Robust Disturbance Decoupling with Simultaneous
Exact Model Matching via Static Measurement Output Feedback

F.N. KOUMBOULIS* and M. G. SKARPETIS

* Department of Mechanical and Industrial Eng.
University of Thessaly
383 34 Pedion Areos, Volos
GREECE

** Department of Electrical and Computer Eng.,
National Technical University of Athens,
15773 Zographou, Athens
GREECE

Abstract- The problem of robust exact model matching with simultaneous robust disturbance decoupling for

linear systems with nonlinear uncertain structure (NLUS) and with measurable and non measurable
disturbances is solved via an independent of the uncertainties static measurement output feedback law. Th
necessary and sufficient conditions for the problem to have a solution, are established. The general analytice
expressions of the feedback matrices are derived. IMACS/IEEE CSCC'99 Proceedings, Pages:6111-611
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1 Introduction In [4] the robust disturbance rejection of left
Consider the linear system with (NLUS): invertible systems with uncertain structure, of the
X(= A+ Ba)u(tyr Di(q)zi(t+ Da(q)za(t) . general nonlinear type have extensively been solved.

ym= M(@x(®) ,y@®)= C@x(t) (1.1 Robust elimination of the influence of disturbances

where xe %" denotes the state vectoueqm 1O the gstem outputs is a desirable goal which
denotes the input vectoryy e ®* denotes the however does not guarantee satisfactory control of
measurement output vecfoye %° denotes ta  the outputs. To this end the design requirement of
performance output vectorz, € R denotes the having a desired closed loop input-output map is
measurable disturbance vectodiz, € R¢: denotes Simultaneous requested. The specification of having
the nonmeasurable disturbance vector. The elemen@$) ideal closed loop transfer function is the well
of the matrice A(q), B(q), C(q), D1(q), D»(q) and  Known exact model matching problem [p-Robust
M(q) belong b ((q) i.e. they are nonlinear function €Xact model matching with simultaneous robust
matrices depending upon the uncertainty vectoflisturbance rejection via static state feedback has
q% qu,....q) €@ , whee @ is the uncertainty do- Deen solved in [B In the present paper the problem
main aml o (q) is the set of nonlinear functionsq ~ ©f robust disturbance rejection with simultaneous
The uncertain domain can be any set, while thdobust model matching (RDRRMM) for linear
values of the functionfc () are considered to be Systéms with NLUS ‘and with measurable and
real. The uncertaintiqs, ...,q; do not depend upon Nonmeasurable disturbances is extensively solved.
the time. With regard to the nonlinear structure of The contribution of the present paper consist in
AQ), B(g), Di(q), D=(q), M(g) ard C(q) it is establishing the following aspects: The necessary and
mentioned that, no limitations or specifications Sufficient conditions for the problem to have a
(continuity, boundness, smoothness,etc) are requireciolution via an independent q static measuremen
The problem of robust disturbance rejection Output feedback. The general analytical expressions
is a significant control  design  requirement Of the independentfq feedback
having attracted considerable attentio-[f. In [1] )
and [4 sufficient conditions for the problem to have 2 Main Result
a solution are derived. In ][3the necessary and The problem will be studied, via an independeng of
sufficient conditions for the solution of the problem static measurement output feedback law. In the
are derived for the case of left-invertiblgseems  frequency domain system (1.1) takes the form
involving uncertain structure of the polynomial type. sX(s= A(qQrt B(q)U(sit Di1(9)Zi(sH D2(q)Z2(9)



Ym(s) = M(a)X(s), Y(s) = C(a)X(s) (2.1)

[ In ® H;j
To system (2.1) apply the regular static measuremen%

U

O

i=2,..,2+1

output feedback law :(iz M(a)[A@T*A(Q) ® Hjizis

I o

U(9) =F1Yu(9) +F2Z1(9 +GQ()  (2.2) - .
whereQ(s) e €™ is the external input vector aGd _ Im ® Hua d wherec. =19
is assumed to be invertible in order to insure Iinea}_[1 - 0 and whereci(q) 1=1,2,...p,

independence of thm  external inputs. The RDRMM

problem for systems with measurable and nonmeasys the i-th row of C(q) andszg Im 0 OE .

rable disturbances is formulated as in the definition: 0 0 lu O

Definition 3.1. The RDRMM problem for linear The symbo® denotes the Kronecker product:

systems with NLUS and with measurable and UbpA ... bigA I

nonmeasurable disturbances of the form (2.1), via a AgB=0 : E; B ={bj} € R~

feedback law of the form (2.2), consists in finding UbaA b.A o

. . [ M1 rq UJ

independent of matricek; F, aGd  such that

C(q) 081 - A(q) - B(q)F1M(q) O x Clearly,T", ® and® are independent qf if and only
OB(q)G ‘ D1(q) + B(Q)F2 | D2(q) O= if the rows vy, @iandgi, (i=1,...,m are

= OHM(S) | Ope, | Ope, T (2.3) independent og and consequently if and only if the
here H s the transf pf‘l t.p 2 ¢ th .'d  vectory is independent of . Till now, the problem is
where Hu(s) is the transfer function of the ideal o\ e “via independent of the uncertainties static

model. The |deal_model IS cons_ldered npt t_o deloenaneasurement output feedback controllers, has been
upong . Clearly, in many practical applications, thereduced to that of finding an appropriate vewjor

presence of the uncertainties is undesirable. [ independent oiq , satisfying (2.8) and (2.6).

