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Abstract:- A power system is continually experiencing disturbances. Event disturbances include generator
outages, short-circuits caused by lightning or other fault conditions, sudden large load changes, or a
combination of such events. Load disturbances, on the other hand, are the small random fluctuations in load
demands. Transient stability analysis is concerned with a power system´s ability to reach an acceptable
steady-state following an event disturbance. Stability analysis is the study of whether the postfault trajectory
will converge to an acceptable steady-state as time passes.

Time-domain approach examines the behavior of the generators, one determines whether stability has
been maintained or lost. In  contrast to the time-domain approach, direct methods determine system stability
based on energy functions.
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1 Nonlinear systems
We next review some relevant concepts from
nonlinear dynamics systems theory. Let

( ) ( )( )tXf
dt

tdX
=           (1)

be the power system model under study, where
the state vector X (t) belongs to the Euclidean
space Rn, and the function f : Rn→Rn satisfies the
sufficient condition for the existence and
uniqueness of solutions. The solution curve of (1)
starting from X at t=0 is called a trajectory,
denoted by Φ: R → Rn. Note that Φ(X,0)=X.

The concepts of equilibrium point (e.p.), stable
and unstable manifolds are important in
dynamical system theory. A detailed discussion of
these concepts and their implications may be
found in [1], [2], [3].

A state vector X is called an equilibrium point
of system (1) if f(X) = 0. We denote E to be the set
the equilibrium points of the system. A state
vector X is called a regular point if it is not an
equilibrium point. We say that an equilibrium
point of (1) is hyperbolic if the Jacobian of f(X) at
X, denoted Jf(X), has no eigenvalues with a zero
real part. For a hyperbolic equilibrium point, it is
a asymptotically  stable equilibrium point if all the
eigenvalues of its corresponding Jacobian have

negative real parts; otherwise it is an unstable
equilibrium point. If the Jacobian of the
equilibrium point X has exactly one eigenvalue
with positive real part, we call it a type-one
equilibrium point. Likewise, X is called a type-k
equilibrium points if its corresponding Jacobian
has exactly k eigenvalues with positive real part. It
will be assumed that all the equilibium points of
system (1) are hyperbolic.

Let X be a hyperbolic equilibrium point. Its
stable and unstable manifolds, Ws(X) and Wu(X),
are defined as follows:

( ) ( ){ }∞→→Φ∈= tasXtXRXXW ns ,:

( ) ( ){ }−∞→→Φ∈= tasXtXRXXW nu ,:    (2)

Both stable and unstable manifolds are invariants
set.

For an asymptotically stable equilibrium point,
it can be shown that exists a number δ >0 such
that

( ) ∞→→Φ<− tasXtXimpliesXX ,00 δ

If δ  is arbitrarily large, then X is called a global
state equilibrium point. There are many physical
systems containing stable equilibrium points but
not global stable equilibrium points. A useful
concept for these kinds of systems is that of
stability region, also called region of attraction.



The stability region of a stable equilibrium point
Xs is defined as

( ) ( ){ }s
t

n
s XtXlimRXXA =Φ∈=

∞→
,:           (3)

From a topological point of view, the stability
region A(Xs) is a open, invariant, and connected
set. The boundary of stability region A(Xs) is
called the stability boundary of Xs and will be
denoted by ∂A(Xs). The stability boundary is
topologically an (n-1) dimensional closed and
invariant set.

2 Direct methods
Heuristic arguments of the applicability of the
direct methods can be derived from the classical
equal area criterion. Consider one-machine-
infinite-bus system described by the following
equations:
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There are three equilibrium points lying within the
range of ( ){ }0,, =<<−= ωπδπωδ , and they

are ( ) ( )( )0,/0, oms PParcsin=δ  which is a stable

equilibrium, ( ) ( )( )0,/0, 01 PParcsin m−= πδ ,

( ) ( )( )0,/0, 02 PParcsin m−−= πδ , which are

unstable equilibrium points. We consider the
following function, termed energy function

( ) δδωωδ cos
2

1
, 0

2 PPME m −−=         (5)

The energy function can be divided into kinetic
energy K(ω) and potential energy functions U(δ),

( ) ( ) ( )δωωδ UKE +=,
where

( ) 2

2

1
ωω MK =  and ( ) δδδ cos0PPU m −−= .

We notice that function U(δ) reaches its local
maximum at the unstable e.p.’s δ1 and δ2.
The system is two-dimensional (2-D). Hence, the
stability region of (δs,0) is 2-D and the stability
boundary δA(δs,0) is composed of the stable
manifold of the u.e.p. (δ1,0) and the stable
manifold of the u.e.p. (δ2,0). The u.e.p. (δ1,0) has
the lowest energy function value among all the
u.e.p.’s on the stability boundary ∂A(δs,0). Hence,
(δ1,0) is termed the closest u.e.p. of (δs,0) with

respect to the energy function U(δ). We notice
that:
• The intersection between A(δs,0) and the angle

space ( ){ }0,:, == ωδωδ R  is

( ) [ ]{ }0,,:, 12 =∈= ωδδδωδδA .

