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Abstract: - Gabor's theory implies that the information in image can represent in terms of the amplitudes

of functions that are localized in both space and frequency.

We study applications of Gabor functions that are considered in computer vision systems, such as contour

detection, stereo matching process and object recognition. It is known that structural information even

in grey scale images resides in contours. The problem of extracting contours from images is approached

with the use of Gabor �lters. These �lters have optimal properties relating to simultaneous localisation

in space, spatial-frequency and orientation.

Matching algorithms using image properties maximize a similarity measure between two images. This

similarity may apply to features images derived from images. The main problem of stereoscopic vision is

to �nd corresponding parts of the left image and the right image. Gabor �lters have been used to resolve

the correspondence problem.

The problem of recognition of free-form objects in real-world scenes is still a di�cult. The magnitude of

Gabor features can be used as objects features. The output of this �lter is a vector that describes the

structure around the image location. This vector are classi�ed into N types form a set of regions. Each

region is characterised by its index which describes image in terms of the Gabor �lter response.
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1 Introduction

In 1928 Hartley [5] concluded that "the total

amount of information which may be transmitted

. . . is proportional to the product of frequency range

which is transmitted and the time which is available

for the transmission".

In 1946 Gabor presented an approach to charac-

terize a time function in time and frequency. Ga-

bor showed how to represent time-varying signals in

terms of functions that are localized in both time

and frequency. Information contained in a visual

scene is pre-processed in the retina and represented

in the brain in highly compressed form for further

processing. Gabor's theory implies that the infor-

mation in image can represent in terms of the ampli-

tudes of functions that are localized in both space

and frequency. In a joint space/spatial-frequency

representation for images, frequency is viewed as a

local frequency that can vary with position through-

out the image.

Gabor functions are Gaussians modulated by com-

plex sinusoids. In its general form, the two-

dimensional Gabor function and its Fourier trans-

form can be written as [1]; [2]

g(x; y; u0; v0) = exp(�[ x
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2))(2)
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where �x and �y de�ne the widths of the gaussian

in the spatial domain and (u0; v0) is the frequency

of the complex sinusoid.

We study applications of Gabor functions that are

considered in computer vision systems, such as con-

tour detection, stereo matching process and object

recognition.

It is known that structural information even in grey

scale images resides in contours. The problem of ex-

tracting contours from images is approached with

the use of Gabor �lters. These �lters have optimal

properties relating to simultaneous localisation in

space, spatial-frequency and orientation.

Matching algorithms using image properties maxi-

mize a similarity measure between two images. This

similarity may apply to features images derived

from images. The main problem of stereoscopic vi-

sion is to �nd corresponding parts of the left image

and the right image. Gabor �lters have been used

to resolve the correspondence problem.

The problem of recognition of free-form objects in

real-world scenes is still a di�cult.

The magnitude of Gabor features can be used as ob-

jects features. The output of this �lter is a vector

that describes the structure around the image loca-

tion. This vector are classi�ed into N types form a

set of regions. Each region is characterised by its

index which describes image in terms of the Gabor

�lter response.

2 Stereo matching process

We do not assume that the cameras are parallel.

If (ul; vl) and (ur; vr) are the coordinates in the left

and the right images respectively, of the perspective

projection of an object point P (X; Y; Z) then [7]:

ul = f � xl

zl + f
vl = f � yl

zl + f
(3)

ur = f � xr

zr + f
vr = f � yr

zr + f
(4)

The image coordinate systems are translated by

vector [a; b; c]T and rotated ( by the rotation ma-

trix R determined by the three Euler angles �; �;  

) such that
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Assuming that a = 0  = 0 i.e. the cameras optic

axes are coplanar, and � = 0 ( cameras not rotate

around the z - axis)
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We want to express zl in terms of vl and vr (hori-

zontal disparities). For Z � zl

Z =
f

�
� [(b� vl) � (vr sin � + f cos �) +

+fvr + c(f cos � � vr cos �)] (7)

where: f is the focal length of the lens,

� is the convergence angle,

� = sin �(vlvr + f2) + f cos �(vl � vr).

For c = � = 0

Z = f � b� vl

vl � vr
(8)

For computing stereo disparities we assume match-

ing occurs only there where edge point features ex-

ist.

The matching begins by location feature points in

each image f at multiple resolutions. Let W (x; y)

denote the output of the feature detection �lter at

(x; y). W (x; y) is de�ned by the convolution of

f(x; y) with Gabor elementary function h(x; y) i.e.

W (x; y) = h(x; y)f(x; y). The left feature point

at L = (ul; vl) matches a right feature point at

R = (ur; vr). The disparity of a match (L;R) is

the horizontal pixel distance jvl � vrj.
Feature points from image are extracted by uses

Gabor wavelet decomposition and local scale inter-

action. Feature points are points of curvature max-

ima in the image. To determine a high spatial cur-

vature point the response from a larger sized cell
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Figure 1: Stereo geometry

is subtracted from the smaller cell. Feature point

detection utilizes a simple mechanism uses the re-

sponses of �lter from di�erent frequency channels

[3], [10]

Ii;j(x; y; �) = s(jjWi(x; y; �)� 
Wj(x; y; �)jj) (9)

where 
 = ��2(i�j) is the normalizing factor, and s

is sigmoid nonlinearity function

s(x) =
1

1 + exp(��x)
and Wi(x; y; �) is done by [4]:

