
Automatic object-oriented visual programming with OO-METHOD
Jose Romero, Pedro J . Molina, Oscar Pastor

Department of Computer Systems and Languages
Polytechnic of Valencia

Camino de Vera s/n
Valencia 46071. SPAIN

Abstract: - Following the steps of other related works published in our research group, this paper deals with
the problems of creating efficient automatic code generators from an object-oriented conceptual model.

Our own methodology called "OO-Method" is based not only on the object-oriented paradigm but also on
the automatic programming paradigm. This method combines the advantages of formal specification systems
with the practice provided by conventional object-oriented methodologies. Firstly, the OASIS formal object-
oriented specification language is introduced to the reader through a brief review of its main concepts.
Secondly, a description of OO-Method, in its current state, is presented enhancing some new interesting design
decisions added on. Finally, a description of the CASE tool, which effectively supports the method, is given.

Finally, the results of our latest research and practice are discussed. In that way, we highlight the good
properties of our method that make it adaptable and suitable for a world where technology is in a continually
state of change. IMACS/IEEE CSCC'99 Proceedings, Pages:6541-6549

Key-Words : - Object-oriented paradigm, Object-oriented software production methodologies, formal specification
languages, CASE tools, automatic code generation, visual programming, Windows environments, three-tier architectures.

1. Introduction

After some years of work, our research group
created OASIS [5], a formal an object-oriented (OO)
specification language following a similar approach
to other formal languages like Troll [4]. At that
point we realized the convenience of a method
having OASIS as its formal high-level data
dictionary and remaining faithful to the automatic
programming paradigm [1]. It was called OO-
Method, and later on, adopted the standard notation
from the Unified Modeling Language [12] for its
diagrams. Once the method was established, the
decisions of implementing a CASE tool that support
it was taken. Nowadays, the OO-Method/CASE
Tool [6] is becoming a successful reality putting into
practice the methodology through an agreement with
a software company. Due to industrial interests, the
CASE tool was adapted to generate code in
imperative environments, even though it can also
generate logic programs equivalent to an
information system modeled with the tool. Focusing
on imperative environments, the code generated will
be functionally equivalent to the requirements
modeled following the execution model [7] steps.
This code will take profit of the existing rapid

application development environments and new
Internet three-tier architectures.
Summing up, the OO-Method/CASE takes profit of
the UML standard notation and puts it over a formal
and well-defined framework generating complete
executable code (not only templates for classes) for
visual programming environments.
At the end of this paper, we will summarize the
future work related with OO-Method in an academic
context and industrial practice alike.

2. OASIS

As OASIS is a formal object-oriented
specification language, it will provide the proper
way to describe information systems due to its well-
founded semantics. An OASIS specification can be
considered both as a high-level data dictionary and a
formal modeling documentation. In fact, it
constitutes the basis of the repository for our
methodological proposal OO-Method and its
corresponding OO-Method/CASE Tool
implementation. Therefore, it is of a crucial
importance to revise the OASIS concepts because
they determine the elements that can be used for
modeling a specific problem domain.
In order to clarify the concepts, we will introduce an

example of a car rental company. A contract relates
a client with an automobile, which has a specific
rate. The organization needs to store information
about some special clients that are considered Very
Important Persons.

Class and object in OASIS

The object classification process of a system
is considered under an ontological perspective.
Objects represent entities that compose the Universe
of Discourse [11].

A class provides an intensional definition
including the common properties of the objects that
constitute the class population (extensional
definition). It has static and dynamic properties.

Static properties – constant and variable
attributes - represent the object state at any time.
Aside from the OID system assignation is the set of
constant attributes, which compose the class
identification function.

Dynamic properties – events – will change
the object state only if their associated preconditions
and the class restrictions (static and dynamic) take
place.

Services are offered by classes to the
system. They could be both event and transactions.
Transactions may be local or global. They represent
event sequences with an “all-or-nothing” policy and
not intermediate state observability.

Events must modify attribute values in our
model. More precisely, each one modifies a
predefined attributes set through an evaluation
formula. These dynamic formulas for attribute
evaluation are of the form ψ[i :e]ψ’, where ψ is a
formula that is true in a given state and every
execution of the event e by an actor i leads to a
situation where ψ’ is true. In addition, three types of
formulas ψ’ are distinguished, determining three
categories of variable attributes. The first category is
defined when ψ’ increases or decreases the value of
the attribute in a given amount, this is called a push-
pop attribute. In the second case, if ψ’ assigns a
value that is independent of the values it had
previously, it is called a state-independent attribute.
Finally, if ψ’ assigns a value in a discrete domain
we will consider it as a discrete-domain valued
attribute.

