
How to disambiguate uni�cation in minimal proof tools

Philippe Ladagnous

IRIT, UPS Toulouse, 118 Route de Narbonne,

F-31062 TOULOUSE Cedex, FRANCE

Phone number: +33.5.61.55.63.25

Abstract: The aim of the mechanism described in this paper is to ease the veri�cation of

UNITY programs. The basic idea is that in many theorem provers such as Deva[12], the user

spends too much time describing what he wants to do. This waste of time may come from the

search for the correct rule to apply on the one hand and from the several ways of applying it on the

other. So, we provide in our "Devaur" tool a functionality to overcome these di�culties through the

analysis of user mouse manipulations. But whereas other Devaur-like tools have statically de�ned

such interaction interpretation, we provide a language allowing the developers of new Deva libraries

to de�ne their own ones. When several theories are involved, all these interpretations coexist and

may generate several di�erent rules that could be applied. So, at each proof step, several rules may

be proposed, but since they are focused on the user selection, they are always pertinent. Moreover,

due to our language, they may be suggested through natural sentences, and so, very easy to select

or discard. Furthermore, since the di�culties this mechanism can overcome are commonly met in

minimal theorem provers, we think it could be an inspiration for some of them.

Keywords: UNITY, theorem prover, higher order uni�cation, graphical user interface (GUI),

mouse interactions interpretations

1 Introduction

Writing correct parallel programs is a very di�cult task and consequently, we would like to formally

check such developments. In order to do that, we need a formalism to express speci�cations and

programs, and a tool to ensure that such programs respect their speci�cation. The genericity of

the Deva language [12] in terms of development methods together with the fact that an interpreter

of this language has been developed in our team [7] led us to choose it as the base support for our

developments.

On an other hand, researches already conducted in this domain by an other IRIT team [4] led

us to choose UNITY [3] as the formalism to express parallelism. After having developed Deva

libraries for UNITY, we unfortunately noticed that, due to the minimality of the proof system,

writing development proofs is very long and tedious and so unrealistic for most of them.

From our experience, we notice that in fact, even if the user has in mind how to conduct the

proof, he often wastes time searching the right rule to do it. Indeed, even if he may get from the

tool the list of applicable rules, searching the required one among a possibly very large set can be

quite long. Moreover, the higher order of the Deva uni�cation process can lead to indeterministic

rule application[9], and again, some time is spent making it deterministic (before application) or

searching the correct variant (after application).

The underlying idea of the mechanism presented here is, as in many tools of this kind, to get

from the user a complementary information in order to both reduce the number of suggested rules

and generate a determinised version of each rule.

The main di�erence between our mechanism and those traditionally implemented is its gener-

icity. Indeed, a system like CtCoq[2, 1] implements statically de�ned interpretations of user in-

teractions. For example, a \drag and drop" operation from a binary operator towards one of its

1

arguments is reduced into its second argument if the �rst argument is a neutral element for the

operator. Even if the developer is able to de�ne new operators and their associated neutral ele-

ments, the general behaviour of the interface will always remains the same. In a similar way, the

\proof by pointing" mechanism [2] is statically de�ned and, when performed in a same context,

user interactions are always interpreted in the same way. In Devaur, we take a di�erent approach :

a theory developer (i.e. a person who implements a new Deva library in order to deal with a new

theory) is able to precisely specify how and when each Deva rule of this new theory should be

applied.

We present in the next section an example of the problems we want to deal with. A concrete

solution is given in section 3. A way of introducing humanity in these new results is then presented

in section 4. The �fth section introduces higher order tactics to allow larger proof steps, then a

conclusion and prospects are given in section 6.

2 Indeterministic Rules

We take a simple example: the induction principle on naturals numbers. It is de�ned in the

following way in our libraries :

induc : [P?[N |- B]; P(0); [n:N; P(n) |- P(s n)] |- [n:N |- P(n)]]

Here is an informal description of this rule : for all predicate P whose domain is N , if we provide

a proof of P (0) and a proof of 8n:P (n)) P (s(n)), then we get a proof of 8n:P (n).

