
1 Introduction
The category of linear time invariant singular
systems is described by the equation [1]

   ,     (1.1)Ẽx.(t)= Ãx(t)+ B̃ũ(t)+ D̃�̃(t) ỹ(t)= C̃x(t)
where ,  is the state vector,  is the Ẽ, Ã F gn�n x u m̃� 1
input vector,  is the  unknown disturbance� �̃ � 1
vector and  is the performance output vector. Theỹ

system is assumed to be regular i.e. detsẼ− Ã
 K/ 0.

The rank of the matrix  can be equal to  or lessẼ n
than . Equation (1.1) describes systems modelled byn
differential and algebraic equations (f.e. large scale
industrial systems, constrained manipulators).  

The first results for the disturbance decoupling
of singular systems were derived in [2] using a
proportional plus derivative feedback law of special
type. This P-D controller was of special type, namely
the proportional feedback matrix was restricted to be
the product of an arbitrary constant and the
respective derivative feedback matrix. The
motivation for such a restriction was the duality

between normal systems  and singular
det Ẽ � 0



systems facilitating the recasting of the problem to
the decoupling problem of normal systems via pure P
feedback. In the same time the problem has also been
studied via P state feedback (see [3]-[6]).  

In this paper the problem of disturbance
decoupling of singular systems is studied. The
problem is treated without any restrictions upon the
P-D feedback law. The necessary and sufficient
condition is derived. Furthermore a special feedback
law solving the problem is determined. 

It is important to mention that the respective
results for the case of input-output decoupling have
been derived in [7, 8]. 

2 Problem Formulation
To system (1.1) apply the P-D state feedback law

             (2.1)ũ(t)= F̃Dx.(t)+ F̃Px(t)+ *̃(t)
where  is the  vector of external commands.*̃ m̃� 1
The design goal is to find a feedback law of the form
(2.1) such that the output vector is not affected by the
disturbances. The definition of the problem can
formally be expressed as follows:
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Definition 2.1: The problem of disturbance
rejection, via P-D state feedback, is solvable for
system (1.1) if there exist feedback matrices F̃D , F̃P

which satisfy the equation

 ; C̃
sẼ− Ã − sB̃F̃D − B̃F̃P




−1

B̃ D̃  =  H̃(s) 0
                    (2.2)H̃(s) F [g(s)] p̃�m̃

where  is the field of rational functions.          �g(s)
   According to Definition 2.1 the closed-loop system
must be regular, i.e. .det(sE− A − sB̃F̃D − B̃F̃P) K/ 0

3 Reformulation of the Problem
To reformulate the problem in a form elegant to be
solved, it is necessary to distinguish the input terms
that they are dependent upon the disturbances and so
they do not influence the observability matrix of the
closed loop system. To this end, let  be an J̃D �̃ � �̃

column rearrangement matrix ( ) having theJ̃D
−1 = J̃D

�

property of distinguishing the independent columns
of , i.e.  where  andD̃ D̃J̃D =  D̃1 D̃2  D̃1 F gn��

. Furthermore, considerrank D̃1 D̃2  =rankD̃1 = �

the  column rearrangement matrix ( )�̃ � �̃ J̃B J̃B
−1 = J̃B

�

having the property of distinguishing the columns of
 being independent among themselves and theB̃

columns of  (  where D̃ B̃J̃B =  B̃1 B̃2  B̃1 F gn�m

and ).rank B̃1 B̃2 D̃  =rankB̃1 +rankD̃ = m+ �

Define the invertible matrix , having the propertyBD

 BD  B̃ D̃ 




JB 0
0 JD



 =

= BD  B̃1   B̃2 D̃1   D̃2  =
=  B   DB2 D   DD2 

where  and where  and  are appropriateB�D = 0 B1 B2

dependence matrices. Clearly, a matrix  havingBD

the above properties can always be constructed.Using
, the system (1.1) can be rewritten as follows:BD

 ,    Ex.(t) = Ax(t) + Bu(t) + D�(t) + DB2u(t) + DD2�(t)
                             (3.1)ỹ(t) = C̃x(t)

where  and E = BDẼ, A = BDÃ
u(t) =  I m 0 JB

� ũ(t) ,u(t) =  0 I m̃−m JB
� ũ(t),

�(t) =  I � 0 JD
� �̃(t) , �(t) =  0 I

�̃−� JD
� �̃(t)

According to the above rearrangement of the
elements of the input and the disturbance vector, the
feedback law (2.1) can also be rewritten as follows:

 u(t) = FDx.(t) + FPx(t) + *(t); FD =  I m 0 JB
� F̃D ,

  (3.2a)FP =  I m 0 JB
� F̃P ,* =  I m 0 *̃

                 u(t) = FDx.(t) + FPx(t) + *(t); FD =  0 I m̃−m JB
� F̃D,

 (3.2b)FP =  0 I m̃−m JB
�F̃P, * =  0 I m̃−m *̃

The above partitioning is of significant
importance to the disturbance decoupling problem. 

Proposition 3.1: The solvability of the
disturbance decoupling problem as well the transfer
function from the disturbances and inputs to the
outputs of the closed loop system with rejected
disturbances are independent from the second part of
the feedback law, namely the law (3.2b). 