To solve the problem, the equation (2.3) is first  efore establishing the necessary and sufficient
reduced to the following linear equation conditions some definitions will be established. Let

C(q) 051 - A(@) 0 [B(a) | D1(9) | Dz(Q_)F: the operatoranky[-] denote the rank of an uncertain
Hu(s)H - OM(0) 31 - A(Q) O B(q)\ matrix on the field of real numbers, the operafdrs
~OM(q) 31 - A(Q) O D1(q) _@‘ denote an independent from matrix which is

orthogonal to the argument matrix, and the operator

-1
~OM@I-A@D DAQF (24) (L s denote the projection (in the field of real

where

r=Gto=G1'F;,0=G"'F, (2.5) numbers) of an uncertain vector to the subspace
According to (2.4 and 5I" must be invertible, i.e.  defined by the rows of the uncertain matrix ([9]).
defC =0 (2.6) Some numerical aspects regarding the computation
Expansion of both sides of (2.4) in negative powercheck ofrank-] and the construction(-\- )y and
series os yields ‘15 are given in [10], [11].
C(Q)A(G)s + C(A(QA(G)S 2+ - = 3.1 Necessary and sufficient conditions
= {Hm1S " Hy 282+ } x Eq. (2.8) is a non homogeneous uncertain equation.
x{J - dDM(QA(Q)s™ - PM(QA@A(Q)s2 - -} (2.7)  According to [9] the following lemma is derived.
where A(Q) = B(q) | D1(q) | D2(q) O Lemma 3.1.Equation (2.8) is solvable, for an
J=| -©]0 Oand whereHu(s) = 22 Huxs ™. independent ofg vecty , if and only if
Equating coefficients of like powers « in (2.7) ranke B 1@ Borank 1601 219) m
derive an infinite set of algebraic equations. Since it "G &) » 1@ (2.12)

suffices to keep only the2n+1  equations, theThe general solution of equation (2.8), for an
following nonhomogeneous system of equations isndependent of the uncertainties vecmpr | is

derived 7 = 2000) 5, +( E(@)\11(0) )y, (2.13)
nI1(q) =<(a) (2.8) wherei=[44,...,4,] € R : arbitrary vector and
where v=m(m+u +{;) —ranks 01(q) O (2.14)
N=01yml 01,....0m | $1,....4m O (2.9)  To derive the general form I[fT®, a®il , define
&(a) = Bp() Q) AG)cp(@) @) TA(G) -+ 0G0)1, - (G0} m| (F0)1, ., (FO)m | (o)1, ..., (Fo)m 0
- @@ T @RI ADE 210 _ =L@\@)y (215)
I1(q) = 0Ty || Hawa(a) O @.11)  KuKalKy, o KinlKy, o Ke 0= [T (2.16)
where yi, 4i,0; are the i-th rows df,®,0 TIi(q) = Hek) g By B Hk) j
Q=0 : 0S=0 : OS=0 : 0O j=1,..v
OO0 O Daoy O O,y O
g kmi O okmi g gkmi g



E (o)1 E E (o) E ) E (Fo)s E The condition (2.27) upon the degrees of freedom of
Q0=E : ES):E : %SOZE G H @1 i in the controller matriceG,F; andF,  may be
0@m g gFom O 0 (Ffom O viewed as a forbidden hypersurface in the sfR"e
whereK; K; ancK; are submatrices of dimensionsof the arbitrary paramete/i . Moving closer to this
yxm, vx({1 andvxu , respectively(go)i € RE™ surface results in the norms cG,F;andF;

and’ approaching infinity. No matter how close to this

(ro)i € R4, (ro)i € R and whergk;); (ki); , ;
(k); are thej-th rows ofK;, KiandK; respectively surface we are, the problem has a solution, since we
- v ' ._are not exactly on this surface. However, from a

Using the above definitions as well as (2.13), the tical point of vi hould chooi: h
general analytical expressions of the independent traftlhca poin % \Igewr;dvl\ile shou C't0§| " | suc
q matrice I, ® and® are derived to be at the norms <&, F1 andi=2 - have suitable values.

[=Qo+4Q1+2Q2++4Q,  (218) 4 Conclusions

O=S+Zin4iS ,P=S+2Xiu A4S (2.19)  RDRRMM problem for systems with measurable and
Based upon the conditions (2.12) and (2.6) as well agonmeasurable  disturbances for systems with
the formula (2.18), the necessary and sufficienfonlinear uncertain = structure, via static state
conditions for the problem to have a solution can bdeedback, has extensively been solved. The necessary
established. To this end, define and sufficient conditions have been established. The

N :E m j=0 _:E m j=0 general analytical expressions of the independent of
T @t j21 T g (et pa 21 uncertainties feedback matrices have been derived.
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Theorem 3.1The necessary and sufficient conditions
for the solvability of the RDRRMM problem , via an

independent of the uncertainties static measuremer]

output feedback law, are

OTi(g) U _
ranKRE @ E =rankx J1(Q)0  (2.23)
ranP,] = p, (2.24)

Proof: The condition (2.23) is identical to that in
(2.12). If the condition (2.23) is satisfied the problem
is reduced to that of finding a vecly; (i=1,...,m)
such that (2.6) is satisfied witl’  as in (2.18) or
equivalently if (2.24) is satisfied. [ |

3.2 The feedback matrices

In this subsection the general forms of the matricegg)

G, FiandF, , will be derived. The following
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