If we attempt to apply in a backward chaining way the induc rule on a goal such like x*(y+z)=x*y+x*z,

Deva tries to unify the goal and the rule conclusion : the uni�cation process then returns several

di�erent possible applications; in fact, it returns one variant for each natural subterm and one

for each combination of syntactically equal natural subterms (and not only variables) of the goal.

Unfortunately, whereas only three of these variants have a mathematical sense (the induction on

all occurrences of x, y or z), there is no way to specify it in Deva. Moreover, concerning the request

of applicable rules, since the induc rule conclusion is P (n), it can always be applied when the goal

is a boolean expression which contains a natural subterm; since it is a very common situation, this

rule will be very often suggested.

In brief, the induc rule is very often proposed1 and its application is generally indeterministic : this

rule is really a good example of bad Deva rule.

Let's now suppose we get a complementary information from the user : a subterm (or the whole

goal itself) of the current goal; then, it is quite logical to propose the induc rule only when the user

selects a natural variable. Moreover, the same information can be used to determinise the rule:

the tool knows on which variable the user wants to induct. Unfortunately, we will see later that

this user selection interpretation is really bound to this particular rule and that only the theory

developer is able to give a pertinent sense to user selection, this is the purpose of the language of

\tactics".

3 Making the induction rule deterministic

Let us introduce a part of this new language through the induc tactic :

tactic induc :: (((type-of(goal) equal B) and (type-of(sel) equal N))

and (sel match ident(i)))

: return (induc(P:=[newvar:N |- goal[newvar // sel]2])

-> goal[0 // sel]

1
Since the aim is to propose only a few rules at each proof step, it is not really an advantage.

2
The notation ``t1[t2//t3]'' stands for t1 where all occurrences of t2 are replaced by t3.

2

, [h: goal[inducv // sel] |- goal[s(inducv) // sel]]

--> Induction on sel)

A tactic is composed of three parts; in the �rst one stands the name \induc" of the tactic. The

second part (between \::" and \:") is a conditional part allowing us to describe in which cases the

tactic may be used. This part is in fact a boolean expression. In the example, we impose that :

(1) the current goal (denoted by the \goal" keyword) is boolean (due to the boolean nature of the

induc rule conclusion (2) the user selection (denoted by the \sel" keyword) is of type N (of course :

this is the induction on naturals!) (3) the selection must be a Deva identi�er (induction can be

only applied on variables).

The third part of the tactic contains the instruction. In this simple case, it is reduced to a

return instruction which essentially returns the Deva rule to send if the tactic is applied. Two

optional arguments may be added, the �rst one is the new possible subgoals the rule application

will introduce and the second is described in the next section.

If applied, this tactic sends the induc rule with an explicit value for its parameter P . This value

is de�ned as an abstraction whose conclusion is the current goal where all subterms syntactically

equal to the user selection are substituted by the abstraction parameter; the uni�cation process of

P (n) with the goal then returns only one result : the application is deterministic.

For example, if the user clicks on y in x*(y+z)=x*y+x*z, then the uni�cation process of the

current goal with induc(P := [newvar : N ` x � (newvar + z) = x � newvar + x � z]) leads to

only one result.

4 Introducing Humanity in Tactics results

Since the tactic mechanism can propose several Deva rule applications, we have to help the user

choosing the right one; for that purpose, we provide two ways of presenting these rules : the �rst and

most classical is to display for each tactic what (possible) subgoals will appear if it is applied. But

even if tools like Devaur are rigorous and formal, when no confusion can be introduced, speaking

in natural language is a chance to introduce some humanity in them. Thus, we provide the ability

to present each tactic through natural sentences : this is the purpose of the optional return's third

parameter. Naturally, the tactic variables and keywords such as goal, sel or type-of may be used.