Summarizing, an object in OASIS can be
defined as an observable process. The corresponding
process specification in a class allows us to specify
object dynamics and determines the access
relationships between the states of instances.
Processes are constructed by using those services

commented before.
In our example, the class Client will be

expressed as follows:

class Client
identification by_identification0 : (client_code) ;
constant_attributes

client_code : Nat ;
client_name : String ;
client_type : String ;

variable_attributes
phone : String ;

private_events
 var nphone: String; end_var

create_client () new;
destroy_client () destroy;
change_phone (nphone);

Inheritance

Inheritance is the OASIS concept to support
the “is-a” relationship, also present in traditional
semantic data models. We considered it as a
standard way to share code and behavior.

Inheritance is represented in OASIS by
means of two class operators:

q Specialization: deals with derivation of children
classes from parent classes. It can be permanent
when a specialization condition specified on the
constant class attributes is supplied or temporal,
if creation and destruction events, or a
specialization condition specified on the
variable class attributes, determines the role
creation or destruction. In our example, the Very
Important Persons are defined as:

complex class VIPS specialization of Client where
client_type="VIP"

q Generalization: inverse of the previous one.
Deals with ascendant inheritance or generation
of parent classes collecting common properties
of predefined classes. In a disjoint
generalization, an instance of a generalized class
will be an instance of one and only one of its
descendent classes. We assume a no disjoint
option by default.

OASIS also supports multiple inheritance by
providing a parent classes list.

Aggregation

OASIS aggregation represents the “part-of”
relationship where a complex object has other
objects as components, structured as an object
hierarchy. It categorizes the different existent types
of aggregations according to the following
dimensions:

q Inclusive/referential (also called
relational)

q Null/not null
q Univalued/multivalued
q Flexible/strict
q Disjoint/no disjoint
q Static/dynamic

 The inclusive aggregation verifies that
components cannot exist out of the composite
object. The referential aggregation differs from the
inclusive in the fact that we only denote an existing
relationship among objects of the involved classes,
without having a complete inclusion of the
component objects into the composite one.

Following the Entity-Relationship approach,
each aggregation relationship has maximum and
minimum cardinalities. So, we can know how many
components and composite objects are related and
vice versa. As we will see these cardinalities fix up a
variety of design dimension:

q From container to component:
Minimum cardinality values:
 0 = Null y 1= Not Null
Maximum cardinality values:
 1= Univalued y M= Multivalued

q From component to container:
Minimum cardinality values:
 0 = Flexible y 1= Strict
Maximum cardinality values:
 1= Disjoint y M= No Disjoint

If a composite object has a fix composition
once created we will have a static aggregation, else
we will deal with a dynamic aggregation.

Looking at the contract class in our example
we have:

complex class Contract aggregation of
Automobile(relational,static,univalued,

disjoint,flexible,not null),
Client(relational,static,univalued,

nodisjoint,flexible,not null)

Shared Event

This concept represents in OASIS a

synchronous communication mechanism between
different objects. It must be declared in all classes
that shared a specific event. For instance, the rent
and return vehicle events are declared in the Client
class as follows (in the Automobile class they are
defined in a similar way):

shared_events
 var nmiles_arrival,nfuel:Nat; place_return:String;
end_var

rent_vehicle () with Automobile;
return_vehicle (nmiles_arrival,

nfuel,nplace_return) with Automobile;

Triggers

They are services of a given class which the
system activates in an automated way when a
condition is satisfied by an object of the same or
another class. So, this OASIS concept introduces
internal system activity as condition-action rules.
The system designer may assure the correct trigger
confluence and termination. In our example if a car
has less than one liter of gasoline, it will be
automatically disabled for renting.

triggers
Self :: disable () if fuel<1;

Global Interactions

They are transactions involving services
provided by different objects of the same or distinct
classes. With these global interactions,
interobjectual transactions can be declared.
Formally, they can be seen as a local service of the
aggregation among the involved classes. It provides
an interclass communication mechanism. In the
following example we illustrate a transaction where
a new car is purchased and other one is sold in order
to revamp the fleet.

global_transactions
CHANGE_CAR=buy_vehicle(p_agrRate,p_atrauto
mobile_code,p_atrfuel,p_atrdelivering_date,p_atrloc
alization,p_atrmodel,p_atrplate_number,p_atrselling
_price).sell_vehicle(p_thisVehicle,ndate,namount);

In the next section we will see how
combining these OASIS concepts with the Unified
Modeling Language (UML) standard notation, we
can specify an information system conceptual
modeling using OO-Method.

