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ABSTRACT

In this paper we introduce a method for generation of high-confidence association rules from a large
transaction’s database. We represent this database by a binary relation where the domain is the set of
transactions and the range is the set of items. From this binary relation we construct a Galois Lattice.
We show how the hierarchical structure of Galois Lattice allows generation of  high-confidence
association rules which associate the maximum of items.
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1 INTRODUCTION
The problem of discovering association rules
between items in a large database sales
transaction of a supermarket was introduced in
[1]. These rules are interesting because they
allow the head of the supermarket to take the
good decisions such for  example what to put
on sale and help to develop a marketing
program.
In this paper we are interested with rules that
associate the maximum of items, called large
rules, and have high confidence values close
to 1. Such rules are useful and can be used to
organize the supermarket and place better the
items in the shelves in order to maximize the
profit. We develop an algorithm that uses the
hierarchical structure of Galois lattice, the
lattice of large and maximal itemsets to
generate this kind of rules.
This paper is organized as follows. In section
2, we review the related work. Section 3
presents the mathematical background of the
rectangle concept and Galois lattice. Section 4
shows how we generate large and maximal
itemsets. The algorithm for generation of high

confidence and large rules is introduced in
section 5. Finally, section 6 concludes  this
paper and points out future issues.

2 RELATED WORK
The problem of discovering association rules
can be decomposed into two steps [1] :

Step1: Find all sets of items ( itemsets) that
have transaction support greater than minimum
support. The support for an itemset is the ratio
of the number of transactions that contains the
itemset to the total number of transactions.
These itemsets are  called frequent itemsets.

Step2 : For each frequent itemset E, find its all
not empty subsets S and output rules of the
form
S => E - S  if the ratio of support(E) to
support(S) is greater than a threshold called
minimum confidence.

Step 1 is more difficult than step2 and many
algorithms were proposed to find frequent



itemsets. APRIORI [2] is a well-known one .
Its basic idea is that  if an itemset is frequent so
are all its sub-itemsets. Therefore the
construction of sets of n items candidates to be
frequent is generated by joining frequent sets
of n-1  items and pruning those whose  subsets
of n-1 items are not frequents.

Other algorithms [6], [14], [9] have followed
the same idea and tried to outperform Apriori-
algorithm in reducing the time of execution,
the number of passes made over the database
and the memory consumption.

The apriori-like algorithms are inadequate for
finding frequent itemsets with high number of
items (large itemsets) because they produce an
exponential number of candidates itemsets
[3]. To find a frequent itemset of n items,
Apriori produces  2n  frequent sub-itemsets.
This exponential complexity restricts apriori-
like algorithms to find only frequent itemsets
with low number of items. To address this
problem, many recent algorithms have been
proposed such as of Bayardo [3] who find the
maximal frequent itemsets or the close
algorithm of  [13] which find the frequent
closed itemsets. These algorithms produce
efficiently large frequent itemsets.

In our work we use the notion of maximal
itemsets through the concept of maximal
rectangles [8]. Many algorithms [5] ,[11]
enable to produce the lattice of maximal
rectangles. We insist on exploitation of the
lattice structure to show how it serve to
generate high confidence and large association
rules.

3. RECTANGLE AND GALOIS LATTICE
A binary relation R on  set E is defined as a
subset of the Cartesian product
E x E.  We denote by e R e' the fact that an
argument e (or input) of E is linked with an
image e' (or output) of E by R.  Among the
relations on a set E, we can mention the
identity relation I and the null relation Ø (we
shall use this  symbol to denote the null set Ø).
If S is a subset of E, then we denote by
I(S) = {(e,e) | e ∈ S} the image set of S by I.
We can associate the following subsets of E
and F with a given binary relation R:
the image  set of e is defined by
e. R = {e' ∈E | e R e'};

the antecedents  of e' are defined by
R. e' = {e ∈E | e R e'};
the domain  of R is defined by
Dom(R)= {e  | ∃∃ e' ∈E : e R e'};
the range  of R is defined by
Range(R) = {é  | ∃∃ e ∈E  : e R e'}.

3.1 Rectangle

Given a set S, we let a rectangle on S be a pair
of sets A and B of S, which we denote by
(A,B). Except when A= ∅ or B = ∅ there is a
one to one correspondence between r1 and
r2,r3..rn. A is the domain of the rectangle (A,B)
and B is its range.

Remarks:
The correspondence between rectangles
(Ai,Bi) and the associated rectangular relations

Ai x Bi is a bijective one, except when Ai = ∅
or Bi = ∅.  For instance, the rectangles

(∅, B1) and (A1, ∅) are both associated with

the null rectangular relation ∅.  The main
reason for making a distinction between
rectangles and rectangular relations is that the
concept of a rectangle enables us to obtain a
lattice structure.

3.2 Maximal Rectangle

Let (A,B) be a rectangle of a given relation R
defined on S.  The rectangle (A,B) is said to be
maximal  if whenever A x B  ⊆ A' x B' ⊆ R,
then A = A' and B = B' [8].
Remark :
The notion of maximal rectangle is not new, it
is found with different names such as :
Complete  couple in [10],  or  Concept in [15].