For example, with the previous de�nition of the induc tactic and the selection of the variable y,

the message \Induction on y" appears in place of the more traditional base and iteration cases.

5 UNITY properties and higher order Tactics

Recalling that the main purpose of our tool is to make the proofs of UNITY programs easier, we

now introduce more complicated tactics intended to reduce the amount of user work during this

process. In order to do that, we must present (unfortunately very succinctly) how we deal with

UNITY programs and properties.

In Devaur[10, 11], as in many systems[8, 6, 5], the semantics of a UNITY program is described

through the set of all its possible execution sequences, where a sequence is an ordered in�nite list of

states, each state attributing (or not) a value to each variable. For some reasons we do not describe

here, we prefer to create a new sort for states (which is called \st") and to consider variables as

functions from st onto their domain (integer or boolean) rather than the inverse (which is widely

used). Here are the corresponding assertions we can �nd in Devaur :

st : sort Declaration of a new sort for states

si := [st ` I] Abbreviations to make new integer or boolean state variable declara-

sb := [st ` B] tions easier.

3

We de�ne state expressions as Deva texts inductively build starting from state variables con-

stants and operators; for example, if A and B are of type \sb", A ^� B is a state expression (^� is

the conjunction of state booleans). We now de�ne the polymorphic equality on state expressions

and extend the commutative nature of addition onto state integers :

=* : [s ? sort; [st ` s] ; [st ` s] ` sb]

adde_commut : [x,y ? si ` x +* y =* y +* x]

Declaring an abstraction parameter through a question mark means that no explicit correspond-

ing argument must be provided during the rule application and Deva will automatically synthesize

the correct value. Thus, the \=*" operator takes only two arguments of type \[st ` s]" (s can

be of any non functional type) and returns a state boolean : the equality of two state expressions

depends on the considered state. We now extend the substitutivity principle of equality over state

equality :

subst_pg : [s?sort ; x,y ? [st ` s] ; P ? [[st ` s] ` B] ; x =* y ; P(y) |- P(x)]

This rule states that for two state variables x and y of type s, and a predicate P on variables

of this type, if we can prove the equality of x and y and that P (y) holds, then we get a proof of

P (x).

This rule allows us to exchange two equal state expressions in a boolean property. In fact, it

has been written in order to manipulate properties of the UNITY logic. Notice that the conclusion

of this rule is an unde�ned predicate applied to an unde�ned state expression; here again, this rule

conclusion can be uni�ed with any boolean term that contains a state expression. It follows that

this rule will be very often suggested and moreover, with a large set of variants. So, we de�ne a

tactic to overcome this fact :

tactic subst_pg_gen :: ((type-of(goal) equal B) and ([ty] match type-of(sel))

and (type-of([ty]) match [st|-sort]))

: return(subst_pg(P:=[newvar:[ty] |- goal[newvar/sel]3])

-> op(=*,newvar,sel) , goal[z/sel]

--> Substitution by a new free variable)

The right operand of the �rst \and" stores the type of the user selection in the unused \[ty]" variable;

this value will be used during the creation of the predicate P . We then check that this value is

correct in regard to the subst pg rule. Indeed, this rule allows only state expressions substitutions.

Finally, it returns the correct deterministic Deva rule. We notice that P is constructed starting from

\goal" where only the selected subterm is replaced by the new variable and not all syntactically

equal occurrences.

After its application, we get two new subgoals. Indeed, we must prove the previous goal in which

the substitution has been performed and the equality between the exchanged subterms. Practically,

the substitution principle is very often used to exchange two subterms that can be proved equal in

one step (i.e. by application of a unique rule that do not generate any new subgoal). In this case,

it would be interesting to use this so called \trivial" rule directly in the tactic and hence to remove

the second previously mentioned goal. In fact, when the user selects a subterm, we should search

for \trivial" rules that can prove the selected subterm equal to an other one and then suggest the

corresponding substitution. In this way, by using this \trivial" rule directly as an argument of the

substitution rule, we get just one new subgoal : the previous goal on which the substitution has

been applied.