3. OO-Method

OO-Method is an object-oriented software
production method that encompasses two main
components or phases: the conceptual model and the
execution model. Nowadays, it is fully supported by
a CASE tool developed as a research project
between our department at the university and a
software company.

In this context, we start with an Analysis
step where three models are generated: the Object
Model, the Dynamic Model and the Functional
Model. They describe the Object Society from three
complementary points of view within a well-defined
OO framework. For these models we have preserved
the names used in other well known and widely used
OO methodologies (especially OMT[10]), even if
the similarities are purely syntactic as can be seen
throughout this paper.

3.1 Conceptual Model
It is composed of:

I) Object Model
In the method, a Class Configuration

Diagram (CCD) represents the object model, being
unique in the system. It represents the static system
view and uses the standard UML notation.

Figure 1

The OASIS concepts of: aggregation, inheritance,
attributes events (private and shared), local
transactions, agents, derivations and restrictions are
specified in this diagram.

Drawing the CCD of our example, the structure
relations of aggregation and inheritance (besides the

class structures) are graphically depicted in a UML-
compliant way.

II) Dynamic Model
The method represents the system dynamics

through two standard diagrams:

a) State Transition Diagram (STD)
With this diagram we fix the class

dynamics, in other words, the possible life (or valid
states) for the class objects. It has its correspondence
with the specification process paragraph in OASIS.
The valid lives of an automobile object in our
example are declared in this diagram:

Figure 2

b) Object Interaction Diagram (OID)
This diagram fixes up the system interaction

skills. There is only one interaction diagram
associated to the whole system and it represents the
concepts of triggers and global transaction in
OASIS. As an example we represent the trigger
presented before in a graphical way following the
UML notation:

Figure 3

III) Functional Model
The aim of the Functional Model is to

capture semantics attached to any change of state.
This model specifies the effect of an event on its
relevant attributes in a tabular way (condition, event
and effect) and in the CASE implementation this
model is represented through an interactive
dialogue, which offers the chance to write the
OASIS evaluation formulas. In this example it is
shown how is updated the state of a client when

changes its phone number:

Figure 4

3.2 Execution Model

In the second main OO-Method phase, once
an appropriate conceptual system description is
obtained, the Execution Model sets the
implementation details for the automatic generated
software product in order to determine user
interface, access control, service activation, etc.

Any service execution is characterized as
the following sequence of actions performing the
corresponding OASIS concepts:

a) Object identification: as a first step, the
object who acts as server has to be
identified. This object existence is an
implicit condition for executing any service,
except if we are dealing with a new1 event.
At this moment, their values (those that
characterize its current state) are retrieved.
b) Introduction of event arguments: the rest
of the arguments of the event being
activated must be introduced.
c) Current state correctness: we have to
check that the selected service can be
activated in the current object state.
d) Precondition satisfaction: the
precondition associated to the service that is
going to be executed must hold. If not, an
exception will arise, informing that the
service cannot be activated because its
precondition has been violated.
e) Valuation fulfillment: once the
precondition has been checked, the induced
event modifications are effective in the
selected persistent object system.

1 Formally, a new event is a service of a
metaobject representing the class, which acts as
object factory for creating individual class
instances. This metaobject (one for every class)
has as main properties the class population
attribute, the next oid and the quoted new event.

f) Integrity constraint checking in the new
state: to assure that the service activation
leads the object to a valid state, we must
check that the (static and dynamic) integrity
constraints hold in this final resulting state.
g) Trigger relationships test: after a valid
change of state, and as a final action, the sets
of rules condition-action that represent the
internal system activity have to be checked.
If any of them holds, the corresponding
service activation will be triggered. It is the
analyst’s responsibility to assure the
termination and confluence of such triggers.

The previous steps guide the implementation of
any program to assure the functional equivalence
among the object system description collected in the
conceptual model and its reification in a software-
programming environment according to the
execution model.

This model is a good starting point to develop
software products, but we can consider it as quite
abstract. Thus, a set of design decisions will
complete it for obtaining a better code, trying also to
take advantage of the particular features provided by
the programming environment. Following this idea
we show the main considerations in order to develop
an automatic generated object-oriented
programming environment.

