
Nomenclature
 , : translation velocities at the  and  axisU W x z
: gust velocity at the  axisUg x

 : pitch rateQ
 , : pitch angle and flight path angle 
 �

: aircraft mass; : -axis moment of inertiam I y y
 , :  and  axis aerodynamic propulsion andX Z x z

gravitational forces 
: -axis external aerodynamic & propulsionM y

moment
, : forward and vertical velocity incrementsua(t) w(t)

, , : pitch  angle, pitch rate and flight path�(t) q(t) �(t)
angle increments

, : nominal values of flight path angle and�0 U0

forward velocity
, : thrust and elevator deflection�$(t) �e(t)

: gravitational acceleration g
: dimensional force stabilityZu, Xu, Zw, Xw, Z�e, Z�$

derivatives
: dimensional pitchingMu, M�, M�$, M�e, Mw,Mq, Mw

.

moment derivatives
: gust component increment along stability axisug(t)

1 Introduction
The problem of rejecting atmospheric disturbances
with simultaneously controlling independently the
flight variables of a multimode aircraft is one of the
central problems in flight path control. The design
objective is to eliminate the coupling between the

flight variables of the aircraft, and to completely
reject the undesirable effects of unknown forward
disturbances, thus allowing the pilot to perform
precise manoeuvres by applying simple commands. 

Pitch mode decoupling or flight path control have
extensively been studied and solved in [1]-[7]. The
problem of rejecting unknown disturbances is solved
in [8]. Results regarding the combined problem of
independent control and disturbance attenuation
using a prediction of gust responses, is studied in [9]. 

In this paper, disturbance rejection (decoupling)
with simultaneous input-output decoupling, is used in
order to control the longitudinal motion of an aircraft
flying in non uniform atmosphere. In particular, a
static state feedback law is applied to independently
control the flight path angle and the pitch angle of the
aircraft while an unknown gust acceleration is
completely rejected from the pitch and the flight path
angle. The problem is proven to be solvable for
almost all flight conditions. Explicit characterization
of all controllers solving the problem, is derived in
terms of the aerodynamics parameters of the aircraft
as well as free parameters that can be used to satisfy
pole assignment. In particular, if the pitch angle and
the flight path angle can be controlled independently
without being influenced by the disturbance, via a
disturbance rejection with simultaneous  decoupling
control law, the conditions for stabilizability are
established. 

The goal of our study is to improve the aircraft
effectiveness to follow the pilot's commands. Using

Pitch and Flight Path Control 
with Simultaneous Forward Gust Rejection

M. G. SKARPETIS* , F. N. KOUMBOULIS** and T. G. KOUSSIOURIS* 

* Department of Electrical and Computer Eng.,
National Technical University of Athens, 

15773 Zographou, Athens
GREECE

** Department of Mechanical and Industrial Eng.
 University of Thessaly

383 34 Pedion Areos, Volos
GREECE

CSCC'99  Proc.Pages:6091-6094 

Abstract: -  The problem of rejecting atmospheric disturbances with simultaneous input-output decoupling of
the pitch angle and the flight path angle of an aircraft, is studied. The problem is proven to be solvable for
almost all flight conditions via static state controllers. All static controllers solving the problem are explicitly
characterized. Stability requirements are fulfilled. The present results are illustrated via simulation. 

KeyWords:-Aircraft control, linear systems, input-output decoupling, disturbance decoupling, stability,
feedback.

         



the present control scheme the requirements of
certain flight manoeuvres, such as pitch and flight
path pointing etc., can easily be met inspite of the
presence of the unknown forward gust. Using the
free parameters of the controller a satisfactory closed
loop performance is achieved in the sense of good
flying qualities. All above results are illustrated for a
jet fighter/bomber aircraft, using simulation. 

2 Equation of longitudinal motion
The nonlinear equations describing the longitudinal
motion of a an aircraft are as follows [10-11]:

   X − mgsin(
) = m(U
.

+ U
.

g + QW)
 Z + mgcos(
) = m(W

.
− QU)

    (2.1)M = I yQ
.

, 

.