tactic subst_pg :: ((type-of(goal) equal B) and ([ty] match type-of(sel))

and (type-of(type-of(sel)) equal [st|-sort]))

3
We denote by t1[t2/t3] the term t1 where the subterm t2 is replaced by t3.

4

: foreach tactic (op(=*,[z],sel))

do return(subst_pg(P:=[newvar:[ty] |- goal[newvar/sel]])

-> goal[[z]/sel]

--> Substitution by [z])

The role of the \foreach tactic" instruction is to search for trivial tactics that can prove a given

goal, op(=*,[z],sel) in the example. Let's suppose T is such a tactic, meaning that T returns a

trivial Deva rule t which proves [z] =* sel; moreover, it comes from the trivial nature of t that [z]

will get a concrete value during this process.

Now, if we send to Deva the rule subst pg(P:=[newvar:[ty] `goal[newvar/sel]]) (t), t will be

considered as the text proving the x =* y hypothesis of the subst pg Deva rule (due to the fact that

the previous parameters of this rule are implicit). Since t proves [z] =* sel, [z] getting a concrete

value, it follows that the x et y parameters of subst pg get concrete values too. So, it comes that

the newvar parameter of the P predicate gets also a concrete value.

Finally, applying subst pg(P:=[newvar:[ty] `goal[newvar/sel]]) (t) entirely de�nes values for all

concerned variables and moreover, provides a proof for the x =* y hypothesis of the subst pg rule.

Then, only the proof obligation of goal[[z]/sel] remains, that is the previous goal where the selection

has been replaced by a known and proved equal term.

Since the \foreach tactic" instruction performs this work for each trivial tactic, it returns the

complete set of possible substitutions for the selected subterm and of course the associated composed

Deva rules.

More generally, this instruction is used in tactics associated with non trivial Deva rules (i.e.

that generate several subgoals if applied without any argument). For example, if a rule r is of

the form [h1:t1;...;hn:tn `C], just applying r will generate n new subgoals; if we use the \foreach

tactic" to search for trivial tactics able to prove h1 and if we send to Deva the application of r on

one of these rules, we then will get only n-1 subgoals. This is especially interesting when n equals

two, because we just get an only new goal in place of the previous one, one can say the application

is transparent for the user.

Since UNITY properties are boolean predicates on state expressions, the subst pg tactic can be

applied on such properties. For example, if the current goal and selection are \ x +* y =* 0 unless

x +* y >* 0 in CPT", whereas asking the list of applicable rules returns many possibilities, the

tactic mechanism just suggests the addition commutativity, the substitution by a new variable and

two others rules. Moreover, they are proposed through natural sentences such like \Substitution

by y +* x" or \Substitution by (x +* y) +* 0".

6 Conclusion and prospects

Term manipulations is really a hard problem in proof tools and mechanisms are very often provided

in order to deal with them. Since Deva is not an exception to this rule, we provide an environment,

named \Devaur", among whose functionalities stands a \tactic" mechanism. The purpose of this

tool is to interpret user mouse interactions in order to determinise certain Deva rule applications.

Since we �nd many kind of rules, and since many of them should be used di�erently, we prefer

to provide a way for the theories developers to express these rules particularities through a new

dedicated language.

Even if an intensive use of the mechanism, in particular when proving UNITY properties, led

us to really appreciate its power, we nevertheless regret the wasting of computer resources. Indeed,

since the tactic mechanism does not stand in Deva, a large part of data and algorithms can be found

in both tools. By chance, since the UNITY formalism is not so large, the work on a Sparc classic

Workstation with 72Mb of memory is still comfortable. With about ten higher order tactics and

approximatively thirty �rst order tactics, it takes between one and two seconds to get the result

5

of the tactics search. This time is quite acceptable, in particular when we compare with the time

spent to disambiguate \by hand" the uni�cation process.