3.3. Design Decisions

The first decision to take is the separation
between the interface of a generated prototype and
its functionality [9]. With the advent of increasingly
more efficient Web technology, this separation gives
us the possibility of adapting these prototypes to the
Internet technology of distributed objects present at
the market: Distributed Component Object Model -
DCOM- [2] or Common Object Request Broker
Architecture -CORBA- [3]. In this way, we generate
ActiveX components (DCOM perspective) that can
be executed and incorporated into different
Windows transactional environments. Our CORBA
code generation is currently under study. An
important advantage of this type of architecture is to
take profit of three-tier systems, implementing a thin
client -interface- (for instance HTML pages), a
middleware in who the application relies on its
functionality, and finally, the required scripts for the
Data Base Management System.

There is an additional issue underlying this
first decision: the problem of editing the generated
code for customization purposes. Obviously, the

simplest solution is the one that only allows edition
of requirements in the Conceptual Model, and never
retouching the generated code. This lead us to the
reuse of specifications instead of the reuse of pure
code, where sometimes it is not easy to detect the
traceability of the requirements modeled. This
situation is due to the fact that the OASIS object
model (concepts of class, aggregation and
inheritance) is not exactly the same as the object
model supported by a object-oriented programming
language such as Visual C++, Visual Basic, etc.

Every concept not supported by a
programming language (object-oriented or not) must
be replaced by a supplementary and functionally
equivalent code. Generating ActiveX components,
that is to say, binary components, the user will never
re-implement it for customizing. Nevertheless, the
user could modify the client code for these purposes;
but it will be under his responsibility for maintaining
the consistency of the model and its associated
database.

The second important decision is related to
the way the user interacts with the object
environment that the final prototype implements. In
a first step, strictly guided by the Execution Model,
we thought that the appropriate way to interact was
to choose the class we wanted to work with.
Thereafter, choosing the event that we wanted to
execute, a visual form requesting parameters was
displayed (also asking for the object identifier) and,
once accepted, the rest of the Execution Model was
accomplished. Contrasting this point of view with
the final users, we found that in some cases it is
more ergonomic to select firstly the object and, then,
to choose the event to execute. The experience
revealed that there are some tasks that are more
suitable for the first case, and others more suitable
for the second. The point is that the second way is
far more complicated to implement automatically,
but that is not a user's problem.

The third design decision is related to the
Data Base Management System (DBMS). The
prototypes that we automatically generate use an
standard Relational DBMS approach, due to its great
industrial acceptance. Even though we rely on
Relational DBMS, it is important to comment that
the code that is automatically generated can be
organized in a way that allows its portability if a
degree of independence is considered on its code
design. The alternative to this independence is to
encapsulate the access to the database in the
components that represents the classes modeled in
the Conceptual Model. This is the solution finally
chosen because it is more convenient for three-tier
software architectures.

We are aware of the importance acquired by
the Relational DBMS that will make them, probably,
last for a long time before other kind of DBMS
became so popular and developed as the relational
data base technology is now at the market. But, it
cannot be denied that from our point of view, using
an object-oriented DBMS would make easier the
process of automatic translation because it implies to
work with a homogeneous paradigm and not
changing from the object-oriented model to the
relational model.
 Using the capabilities of a Relational DBMS
we can take profit of the security mechanisms that
they provide establishing a security model for the
objects created when the specification is animated
by the prototype. For instance, when the user of the
prototype creates an object instance of a class that is
able to execute an event in the system modeled, a
call to a stored procedure is executed in order to
register this new object as a possible -active- user of
the database. From this moment, the object can
connect itself to the prototyped system with its own
database user, and therefore, every action executed
its registered in the log for possible audit purposes.
If we work with a particular Relational DB not
supporting the definition of a security model, we
must generate an alternative one by generating code
to deal with this issue.

Another point that is advisable to use from
the Relational DBMS is the possibility of
implementing the control of cardinalities, derived
from the implementation of the aggregation concept
in OASIS, using stored procedures of the database
[8]. They make the implementation more efficient
reducing the overload of traffic on the net using
three-tier architectures. It is important to bear in
mind that any work that the server side can do,
surely, it will be carried out more efficiently by the
DBMS. This rule has implications also in how the
trigger concept in OASIS can be implemented using
the trigger concept supplied by the database.
Summing up the design decisions, we can classify
them as follows:

q About the system architecture:
Choosing a particular architecture for the
automatically generated prototype. Namely,
it can be three-tier, client/server, or other
type of architectures.
q About the interaction with the user:
Selecting what action we want to do and
then choose the target object that is going to
provide it. Or the alternative way, select an
object and tell what action you want to do.
q About the Data Base Management

System:

Dealing with persistence issues, security
issues and efficiency issues.