= Q , 
 − � =tan−1(W/U)
The respective linearized model can easily be

derived using the small disturbance theory and
expressing the aerodynamic forces and moments as
functions of all motion variables (see f.e. [10-11]).
Here we study the longitudinal motion of an
advanced aircraft, in stability axis system, for straight
symmetric flight with wings level. In case where the
increment of the angle of attack, is sufficiently small,
the approximate equation, , can be used� − � ^ w/U0

to derive the following aircraft description [9]
   (2.2a)x.(t) = Ax(t) + Bu(t) + Du.g(t) , y(t) = Cx(t)

with 

x(t) =  ua(t) �(t) q(t) �(t) 
T

  (2.2b)y(t) = �(t) �(t) 
T
, u(t) = �$(t) �e(t) 

T
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
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
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Xu −XwU0 0 XwU0 − gcos�0
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               (2.2c)
where

, M̃u = Mu + Mw.Zu M̃w = Mw + Mw. Zw

,  M̃q = Mq + U0Mw. M̃� = gMw. sin(�0)
 , M̃�e = M�e + Mw.Z�e M̃�$ = M�$ + Mw.Z�$

The unknown gust  is a wind acceleration gust dueu.g

to spatial and temporal variation in the horizontal
gust component. The point approximation for the
above gust is used where in spacewise variations
over aircraft size are ignored in frozen gust [9].

3 The feedback system
The objective of the present design scheme is to
control independently the flight path angle  and the�

pitch angle  and to completely reject the influence�

of the forward acceleration gust  from  and .u.g � �

The combined design scheme facilitates the aircraft
placement and maintenance to desired orientation. To
meet these requirements the input-output diagonal
decoupling with simultaneous disturbance rejection
technique, is proposed. To this end, a static state
feedback law of the form   

                   (3.1)u(t) = Fx(t) + G*(t)
is applied to the  system (2.2), where

 is the external command vector  *(t) = [�c(t) �c(t)]T

with  and  denoting the pilot commands for�c(t) �c(t)
driving the performance variables  and . The� �

disturbance rejected and diagonally decoupled closed
loop system, is of the following form

 where




�(t)
�(t)



 =





h1(s) 0 0
0 h2(s) 0












�(t)
�(t)
u.g(t)








the operator  denotes the Laplace transform. The
most beneficial characteristic of the above
disturbance rejected and diagonally decoupled
structure is the ability to control each output variable
by using only one external input independently from
the disturbances and without influenced by any other
output. Another benefit, resulting from the decoupled
closed loop, is the ability to tune each output
separately by arbitrary shifting the poles of . hi(s)

4 Solvability Conditions
In this section it is investigated under which
conditions (over the aerodynamic parameters) the
proposed configuration results to disturbance rejected
and diagonally decoupled closed-loop system. 
Theorem 4.1. The necessary and sufficient condition
for forward gust rejection with independent control
of the pitch and the flight path angle of the aircraft
(2.2), via the feedback (3.1), is 

                       (4.1)M̃�$Z�e � M̃�eZ�$

Proof: As proven in [12], disturbance rejection with
simultaneous  decoupling is solvable if and only if
the , and  , where det[C	B] � 0 C	D = 0

;   : the i-th row of C	 =




c1Ad1

c2Ad2



 ci C

(4.2)di =




j : ciAjB � 0 j = 0, 1,�,n − 1
n − 1 if ciAjB = 0 �j

Since  then .Since c1B =
−Z�$

U0

−Z�e

U0
� 0 d1 = 0 c2B = 0

and  then .Note that c2AB = M̃�$ M̃�e � 0 d2 = 1 U0

is always . For the present case it holds that � 0 C	 =

 and .Thus, (4.1) is proven.    �





0 1 0 0
0 0 1 0




 C	D = 0

Remark 4.1. Note that, condition (4.1) involves only
the stability derivatives , ,  and  (since M�e Z�$ M�$ Z�e



 and ) and it isM̃�$ = M�$ + Mw
.Z�$ M̃�e = M�e + Mw

. Z�e

true for almost all values of these derivatives [10-11].