An advantage of having developed it over Deva is its possible reuse for some others tool provers.

Moreover, due to the classical way of storing Deva texts as trees in Devaur, and since many tools

use this data structure too, communication process between them should not be so di�cult to

implement. Furthermore, since our tactics mechanism seems to be quite general, we think it could

be at least an inspiration for new such tools.

Finally, due to the latest Devaur evolutions such as automatic proofs on propositional calculus,

Presburger arithmetic[13] and safety UNITY properties, the veri�cation of UNITY developments

becomes faster and faster. Moreover, even if this is probably not the best environment to develop

UNITY programs, we like the idea of overcoming Deva gaps (in fact due to its minimality) by more

complicated tools without loosing the simplicity (i.e. preserving the writing of proofs starting from

a low level axiomatics).

Concerning our future aims, since the Deva interpreter we use does not provide any such func-

tionality, we would like to extend our tool to provide a way of chaining tactics as in Coq or HOL.

Indeed, since each tactic provides the list of future subgoals, we certainly can use them to explore

the proof tree without Deva. Thus, we could provide a mechanism of \tacticals" able to search for

and generate more complicated Deva rules in order to make larger proof steps.

References

[1] J. Bertot and Y. Bertot. Ctcoq: A system presentation. In M. Wirsing and M. Nivat, editors, Algebraic

Methodology and Software Technology, volume 1101 of LNCS, pages 600{603. Springer-Verlag, 1996.

[2] Yves Bertot, Gilles Kahn, and Laurent Thery. Proof by pointing. Lecture Notes in Computer Science,

789:141{160, 1994.

[3] K.M. Chandy and J. Misra. Parallel Program Design : A Foundation. Addison-Wesley, 1988.

[4] M. Charpentier, M. Filali, P. Mauran, and G. Padiou. Tailoring UNITY to distributed program design.

Lecture Notes in Computer Science, 1388:820{836, 1998.

[5] M. Charpentier, A. El Hadri, and G. Padiou. Preuve automatique dans un environnement unity. T.S.I

Technique et Science Informatique, 15, january 1995.

[6] P. Collette. Design of Compositional Proof Systems Based on Assumption-Commitment Speci�cations

- Application to UNITY . PhD thesis, Universit�e Catholique de Louvain, 1994.

[7] A. Coste. Un Syst�eme pour la Validation des D�eveloppements de Programmes: D�e�nition Formelle et

R�ealisation. PhD thesis, Universit�e Paul Sabatier - Toulouse, sep 1993.

[8] F. Andersen, K.D. Petersen, and J.S. Petterson. Program Veri�cation using HOL-UNITY. In J.J.

Joyce and C.-J.H. Seger, editors, International Workshop on Higher Order Logic Theorem Proving and

its Applications, volume 780 of Lecture Notes in Computer Science, pages 1{16, Vancouver, Canada,

August 1993. University of British Columbia, Springer-Verlag, published 1994.

[9] G�erard Huet. A uni�cation algorithm for typed �-calculus. Theoretical Computer Science, 1:27{57,

1975.

[10] P. Ladagnous. Vers la v�eri�cation automatique de programmes UNITY. In Libert et Manneback

Dekeyser, editor, Renpar'7, Mons, mai-juin 1995. R�esum�e et Poster.

[11] P. Ladagnous. Vers la v�eri�cation automatique de programmes UNITY(2). In Actes du s�eminaire

FAC'96, IRIT, Toulouse, 1996.

[12] C. Lafontaine, M. Simons, and M. Weber. The Generic Development Language Deva - Presentation

and Case Studies, volume 738 of LNCS. Springer-Verlag, 1993.

[13] M. Presburger. �Uber die vollst�andigkeit eines gewissen systems der arithmetic ganzer zahlen in welchem

die addition als einzige operation hervortritt. In Comptes-rendus du premier Congr�es des Math�emati-

ciens des Pays Slaves, pages 192{201,395, Warsaw, 1929.

6

