 

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it can be shown that P2 is a stable node if 

K

s
>β  and q < 

pK

c
= q1 , and a saddle point

otherwise.

If  
K

s
=β  or  q = q1 then one of the eigenvalues



 λ1 or λ2 would be zero. Therefore, linearization
would not predict the nature  of the critical point
and it would be necessary the study of the system
restricted to the center manifold.

Comparing these results with those of

Table1 for point P5, we find that for  
K

s
>β  and

   0 < q < q1 , fixed point P2 is a stable node and
P5 is a saddle point. For q = q1 both points collide
and for  q1 < q < q2  they exchange their stability
and become saddle and node point respectively.

Table 3 is a summary of these results.

If 
K

s
>β

q < q1 q1 < q < min(q2, q3)

Eigenvalues
sign and nature

of point P5

λ1 <0,  λ2 <0,  λ3 <0
Stable node

λ1 <0,  λ2 <0,  λ3

>0
 Saddle point

Eigenvalues
sign and nature

of point P5

λ1 <0,  λ2 <0,  λ3  <0
 Saddle point

λ1 <0,  λ2 <0,  λ3

<0
 Stable node

Table 3: Transcritical bifurcation between
points P2 and P5

Remark: Note that q1 < q2 always and in the case

we are studing ( 
K

s
>β ) it can be shown that  

   q1 < q3.

B) Transcritical bifurcation between points P5 y
P6.

In the light of the results from Tables 1
and 2 we come to the conclusion that, for values
of  α = 9.75@10-4   and  β = 1.62@10-4 , there
exists also a transcritical bifurcation between

points P5 y P6 for the value  q = q3 =
sp

cβ
 =

8.7178@10-5.
Notice that for  q2 < q < q3 the first point

is a saddle point and the second one is a stable
spiral in two directions and a stable node in one
direction. It can be shown that the two points
collide for q = q3 and for q3 < q <q4 they exchange
their stability. See Table 4 for a summary.

q2 < q < q3 q3 < q < q4

Eigenvalues
sign and
nature of
point P5

Re(λ1 ) = Re(λ2) <0,
 λ3 <0

Stable spiral in two
directions, stable

node in one

λ1 >0,  Re(λ2 ) =
Re(λ3) <0

Saddle point

Eigenvalues
sign and
nature of
point P6

λ1 >0,  Re(λ2 ) =
Re(λ3) <0

Saddle point

Re(λ1 ) = Re(λ2)
<0,  λ3 <0

Stable spiral in
two directions,

stable node in one

Table 4: Transcritical bifurcation between
points P5 and P6

Figure 5 shows two trajectories starting
at points next to P5 and P6 respectively for a
value of q greater than the bifurcation value q3.
Notice how the trajectory starting near P5
(unstable in that case) moves away from it and is
finally attracted towards P6 (stable spiral).

9.- A Hopf Bifurcation.

If we look at Table 2 we will see that for
 q < q4, the equilibrium point P6 is a stable spiral
in two directions and a stable node in one direction
because of the associated eigenvalues are two 
conjugated complex numbers with negative real
parts and a negative real eigenvalue. However, for
values of q > q4 situation is reversed and P6
becomes an unstable spiral. The complex
eigenvalues cross the imaginary axis and their real
parts become positive. This is the first sign that a
Hopf bifurcation may exist. In order to confirm
this bifurcation, we should find some limit cycle
surrounding P6. Numerical integration8 of the
system shows that when P6 becomes unstable, a
small attractive limit cycle appears surrounding it.
In this case we can confirm that it is a supercritical
Hopf bifurcation.

 In Figure 7 it can be seen this limit cycle.
Figure 8 shows a trajectory starting at a point
close to P6 = (629´008, 708´859, 39´205), exactly
at point P0 = (629, 708´8, 39´2). As it can be
noticed, this trajectory is repelled in spiral from
P6 towards the limit cycle. Figure 9 shows a
trajectory with initial values at a point close to the

                                               
8 With ODE Software[8]. Figures have

been plotted with this software too.



limit cycle but external to it (exactly at P0 = (630,
709, 40). This trajectory is inmediately attracted
by the limit cycle.

It is important noting that all the previous
properties exist locally but not globally, i.e. they
hold in a neighbourhood of the limit cycle and the
fixed point.

As we move away from a neighbourhood
, the situation can be completely different like the
one shown in Figure 10. In this figure it can be
seen how a trajectory starting at point P0 = (735,
715, 45) (out of the basin of attraction of the limit
cycle) is attracted by one of the other equilibrium
points of the system, the point P2 = (0, 1000,0).

We have calculated the period T of the

limit cycle, T =  
ω
π2

, where ω represents the

frequency of the limit cycle that can be calculated
by the formula9  ω = Im(λ) where λ is the complex
eigenvalue associated to point P6 for the
bifurcation value q = q4.

We must stand up that we have made a
numerical analysis. Hence the results are not exact
and we should realize that there is a small
neighbourhood of q4 such that if q is next to q4

there will be another limit cycle for q. In Figure11
we have represented some of these limit cycles for
values of q in a neighbourhood of q4 with a
radium less than 10-7.

10.- Final  remarks.

The preceding study has shown some
dinamical properties of system (4) in accordance
with parameters values. In the present section we
would point out some final remarks:

1) Some parameters, like c or p, are changing
constantly and they depend on some economic
restrictions. Therefore, if we consider that the
catch price does not vary with time, it does not
correspond with reality, but we must consider that
making a qualitative study with a great number of
parameters is difficult and it is necessary to make
use of numerical simulations. For simplicity  it is
convenient to assing fixed values to the
                                               

9 Strogatz [9],p.51.

parameters. Our next goal is to change the values
of the parameters on some intervals and to show
all the dynamical possibilities of our system.

2) A problem arises when we try to put the
theoretical study into practice. Do results solve
our problems in the real enviroment? After
analizing the transcritical bifurcation between P2
and P5 we have noticed that for q<q4 an
equilibrium point appear at

P5= 
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

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
Kpq

c)-r(qKp
 0,  ,

pq

c
2

whose third coordinate (which represents the
fishing effort) is negative. This is not possible in
reality. Something similar occurs between P5 and
P6, for the bifurcation value q=q3. The second
coordinate of point

P6= 

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is negative

Let us remark again that this is a
theoretical study. Probably for some other models
with different values for α and β we would obtain
different conclusions.

3) This is a mathematical approach to a biological
model. Our next aim is to apply it to a model of
optimal management of the resource (by using the
Optimal Control Theory). Then it will become a
complete bioeconomic model . In such a model we
would try to study the optimal exploitation paths.



11.- Figures.
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