Proof: From the definition of the disturbance
decoupling and expressions (3.1) and (3.2), it is clear
that the problem is solvable if and only if 

 C̃
sE− A − sBFD − BFP − sDB2FD − DB2FP




−1

�

; (3.3)�[B   DB2 D ] =  H(s) 0 H(s) F [g(s)] p̃�m̃

Since 

C̃
sE− A − sBFD − BFP − sDB2FD − DB2FP




−1

D =
= C̃(sE− A − sBFD − BFP)−1D �

�I m̃−m − B2(sFD + FP)(sE− A − sBFD − BFP)−1D
−1

the second set of equations in (3.3) is satisfied if and
only if . Using thisC̃(sE− A − sBFD − BFP)−1D = 0
equality and since

 C̃
sE− A − sBFD − BFP − sDB2FD − DB2FP




−1

�

�[ B   DB2] =
C̃(sE− A − sBFD − BFP)−1[ B   DB2] �










I m 0
0 I m−m̃



 −






0
sFD + FP




 �

�(sE− A − sBFD − BFP)−1[B   DB2]




−1

the first set of eq. in (3.3) holds true if and only if
.  �C̃(sE− A − sBFD − BFP)−1[B | DB2] = [H(s) | 0]

From Proposition 3.1, the problem has been
reduced to that of finding  and , such thatFD FP

 ;    C̃(sE− A − sBFD − BFP)−1[B D ] =  H(s) 0
           (3.4)H(s) F [g(s)] p̃�m̃

Eventhough, the second part of the feedback, i.e.
the feedback law (3.2b), does not affect the closed
loop transfer function (from inputs and disturbances
to outputs), it could be useful when studying the
stability or pole assignment of the closed loop
system, after disturbance decoupling.

According to (3.4) the closed loop system must
be regular, i.e. . Hencedet(sE− A − sBFD − BFP) K/ 0
it is necessary to hold that 

            (3.5)Rank[B](sE− A)] = n − m
where denotes the rank of a matrix over theRank[]
field ,  is a  full row rank matrixg(s) B] (n − m) � n
being orthogonal to the full column rank matrix  ,B
namely the left orthogonal of , , i.e.B (B]B = 0)

    (3.6)rank




B]

B+


 = n; B+ = (BTB)−1BT

 denotes the left inverse of  ( ). B+ B B+B = I m

Let . Also let  be ap =RankC̃(sE− A)−1B J̃C

 row rearrangement matrix  havingp̃� p̃ (J̃C
−1 = J̃C

� )



the property of distinguishing the independent rows

of , i.e.  where C̃(sE− A)−1B J̃CC̃ =





C
C




 C F gp�n

and . According to theRankC(sE− A)−1B = p
above definition and the properties
 RankC̃(sE− A − sBFD − BFP)−1 B D   =

=RankC̃(sE− A − sBFD − BFP)−1B =
=RankC̃(sE− A)−1B

RankC̃(sE− A)−1 B D   =
=RankC̃(sE− A)−1B =

   (3.7)=RankC(sE− A)−1B
resulting directly from (3.4), it is concluded that if
the condition (3.7) is satisfied then the problem is
recasted to that of satisfying the equation

 ;   C(sE− A − sBFD − BFP)−1[ B D ] = H(s) 0 
               (3.8)H(s) F [g(s)]p�m

4 Problem Solution
Theorem 4.1: The problem of disturbance decoupling
is solvable, via P-D feedback, if and only if  

RankC̃
sẼ− Ã


−1

 B̃ D̃ 

 =

=Rank


C̃

sẼ− Ã


−1

B̃JB




I m

0








Proof: According to the necessary condition (3.7) the
problem is reduced to the equation (3.8). Using the
definitions of , condition (3.7) is reduced toE,A,B,D
the condition of the theorem. To satisfy (3.8)
consider the feedback law  where u = FDx. + FPx + *

,            (3.9)FD = B+E FP = −B+A +




K
C





where is an arbitrary matrix. ApplyingK F g(m−p)�n

this feedback law to equation (3.8) it is readily
observed that the condition is satisfied. Furthermore
application of this feedback law to the system

 leads to the closed loop system(sE− A,B,D,C)
                      (3.10a)KX(s) = O(s)
                      (3.10b)CX(s) = R(s)

           (3.10c)(sB�E − B�A)X(s) = B�D�(s)
where , , X(s) = Â x(t) �(s) = Â �(t) (s) = Â *(t)

,  andO(s) = (s)Im−p | 0
�

R(s) = (s)0 | I p 
�

where the relation  has been used. From (3.5)B+D = 0
and since , the closed loopRank[C(sE− A)−1B] = p
system is regular, i.e. ,det(sE− A − sBFD − BFP) K/ 0
via appropriate choice of . Furthermore, choosing K

, the regularity of the original closedFD = FP = 0
loop system ( ) is alsodet(sẼ− Ã − sB̃F̃D − B̃F̃P) K/ 0
guaranteed.                                                               �

Based upon the proof of Theorem 4.1 the
following corollary can readily be established. 

Corollary 4.1: A special P-D feedback law solving
the problem of disturbance decoupling is 

,  F̃D =




B+E
0



JB F̃P =








−B+A +




K
C





0








where  is arbitrary matrix preserving the regularityK
of the closed loop system, i.e. satisfying the
condition  .   �Rank K� C� [B�(sE− A)]� 

�

= n

5. Conclusions
The problem of disturbance decoupling of singular
systems via P-D feedback has been solved. The
necessary and sufficient condition for the problem to
be solvable has been established as a rank condition
of the transfer function of the open loop system. A
special feedback law solving the disturbance
decoupling problem has been  derived.
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