5 Explicit Characterization of all 
 Decoupling Controllers
According to [12] the general expressions of the
feedback matrices and  solving the problem, areF G
given by the following expressions  

(5.1)G = 1
M̃�eZ�$−M̃�$Z�e






−M̃�eU0(p1)0
−1 −Z�e(p2)0

−1

M̃�$U0(p1)0
−1 Z�$(p2)0

−1






                    F = 1
M̃�eZ�$−M̃�$Z�e






−M̃�eU0 −Z�e

M̃�$U0 Z�$




 �

 (5.2)
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

Zu

U0
(�1)1

Zq

U0
− gsin�0

U0
+ Zw

M̃u M̃wU0 (�2)1 (�2)2






where ,  are arbitrary parameters. Relations(� i ) j (pi)0

(5.1 and 2) are explicit formulae yielding controllers
that can easily be implemented by elementary
operations upon the values of the stability derivatives
of the aircraft, and the nominal values  and . �0 U0

6 Decoupled Closed Loop System 
The degrees of freedom  in (5.1 and 2), can be(� i) j

used to shift the closed loop system poles. To this
end, the general form of the transfer function matrix
of the decoupled closed loop system is derived to be 
C(sI − A − BF)−1 BG D  =

 (6.1)
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(p1)0
−1

s−Zw−(�1)1
0

0
(p2)0

−1

s2−M̃q−(�2)1 s−(�2)2−M̃wU0−M̃�

0

0


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The polynomial which is cancelled out in the
general form of the closed loop transfer function, is 

pu(s) = s+ M̃�e(X�$Zu−XuZ�$ )+M̃�$(XuZ�e−ZuX�e)+M̃u(X�$Z$−Z�eX�$ )

M̃�eZ�$−M̃�$Z�e
                        (6.2)

Theorem 6.1.Disturbance rejection with simultaneous
independent control of the pitch angle and the flight
path angle and stabilizability can be achieved if (4.1)
is satisfied and  is Hurwitz.                             �pu(s)

7 Simulation Results
Consider the linear model of the a twin-engined jet
fighter/bomber aircraft [11] flying at height 13700 m
and with 2.15 Mach. For this model the aircraft
parameters are [11]: , ,U0 = 650 m/sec Zu = −0.001

, ,Zw = −0.494Z�e = −25.45Z�$ = −0.00005,Zq = −0.39
, , , , ,Mu = 0.07 Mq = −0.41 Mw = −0.07 M� = 0

, , ,M�e = −16.1 M�$ = −0.000003 Mw
. = −0.001

, , , Xu = 0.016 Xw = 0.004 X�e = 0.62 X�$ = 0.00006.
The variables , ,  and , are in meters, rad/sec,u q � �

rad and rad, respectively. The disturbance rejection

with simultaneous decoupling conditions (4.1,2) are
satisfied. According to (5.1, 2) the controller is 

(8.1)G =




1.43394� 107(p1)0
−1 34927.6(p2)0

−1

−2.63158(p1)0
−1 −0.0686201(p2)0

−1


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

                    F = −
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(8.2)
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1.53846� 10−6 −(�1)1 6� 10−4 0.494
0.0700009 45.1788−(�2)1 −(�2)2





The resulting closed loop transfer function is 
  C(sI − A − BF)−1 BG D  =

 (8.3)









(p1)0
−1

s+0.494−(�1)1
0

0
(p2)0

−1

s2−−1.06−(�2)1 s−(�2)2+45.1788

0

0






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and the cancelled out pole is .s = −0.129042
Choosing , ,(�1)1 = −19.506 (�2)1 = −38.94

, the poles of the closed loop system(�2)2 = −354.821
are assigned at  . Choosing  and −20 (p1)0 = 0.05

,  the responses of the state variables(p2)0 = 0.0025
of the closed  loop system for flight path pointing
( (0.01748 rad), ) are illustrated in�c = 1o �c = 0
Figures 1-7. As is shown in these figures the
performance of the state vector is quite satisfactory
since the rising time of the flight path angle is also
short while the pitch angle remains zero. 

8 Conclusions
The pitch angle and the flight path angle of a
multimode aircraft have been independently
controlled and without influence from the forward
gust, via static state feedback yielding disturbance
rejection with simultaneous decoupling and
stabilizability. The necessary and sufficient
conditions are established. The set of all controllers
and the respective general form of the closed-loop
transfer function, have been derived. The conditions
for the problem with simultaneous stabilizability
have also been derived.
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Figure 1: Unknown Gusts (m/sec2 )
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Figure 2: Forward Velocity increment (m/sec)
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Figure 3: Flight path angle (rad)
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Figure 4: Pitch rate (rad/sec)
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Figure 5: Pitch angle (rad)
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Figure 6: Thrust deflection (N)
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Figure 7: Elevator deflection (rad)