Furthermore, there are some crucial points that any
person who wants to implement a code generator for
the CASE tool must be aware of:

q The importance of establishing all the
differences between the object model of
target environment (concept of class,
inheritance, etc) and the OASIS object
model.

q The importance of proposing an analysis
and design for the generated prototype
in order to determine what the code
generator must generate in the chosen
architecture. This task must be done in
advance.

q Applying metrics to the generated
prototype for obtaining a better quality
product.

4. The OO-Method/CASE Tool

This point revises the software production
process focusing on the OO-Method/CASE tool. In
this way we introduce to the reader in how the tool
is structured and which items are the results of using
it for resolving a specific problem.

As an information system, the OO-
Method/CASE tool -implemented in Visual C++ 5-
will receive an input that will process in order to
obtain an output. Its aim is to build up another
independent information system (a software
product). This product, which is not tied to the tool
in any way, is functionally equivalent to the
requirements captured for the problem to solve
(using the different models provided by the tool).

Nowadays, we are especially interested in
generating products for rapid application
environments, object-oriented and using web

technologies. Our prototypes (products) can be
generated for three-tier architectures and

transactional environments. This is why the output
can be divided into: client code, middleware, server
code and documentation (see figure 5).
Next, a brief description for this components is
presented:

a) Client Code
The client code is a set of ASCII-format files that
determine the interface part of a program. It is the
source code for a compiler of a programming
language. Once compiled, it will invoke the
compiled middleware (other step) in order to serve
the client requests. Depending on the target
environment, we can have Java code, Visual C++
code, Delphi code, Visual Basic code or even
HTML pages that no need to be compiled (they are
interpreted by a Internet browser). Currently, the
most refined generator we have developed is
constructed for Visual Basic 5. But, the problem is
that we have not gathered at the conceptual level so
much information for generating a good quality
interface. This point is commented in the future
work on this report. For instance, a basic interface
automatically generated with Delphi for our
example is:

Figure 6

b) Middleware
As we have just mentioned, the middleware has the
mission of solve the functionality requested by the
interface (client code). This middleware is also a set
of ASCII-format files that are compiled by an
environment that produces an ActiveX component
as a result of the process. In this case, the Visual
Basic generator is our most developed code
generator. Compiling this middleware ASCII files
we obtain an ActiveX Dynamic Link Library that
can be incorporated to a transactional server;
currently, the Microsoft Transaction Server. As a
very simple example we show an excerpt of a
component that implements the valuation fulfillment

Requirements C A S E / O O - Method

Client code

M iddleware

Documentat ion

I N P U T T R A N S F O R M A T I O N O U T P U T

[a]

[c]

[b]

Server Code[d]

FIGURE 5

[i]

section of the Change_Phone event in the Client
class specified in our example:

procedure TClient.change_phone;
begin
 Client.phone:=nphone;
end;

c) Server Code
The server code is set of scripts in an ASCII format
that contains the Standard Query Language (SQL)
sentences for constructing a Database, which will be
the repository for the information system that we
want to solve. These scripts can also contain
sentences or stored procedures for specific Data
Base Management System. At the moment, the
CASE tool allows to generate scripts for SqlServer
7, Informix 7.2, Oracle 7, Access 7 as well as
standard SQL server code. Moreover, the CASE tool
can execute the SQL sentences through Open
DataBase Connectivity (ODBC). Now, the
middleware part of a Visual Basic generated
application works with SQLServer 7. In the
following picture we can see the database
automatically generated in our example displayed
with the browser that Access97 provides:

Figure 7

d) Documentation
It is the last ASCII file that is left to comment. It
contains the text of the OASIS specification
corresponding to the problem to solve modeled
using the tool. It reflects directly the requirements of
the problem in our formal and object-oriented
specification language that can be useful as
documentation.

Taking a look inside at the box named
CASE in the Figure 5, some interesting issues arise.

Figure 8 is representing the process of code
generation strategy for three-tier architectures. In
other types of architectures, for instance

client/server, the output from the specific code
generator (for a particular environment), can have
another set of output (typically client and server
code without a middleware). Each target
environment or programming language will have its
own particularized code generator.