3.3 Partial Order Relation

The relation  defined below on the set of
maximal rectangles of a binary relation R is a
partial order  relation:
 ∀  ∀ (A1, B1) and (A2, B2) two maximal

rectangles of R,  (A1, B1) ≤≤≤≤  (A2, B2) <=>

A1 ⊆ A2 and B2 ⊆  B1.  The proof of this

proposition can be found in [7].

3.4  Galois Lattice
Let R be a finite binary relation defined

on E and F there is a unique Galois Lattice



corresponding to R [11]. Each element of the
lattice must be a maximal rectangle as defined
in 3.2, noted (X,Y), composed of a set
X∈ P(E) and a set Y∈ P(F).
Let f and g defined as following :

f = { (X,Y) / ∀ x ∈∈X, ∀ y ∈Y (x , y)∈ R}
g = f-1 = {(Y ,X) / (X,Y) ∈f }

where the couple of functions (f,g) is said to be
a Galois Connection between P(E) and P(F)
and the Galois lattice (GL, ≤≤) for  the binary
relation is the set of all maximal rectangles
with the partial order relation defined in 3.3.
The partial Order is used to generate the graph
of the Galois lattice which is called Hasse
Diagram. Galois lattice has a supremum (E,∅)
and an infimum  (∅∅,F), for more details on
Lattice Galois the reader should consult [12].

4. GENERATION OF LARGE AND
MAXIMAL ITEMSETS
Let T be the set of transactions and A be the
set of items. We begin by transforming the
transactional database to a binary relation
database R such as R ⊆ T x  A. Then we
construct he lattice  of maximal rectangles (G,  
≤≤ ) where G is the set of maximal rectangles
of R.
The domain of a maximal rectangle is a set of
transactions ant its range is an itemset. From
definition of a maximal rectangle we can assert
that the range of a maximal rectangle
corresponds to a large itemset (in number of
items) with the maximal number of
transactions that contains it.
.
Definition
The range of a maximal rectangle is said a
large and maximal itemset. The support of this
itemset is the ratio of the cardinal of domain of
the maximal rectangle to the cardinal of
domain of relation R.
Remark:
In the rest of this paper, we frequently use the
terms support of maximal rectangle instead of
support of large and maximal itemset which
mean the same signification.

Properties
1- A large and maximal itemset is said

frequent if its support is greater than
minimum support.

2- Each subset of a large and maximal itemset
is frequent but not necessarily large and
maximal.

3- The frequent, large and maximal sub-
itemsets of a frequent large and maximal
itemset can be deduced directly from the
lattice (G,  ≤≤ ).

Example
This example is extracted from [13] :  Let be
the following transaction’s database :

TID
+

LIST OF ITEMS

T1 A     C     D

T2 B     C     E

T3 A     B     C     E

T4 B     E

T5 A     B     C     E

(+) TID: Transaction Identifier

R is the binary relation that corresponds to the
previous database and is represented by the
following matrice

A B C D E
T1 1 1 1
T2 1 1 1
T3 1 1 1 1
T4 1 1
T5 1 1 1 1

We represent below the lattice of maximal
rectangle of relation R (see figure 1).

If  we assume that minimum support is 2 (2/5)
then we are concerned only with the following
maximal rectangles:
REC0 = T1,T2,T3,T5 x C
REC1 = T2,T3,T4,T5 x B, E
REC2 = T1,T3,T5 x A, C
REC3 = T2,T3,T5 x B, C, E
REC4 = T3,T5 x A, B, C, E



       

Figure1: lattice of maximal rectangles of R

From these rectangles we can deduce that the
itemsets  { C }, { B, E }, { A, C }, { B, C, E }
and { A, B, C, E} are frequent, large and
maximal. Each subset of { A, B, C, E} is
frequent. Using the lattice we can see that
REC4 ≤≤ REC2 and REC4 ≤≤ REC3 so the
range of REc2 and REC3, which are { A, C },
{ B, C, E }, are subset of { A, B, C, E} that are
frequent but also large and maximal.

A directed advantage follows from the lattice
structure is that we have an idea of the
different levels or values of supports. We can
help the user to choose the minimum support
contrary to done actually that consist to assume
a minimum support and change it when finding
bad results.
We can go ahead , using this structure, to
choose the best minimum supports for
generating rules that contain user-specified
items by selecting the specific rectangles. We
can also help the user to reformulate its query
when searching such rules by using Galois
connection [7].