• The boundary of this one-dimensional region
Aδ is composed of two points δ1 and δ2, where
(δ1,0) and (δ2,0) are the u.e.p.’s on the
stability boundary ∂A(δs,0).

• These two points δ1 and δ2 are characterized as
being the local maxima of the potential energy
function U(δ).

The stability for this simple system can be directly
assessed on the basis of the energy function U(δ):
if a given postfault trajectory (δ,ω), after reaching
a local maximum value of U(δ), δ  starts to
decrease, then the stability of this postfault
trajectory is assured.

The basis of direct methods for the stability
assessment of a postfault system is knowledge of
the stability region: if the initial condition of the
postfault system lies inside the stability region of
a desired postfault stable equilibrium point, then
one can ensure without performing any numerical
integrations that the ensuing postfault trajectory
will converge to the desired point. Therefore,
knowledge of stability region plays an important
role in direct methods.

This section reviews some analytical results
associated with energy function theory which
enable one to characterize limit sets, stability
boundaries and stability regions. A more
comprehensive development of energy function
theory can be found in [4]. This section also
shows how to use energy functions to estimate
stability regions.

We say a function V: Rn→ R is an energy
function for a system (1) if the following three
conditions are satisfied:
1. The derivative of the energy function V(X)

along any system trajectory X(t) is
nonpositive, i.e., 0 ≥ dV(X(t)).

2. If X(t) is a nontrivial trajectory, i.e. X(t) is not
an equilibrium point (e.p.), then along the
nontrivial trajectory X(t) the set

( )( ){ }0/: =∈ dttXdVRt  has measure zero
in R.

3. If a trajectory X(t) has a bounded value of
V(X(t) for t ∈ R+, then the trajectory X(t) is
also bounded. Stating this in brief: If V(X(t))
is bounded, then X(t) is also bounded.



Property 1. indicates that the energy is
nonincreasing along its trajectory, but does not
imply that the energy is strictly decreasing along
its trajectory. There may exist a time interval
[t1,t2] such that ( )( ) 0/ =dttXdV for [ ]21 , ttt ∈ .
Properties 1. and 2. imply that the energy is
strictly decreasing along any system trajectory.
Property 3. states that along any system trajectory
the energy function is a proper map but its energy
need not be a proper map for the entire state
space. Obviously, an energy function is not a
Lyapunov function.

In general, the behaviors of trajectories of
general nonlinear dynamical systems could be
very complicate, unless the underlying dynamical
system has some special properties. For instance,
every trajectory of system (1) having an energy
function has only two modes of asymptotic
behaviors: it either converges to an equilibrium
point or goes to infinity (becomes unbounded) as
time increases or decreases.

3 Direct methods for network-
preserving models

Traditionally, direct methods have been based
on the network-reduction model where all the load
representations are expressed in constant
impedance and the entire network representation
is reduced to the generator internal buses.

There are two advantages of using the
network-preserving power system models for
direct stability analysis. From a modeling
viewpoint, it allows more realistic representations
of power system components, especially load
behaviors. From a computational viewpoint, it
allows the use of the sparse matrix technique for
the development of faster solution methods for
solving nonlinear algebraic equations involved in
direct methods [5]. In this section we discuss
direct methods for network-preserving power
systems models.

The first network-preserving model was
developed by Bergen and Hill [6], who assumed
frequency dependent real power demands and
constant reactive power demands.
Narasimhamurthi and Musavi [7] moved a step
further by considering constant real power and
voltage dependent reactive power loads. Padiyar
and Sastry [8] have included nonlinear voltage
dependent loads for both real and reactive powers.
Tsolas, Araposthasis and Varaiya [9] developed a
network-preserving model with the consideration
of flux decay and constant real and reactive power
loads. An energy function for a network-

preserving model accounting for static var
compensators and their operating limits was
developed by Hiskens and Hill [10]. For purpose
of illustration, we next discuss the Tsolas-
Arapostathis-Varaiya model. In this model, each
generator is represented by the one-axis-model.
The transmission network representation is
preserved.  The complete dynamic equations are
described in the following way.

- Internal Generator Bus: one-axis generator
model. For i = 1,...,n,
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- External Generator Bus: For i = 1,...,n,
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- Load Bus: For k = n+2, ..., n+m+1,
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The above model is a network-preserving
power system transient stability model. In general,
network-preserving models are mathematically
described by a set of differential and algebraic
equations (DAE’s):



      ( )yxf
dt

dx
,=

( )yxg ,0 =        (10)

where x ∈ Rn and y ∈ Rm. Here differential
equations describe generator and/or load
dynamics while algebraic equations express the
power flow equations at each bus. The above
DAE system can be interpreted as an implicitly
dynamical system on the algebraic manifold L

( ) ( ){ }0,:, == yxgyxL         (11)

It has been shown that a DAE in general can be
reduced locally to a ODE. However, despite the
strong analogy between DAE’s and ODE’s, major
differences do exist. For instance, once the
trajectory intersects the following singular surface
S,

( ) ( ) ( )
















=

∂
∂

=∆∈= 0,det,,,:, yxg
y

yxLyxyxS  (12)

a DAE can not be reduced to an ODE. From a
dynamical viewpoint, complicated dynamic
behaviors will occur in the vicinity of S, most of
the trajectories near singular surfaces will not
exist beyond singular surfaces; only when the
initial conditions of DAE satisfy certain
conditions, the trajectories can be extended
further. Due to their complicated dynamics near
singular surfaces, DAE systems are difficult to
analyze and only some phenomena are completely
understood. We next discuss some analytical
results for DAE systems that are useful for
stability analysis of network-preserving power
system models.