The requirements of the problem are
introduced in the tool drawing OASIS concepts in a
UML notation (by means of the Conceptual Model
diagrams) that are directly validated, transformed
and stored in the information structures (OASIS
repository of the CASE tool). Thereafter, the
information gathered about the requirements is
ready to be globally validated and used by the
different code generators which include the CASE
tool.

The code generator, depending on the design
decisions commented in this report, will generate the
source code of an application that will execute the
Execution Model steps in a particular environment.

It is remarkable that both the code
generators and the automatically generated
prototype have their own analysis; as well as the
CASE tool has its own different one.

5.Conclusions

Due to the experience acquired while
putting our methodology into practice, a special
emphasis is added on this report for taking into
account several design decisions.

One of the most important characteristics in
OO-Method has become its independence between
itself and any fashionable rapid development
environment. Moreover, using this method the
analyst is never chained to neither an imperative nor
a declarative environment. But, when we have the
determination of generating code for a specific
environment in a particular programming language,
we must take this kind of decisions. They are crucial
in order to generate efficient products automatically
from a conceptual model in OO-Method. The reason

C A S E / O O -M ethod

[i]

[a]

[b]

[d]

Graphica l
S truc tures

In format ion
Structures

C o d e g e n e r a t o r

O A S I S c o d e
generator

[c]

F I G U R E 8

is quite simple, we are automatically implementing a
program, and generic representations must be
concretized.

The biggest problem of the methodology, at
the moment, is to capture interface information at
the conceptual level. This issue is our present and
future work in both the academic and practice fields.
The more information we have collected in the
conceptual model, the more quality will have the
automatically generated prototype. In that way, we
talk about a product and not about a simple
prototype which includes functionality.

Acknowledgments

We want to thank all the people that have made
feasible the implementation of the OO-
Method/CASE Tool, especially Jose Barbera and
Jose Merseguer who actively collaborated in the
elaboration of the present paper.

References:

[1] Balzer, R. et al. Software Technology in the
1990s: Using a New Paradigm. IEEE Computer,
Nov. 1983.
[2] Microsoft COM Technologies [online]. February
1999. From World Wide Web: <
http://microsoft.com/com/default.asp>
[3] Object Management Group Home Page [online].
February 1999. From World Wide Web: <
http://www.omg.org>
[4] Hartmann
T.,Saake,G.,Jungclaus,R.,Hartel,P.,Kusch,J. Revised
Version of the Modeling Language Troll (Troll
version 2.0). Technische Universitat Braunschweig,
Informatik-Berichte, 94-03 April 1994.
[5] Pastor, O.;Hayes,F.;Bear,S. OASIS:An OO
Specification Language. Proc. of CAiSE-92
Conference, Lncs (593), Springer-Verlag 1992,
pags: 348-363.
[6] Pastor,O., Merseguer, J., Romero, J., Barberá,
J.M. : The CASE OO-METHOD graphic
environment. Technical Report, DSIC-UPV, 1996.
[7] Pastor, O.; Romero, J.; Pelechano, V.;Insfran,
E.;Merseguer,J.: OO-METHOD: An OO Software
Production Environment Combining Conventional
and Formal Methods. 9th Conference on Advanced
Information Systems Engineering (CAiSE’97).
Barcelona, Spain. June 1997. LNCS (1250), pages
145-159. Springer-Verlag 1997. ISBN: 3-540-
63107-0.
[8] Pastor, O.; Romero, J.; Barberá J. Mapping
aggregation from modeling to object-oriented

programming. Proceedings of the 3rd International
Conference "The White Object Oriented Nights’
(WOON’98). Editors Alexander
V.Smolyaninov,Alexei S.Shestialtynov.St Petesburg
(Russia)
[9] Romero, J.; Pastor O. Diseño de ambientes
software orientados al objeto de prototipación
automática. IV Jornadas de tecnología de objetos.
University of Deusto, Bilbao, España
[10] Rumbaugh J.,Blaha M., Permerlani W., Eddy
F.,Lorensen W. Object Oriented Modeling and
Design. Englewood Cliffs, Nj. Prentice-Hall 1991.
[11] Jungclaus, R., Saake, G., and Sernadas, C.
Formal Specification of Object Systems. In
Abramsky, S. and Maibaum, T., editors, Proc.
TAPSOFT'91, Brighton, pages 60--82. Springer,
Berlin, LNCS 494
[12] Booch,G.;Rumbaugh,J.;Jacobson,I. Unified
Modeling Language (UML summary). Version 1.0
January 1997. Rational Software Corporation.