5. ALGORITHM FOR GENERATION OF
HIGH-CONFIDENCE AND LARGE
RULES
We use the lattice of maximal rectangles to
generate high-confidence and large rules. We
set a minimum support so we are concerned
with only frequent large itemsets or maximal
rectangles which supports (supports of its
ranges) are greater than the minimum.
In fact a maximal rectangle REC assures a
large itemset that enable generation of large
rules. Next by using the partial order relation ≤
≤ we find for each maximal rectangle REC all

the maximal rectangles RECi  that are
immediately higher than REC (REC ≤≤ RECi ).
The range of each RECi  , is a sub-itemset of
the range of REC which is frequent, large and
maximal, will be used as premise for our rules.
The cardinal of the range of each RECi   is the
nearest of the cardinal of range of REC and so
guarantee confidence value high and close to 1.
In our work, we don’t fix a minimum
confidence.
We present below the main notations that we
use in our algorithm. Let be
T the set of  transactions
A the set of items
R a binary relation / R  ⊆   T x A
G the set of maximal rectangles

of  R
(G, <<) the lattice of maximal

rectangles of R
REC a maximal rectangle
card(E) the cardinal of set E
supmin minimum support
Sup(E) support of set E
Sup(REC) support of REC /  Sup( REC )

=  Sup( range(REC ))

The lattice is (G, <<) is the entry of our
algorithm given in the following:

Algorithm
Begin
For each  rectangle REC with sup(REC) >=
supmin and card( range(REC) ) >= 2
do

If REC <<  (T x ∅ )
then
/* CASE 1
All items of range(REC) are strongly
linked. We output rules with
confidence = 1 */
∀ S⊆ range(REC); S ⇒ range(REC)-S

      with confidence =1
/* because  card(S) = card(range(REC)) */

Else
/* CASE 2
we output rules with high-confidence
values */
For each rectangle RECi  that is
immediately higher than REC
(REC ≤≤ RECi ).
Do
/* output the rules: */

T1,T2,T3,T4,T5  X ∅

T2,T3,T5  X  B, C , E

T2,T3,T4,T5  X  B, ET1,T2,T3,T5  X  C

T3,T5  X A, B, C , ET1  X  A, C , D

∅  X  A, B, C, D,  E

T1,T3,T5  X     A, C



range(RECi ) ⇒ range(REC) -
range(RECi )
with Confidence = sup(REC)  /
sup(RECi)

/* the value of confidence is the highest
because range(RECi ) is the largest maximal
itemset that can be a premise  */

end do

/* CASE 3
we output other rules with
confidence = 1 */

For each itemset S  ⊆  range(REC)
and S not  ⊆  every range(RECi)

/* rectangle RECi   is
immediately higher than REC
(REC ≤≤ RECi ).*/
Do

We output
S ⇒ range(REC) - S
with confidence =1

/* because  card(S) = card(range(REC)) */
end do

End if
End do

End

Using the same example stated above (see
figure 1) and If  we assume that minimum
support is 2 (2/5) then we are concerned only
with the following maximal rectangles:
REC0 = T1,T2,T3,T5 x C
REC1 = T2,T3,T4,T5 x B, E
REC2 = T1,T3,T5 x A, C
REC3 = T2,T3,T5 x B, C, E
REC4 = T3,T5 x A, B, C, E
The rectangle REC0 is not retained because it
contains only one item.

Applying our algorithm, we give below the
rules relatives to each rectangle.

1) The rules relatives to REC1

We have REC1 << T1,T2,T3,T4,T5  X ∅

Case1 (see algorithm)
B ⇒ E with confidence = 1
E ⇒ B with confidence = 1

2) The rules relatives to REC2 :

we have REC2 << REC0

Case2
C ⇒ A with confidence = 3/4
Case3
A ⇒ C with confidence = 1

3) The rules relatives to REC3

we have REC3 << REC0 and  REC3 << REC1

Case 2
C ⇒ BE with confidence = 3/4
BE ⇒ C with confidence = 3/4
Case3
BC ⇒ E with confidence = 1
CE ⇒ B with confidence = 1

4) The rules relatives to REC4

we have REC4 << REC2 and REC4 << REC3

Case2
AC ⇒ BE with confidence = 2/3
BCE ⇒ A with confidence = 2/3
Case3
AB ⇒ CE with confidence = 1
AE ⇒ BC with confidence = 1
ABC ⇒ E with confidence = 1
ABE ⇒ C with confidence = 1
ACE ⇒ B with confidence = 1
So for a minimum support equal to 2/5 our
algorithm generates the following rules which
are sorted on confidence.

B ⇒ E with confidence = 1
E ⇒ B with confidence = 1

A ⇒ C  with confidence = 1
BC ⇒ E  with confidence = 1
CE ⇒ B with confidence = 1
AB ⇒ CE with confidence = 1
AE ⇒ BC with confidence = 1
ABC ⇒ E with confidence = 1
ABE ⇒ C with confidence = 1
ACE ⇒ B with confidence = 1
C ⇒ A  with confidence = 3/4
C ⇒ BE  with confidence = 3/4
BE ⇒ C  with confidence = 3/4
AC ⇒ BE  with confidence = 2/3
BCE ⇒ A with confidence = 2/3



6. CONCLUSION
This paper has shown how we can exploit the
lattice of maximal rectangles to generate high
confidence and large association rules. We also
see that the lattice structure can help the user to
choose the minimum support and to search the
rules which contain specific items.
Although our method is incomplete because
we don’t generate all association rules, it is
useful and sufficient especially for commercial
domain where constraints as the number of
items in the rules or finding strongly linked
items can be imposed.
Algorithms for construction lattice of maximal
rectangles are limited for very large database.
Improving and implementing such algorithms
is under study.
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