W (x; y; �; �) = f(x; y)
 �(x; y; �)

= f(x; y)
 �(�jx; �jy; �) (10)

where 
 denotes convolution, f(x; y) is an image,

�(x; y; �) is a wavelet representation of the Gabor

function, and W is the �lter output. The feature

vector at each spatial location (x; y) is speci�ed as

W(x; y; �) = fW (x; y; �; �)g�;� (11)

The parameter values used in our experiment are

� = 2; � = 4; i = �2; j = �5.We used two vector

feature points I
q
i;j where q = l; r. The epipolar con-

straint limits the search space from 2D image plane

to a single 1D horizontal line. The disparity vector

is characterized by a cost function

Ud =
X
x

jI li;j(x; y; �)� Iri;j(x+ dx; y; �)j2 (12)

3 Gabor �lters

Gabor �lters are �lters with Gabor functions as im-

pulse response. They have been employed in a num-

ber of applications, notably in the area of the edge

detection, texture segmentation and stereo match-

ing process.

3.1 Gabor �lter for edge detection

Gabor functions are Gaussians modulated by com-

plex sinusoids. In its general form, the two-

dimensional Gabor function and its Fourier trans-

form can be written as shown in eqn. 1 and eqn.

2.

When the complex impulse response in eqn. 1 is

expanded:

g(x; y; u0; v0) = gr(x; y; u0; v0) + igi(x; y; u0; v0)(13)

where

gr(x; y; u0; v0) = exp[�( x
2

2�2x
+

y2

2�2y
)]�

� cos[2�(xu0 + yv0)] (14)

and
gi(x; y; u0; v0) = exp[�( x

2

2�2x
+

y2

2�2y
)]�

� sin[2�(xu0+ yv0)] (15)

are the real part and the imaginary part referred to

as cosine and sine, respectively. Cosine part is even

symmetric with respect to an oriented axis, de�ne

by , and is strongly sensitive to features with sym-

metry property along the same oriented axis, useful

for detecting oriented blocs or roof edges. Sine part

is odd symmetric version along the same oriented

axis, useful for detecting oriented step edges.

One of the attractive aspects of using Gabor �lters

are orientation selectivity. Structural information

even in gray-scale images resides in lines and edges.

Projections of the original image into a speci�ed

discrete basis set of 2D Gabor functions gives infor-

mation for local line/edge position and direction.

The parameters of the Gabor �lters were studied:

- the orientation of the grid, denoted by �, with
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� = f00; 300; 450; 600; 900g,
- the scale of the Gaussian denoted by �, withp
2� = f3

p
2; 4

p
2; 5

p
2; 6

p
2; 10

p
2g pixels, and

� =
p
2�
2
,

- the ratio between the scale and the grid wave

length, denoted by �
� with � = f2; 3; 4g for a con-

stant scale (
p
2� = 4

p
2) and a constant orientation

(� = 450).

The edge representation was computed by convolv-

ing original image with the Gabor functions.

3.2 Wavelet representation of Gabor

functions

The Gabor functions form a complete though

nonorthogonal basis set. Like the Fourier series,

a function g(x; y) can easily be expanded using the

Gabor function. Consider the following wavelet rep-

resentation of the Gabor function:

��(x; y; �) = exp[�(�2x02 + y02) + i�x0] (16)

where

x0 = x cos � + y sin �

y0 = �x sin � + y cos �

where � is the spatial aspect ratio and �is the pre-

ferred orientation.

In the experiments, � is the set to 1, and � is dis-

cretized into four orientations. The orientation pa-

rameter � determines the direction of the edges.

Family of wavelets can be generated by translations

�(x � x0; y � y0; �) and dilations �(�jx; �jy; �) ,

where (x0; y0) and �
j are the translation and scale

parameters, respectively. The resulting family of

wavelets is given by

f�[�j(x� x0); �
j(y � y0); �k]g (17)

for � 2 R ; j = f0;�1;�2; � � �g,
and �k =

k�
N , N = 4, k = f0; 1; 2; 3g.

We assume the following �lter structure for analyz-

ing images [4]

W (x; y; �; �) = F (x; y)
 �(x; y; �) =

= F (x; y)
 �(�jx; �jy; �) (18)

where 
 denotes convolution, F (x; y) is an image,

�(x; y; �) is a wavelet representation of the Gabor

function, and W is the �lter output.

We call the �ltering operator shown in eqn.(48) a

Gabor �lter.

The feature vector at each spatial location (x; y) is

speci�ed as

W(x; y; �) = fW (x; y; �; �)g�;� (19)

4 Object detection

In object recognition for each pixel location (X; Y )

we compute the magnitude Gabor features

Gmag(X; Y ) =

x=w=2�1X

x=�w=2

y=w=2�1X

y=�w=2
f(X + x; Y + y)g(x; y; u0; v0) (20)

The input image with 256 x 256 pixels and 256 grey-

level was divided into a set 8 x 8 non-overlapping

blocks and used Gabor �lter we obtained 32 x 32 x

5 (number of orientations) features for each image.

Next these features are the input vectors for a k-

nearest neighbour classi�er. The Gabor vector that

describes the structure around the image location

are quantised into N regions. Each region is char-

acterised by code-book index which describes the

corresponding image .
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Figure 2: Input image

Figure 3: Edge detection using Gabor �ltering.

Figure 4: Edge detection with another set of para-

meters.