If the Jacobian (∂/∂y)/g(x,y) is nonsingular, i.e.,
the system is on the regular part of the DAE (10),
then by the Implicit Function Theorem, the system
equations (10) are locally equivalent to the
following equations:
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The existence and uniqueness of solutions of DAE
in a neighborhood N of the initial conditions can
be guaranteed provided functions f and g are
smooth and the Jacobian (∂/∂y)g(x,y) has a full
rank on N. An equilibrium point of system is a
point such  that f (x,y) = 0 and g(x,y) = 0. A

regular equilibrium point is called a type-k
equilibrium point if the corresponding equilibrium
point of system (13) is a type-k equilibrium point.
The stability of an equilibrium of the DAE (10)
can be analyzed by using a local energy function.

All existing network-preserving models can be
written as a set of general differential-algebraic
equations of the following compact form:
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where u ∈ Tk and w ∈ Rl are instantaneously
variables while x ∈ Rn, y ∈ Tn and z ∈ Rn are state
variables. T is a positive definitive matrix and M
and D are diagonal positive matrices. g1(u,w,x,y),
g2 (u,w,x,y), g3(u,w,x,y) and g4(u,w,x,y) are the
vector field representing the effects of the transfer
conductance in the network Y-bus matrix.

To avoid an awkward analysis of the DAE
representation, the algebraic equations can be
treated as the limiting equation of the singularly
perturbed differential equations. The compact
representation of the network-preserving model
thus becomes:
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where ∈1 and ∈2 are sufficiently small positive
numbers.

If  g1(u,w,x,y), g2(u,w,x,y), g3 (u,w,x,y) and
g4(u,w,x,y) are zero, the compact representation of
the network-preserving model will become:
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If we define
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then ( )zyxwuW ,,,,  is an energy function.

Indeed, by differentiating ( )zyxwuW ,,,,  along
the trajectory, one has      (18)
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Therefore, the condition 1. of the energy function
is satisfied. Suppose that there is an interval
t∈[t1,t2] such that ∂W(u(t),w(t),y(t),z(t))/∂t=0. It
follows from (16) and (18) that z(t)=0 and
∂u/∂t=∂w/∂t=∂x/∂t=0 for t ∈[t1,t2]. This indicates
that y(t) is a constant for t ∈[t1,t2]. It then follows
that the system state is at an equilibrium point.
Thus condition 2. of the energy function also
holds. We can employ similar arguments used for
the network-reduction model to show that
condition 3. is also true; here we omit the detailed
proof. Note that the additional terms in

( ) tzyxwuW ∂∂ /,,,,  as compared with those in
the network-reduction model, are related to the
energy dissipation at load buses. Morever, as ∈
approaches zero, these terms become dominant
in ( ) tzyxwuW ∂∂ /,,,, . This observation also
shows the important role of load models for
stability analysis. When the network transfer
conductance is not negligible, a general
expression of exact energy functions does not
exist. In this case, path-dependent numerical
energy function may prove adequate. This is
similar to the case for network-reduction models.
However, the transfer conductances of the
network-preserving models are usually much
smaller in relative value than that of the network-

reduction models. This physical property makes
numerical energy functions for network-
preserving models ‘close’ to exact energy
functions. This illustrates another advantage for
using network-reduction models instead of using
network-reduction models.

4 Results
The simulation results presented in this section

are on the IEEE 173 bus test system in WSCC
format. Dynamic data is needed to run the time
domain simulations using the TEFTS program
[11].

First, an initial load flow is run based on the
power flow data in the IEEE 173-bus test system
to compute the system`s stable equilibrium point
(s.e.p.). Then, a time domain simulation is carried
out using the dynamic data, by perturbing the
s.e.p. with a 4 per cent change in the values of
some of the system variables. The simulation time
is  0.1 s. The previous case is repeated, but the
perturbation is produced by applying a solid three-
phase fault at bus 127 which is cleared at 0.02 s,
and simulation time is reduced to 0.03s.

Fig. 1 Perturbing the s.e.p. with a 4 % change
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Fig. 2 Perturbation applying a solid three-phase
fault

4 Conclusion
Transient stability analysis is concerned with a

power system´s ability to reach an acceptable
steady-state following an event disturbance. In
contrast to the time-domain approach, direct
methods determine system stability based on
energy functions. There are advantages of using
the network-preserving power system models for
direct stability analysis. The simulation results
presented in this paper are on the IEEE 173 bus
test system. A time domain simulation is carried
out  by perturbing the s.e.p. and by applying a
solid three-phase fault.
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