
Wavelets, Squeezed States, and Entropy Problems

Y. S. KIM

Department of Physics

University of Maryland

College Park, Maryland 29742

U.S.A.

Abstract

It is pointed out that the inhomogeneous Lorentz group forms the mathematical framework

for wavelets. The representations of this group applicable to symmetry properties of wavelets are

discussed in detail. Since squeezed states are also representations of the Lorentz group, wavelets

can be interpreted in terms of the symmetry properties of squeezed states. It is shown that

wavelets are space-time squeezed states. This space-time property allows us to examine more

carefully the question of whether light waves are photons. Within the present mathematical

framework of wavelets, it is possible to de�ne the "window" which allows us to introduce a

Lorentz-covariant cut-o� procedure. It is possible to make a transition from light waves to

photons through this window. The information lost through this process results in an increase

in entropy. It is shown that the entropy is not invariant under Lorentz boosts, but the entropy

di�erence remains invariant.
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Summary

This is a preliminary summary of the paper I

wishes to submit to this conference. My primary

research base has been and still is the Lorentz

group. Of course, this mathematical language

was generated from the study of special rela-

tivity and Lorentz transformations of relativis-

tic particles, but it is applicable to many di�er-

ent branches of physics including quantum and

classical optics and diagonalization processes for

coupled systems. In 1939 [1], Wigner introduced

translations to this group resulting in inhomoge-

neous Lorentz group.

Wigner once remarked that quantummechan-

ics is the physics of Fourier transformations while

special relativity is the physics of Lorentz trans-

formations. The word \wavelet" is relatively new

in physics [2], but its concept was formulated in

the 1960s [3] in terms of the Lorentz group. The

wavelet combines the traditional Fourier trans-

formation with dilation and translational sym-

metries. In other words, wavelets combine both

the physics of Lorentz transformations and the

physics of Fourier transformations.

We shall use various aspects of wavelets to

discuss a number of long-standing and current

topics in physics, including photon localization

problem, squeezed states of light, windows speci-

fying limitations in measurement, and increase in

entropy due to less-than-perfect measurements.

We shall discuss also change in entropy due to

various wavelet transformations.

First, we shall point out transformation prop-

erties of wavelets can can be derived from those

of the Lorentz group. We observe that Lorentz

boosts are squeeze transformations which con-

tract and expand two orthogonal directions in

two-dimensional space. The squeeze/expansion

properties of wavelets can be derived from the

squeeze/expansion properties of the Lorentz group.

In fact, this is the way in which the concept of

wavelets was �rst developed in the 1960s [3]. The

squeezed state of light is also based on this prop-

erty [4]. The word \squeezed state" is relatively

new in physics, but squeeze transformation has

been everywhere in physics for many years [5].

The translational symmetry of the inhomo-

geneous Lorentz group allows us to introduce the

concept of \window" which de�nes a �nite inter-

val in which measurements are possible, while it

is not possible to measure anything outside this

window. Indeed, this is what we do in the real

world. Mathematical formulas we use in physics

are usually de�ned for variables extending to in-

�nity from minus in�nity. On the other hand,

it is not possible to measure all the values in

laboratories. Thus, the concept of window is

attached to every measurement process. With

these theoretical tools, we shall discuss some spe-

ci�c physical problems.

Let us start with the photon localization prob-

lem. It is widely believed that the transition

from classical theories to quantum counterparts

is well understood in all branches of physics, but

it is not true for light waves which are classical

objects. Their quantum counterparts are pho-

tons. Then, are photons light waves? We are not

quite ready to say YES to this question. From

the traditional theoretical point of view, the an-

swer is NO [6]. However, this negative answer

does not prevent us from examining how close

photons are to waves by employing the mathe-

matical technique of wavelets and windows. While

we cannot solve the photon localization completely,

we can gain a better insight by placing wavelets

between waves and photons.

Photons are relativistic particles requiring a

covariant theoretical description. Classical op-

tics based on the conventional Fourier superpo-

sition is not covariant under Lorentz transfor-

mations. However, wavelets can be regarded as

representations of the Lorentz group [2, 3, 7]. In

one of papers which I published with my collab-
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orators [8], we discussed the di�erence between

waves and wavelets without mentioning the word

\wavelet." We compared there the waves with

the covariant harmonic oscillator formalism [9]

using the light-cone coordinate system. We have

seen there that the lack of covariance of light

waves is due to the lack of Lorentz invariance of

the integral measure, while the integral measure

in the oscillator formalism is invariant. We con-

cluded there that an extra multiplicative factor

is needed to make Fourier optics covariant. We

point out that this procedure corresponds to the

wavelet formalism of wave optics.

In spite of the covariance of wavelets, we shall

not be able to prove that photons are wavelets.

Instead, we shall make a quantitative analysis of

the di�erence between these two clearly de�ned

physical concepts. The advantage of this quanti-

tative approach is that we can see how close they

are to each other. In this way, we can assert that

photons are waves with a proper quali�cation.

In order to establish this practical approach

to the photon localization problem, we note �rst

that the internal space-time symmetry of mass-

less particles is governed by Wigner's E(2)-like

little group [1]. The little group is the maximal

subgroup of the Lorentz group whose transfor-

mations leave a given four-momentum invariant.

In the case of massless particles, the same lit-

tle group can accommodate particles with dif-

ferent momenta in the same direction. We are

thus led to the concept of the extended little

group [10], which includes the boost along the

direction of the momentum. In this way, we shall

show that wavelets are representations of the ex-

tended E(2)-like little group.

Another convenient feature of the localized

wavelet representation is that it is possible to in-

troduce an cut-o� procedure in a covariant man-

ner, so as to preserve the information given in

the distribution. By introducing the concept of

window [11, 12, 13, 14], it is possible to de�ne

the region in which the frequency distribution is

non-zero. We can then compare the \windowed"

wavelet to the photon �eld in quantum electro-

dynamics to pinpoint the di�erence between the

photons and wavelets. This concept of window

allows us to quantify the di�erence between the

intensity of light wavelets and the photon num-

bers.

Then a new question arises. How can we

quantify the degree of inaccuracy due to this

windowing process. One way to deal with this

problem is to borrow Feynman's rest of the uni-

verse. In his book on statistical mechanics [15],

Feynman makes the following statement. When

we solve a quantum-mechanical problem, what we

really do is divide the universe into two parts -

the system in which we are interested and the

rest of the universe. We then usually act as if

the system in which we are interested comprised

the entire universe. To motivate the use of den-

sity matrices, let us see what happens when we

include the part of the universe outside the sys-

tem. The failure to observe the rest of the uni-

verse results in an increase in entropy [16].

It is thus a great challenge to formulate the

entropy di�erence between the windowed distri-

bution and analytical distribution in terms of

Feynman's rest of the universe. While this prob-

lem is not yet completely understood, we can

discuss the covariance property of the entropy

change. Without computing entropy, it is pos-

sible to prove that, while the entropy is not an

invariant quantity, the entropy di�erence is in-

variant [17]. I hope to be able to report more

concrete results at the conference.
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