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Abstract : The epoch-making advent of entire eigenstructure assignment (EEA) in late
1970s culminated in potential tools of specifying the time response of linear multivariable
systems. The recent pervasive use of EEA stipulates further theoritical investigation. The
EEA through constant output feedback is of paramount signi�cance for always but states
are not directly available. This paper establishes necessary and su�cient conditions for pole
placement and EEA of general linear multivariable systems via constant output feedback.
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1 Introduction

The multivariable pole placement and entire

eigenstructure assignment have been intensively

studied over the last three decades, e.g. [1,2,3].

It is well known that the transient response of

a linear multivariable system is a linear combi-

nation of the dynamical modes of the system.

The shape of a mode is speci�ed by its associ-

ated eigenvector, and its time-domain character-

istic by its associated eigenvalue. The EEA dic-

tates the time response of the system; in other

words, the eigenvalues, their associated eigen-

vectors, and the reciprocal eigenvectors all con-

tribute to the time response. It has been shown

that [1] for systems in which m+ l�1 � n where

m; l; and n are the number of inputs, outputs,

and states, respectively, arbitrary pole placement

is possible via constant output feedback. In

this paper, necessary and su�cient conditions

for pole placement and EEA of general linear

multivariable systems via constant output feed-

back are derived. The solvability of these con-

ditions for the aforementioned systems is conse-

quently guaranteed.

2 Conditions Derivation

Consider a linear multivariable system described

by the following state and output equations:

_X(t) = AX(t) +Bu(t) (1)

y(t) = CX(t) (2)

where A 2 Rn�n; B 2 Rn�m; C 2 Rl�n, and B



and C without loss of generality are full rank.

A constant matrix G 2 Rm�l is sought for to

place the poles and/or assign the entire eigen-

structure of the closed loop system, i.e. �i 's and

vi 's (i = 1; :::; n) as eigenvalues and associated

eigenvectors.

Replacing,

u(t) = Gy(t) (3)

yields in,

(A+BGC)vi = �ivi i = 1; :::; n (4)

or equivalently,

(��iI + A B )

�
vi
qi

�
= 0 i = 1; :::; n (5)

in which,

qi = GCvi i = 1; :::; n (6)

or in compact form,

G:CV = Q (7)

where

�
vi
qi

�
's for i = 1; :::; n belong to the Ker-

nel spaces of matrices (��iI + A B ), corre-

spondingly.

Patently, necessary and su�cient condition for

the last equation to yield G is that all rows of Q

be linear combinations of rows of CV (Note that

CV stands for C:V ). If vi 's are chosen such that

V be a full rank matrix (which in case of distinct

eigenvalues is necessarily so), then by Silvester's

Formula CV is full rank. Consequently, matrix�
CV

Q

�
=

�
Cv1 ::: Cvn
q1 ::: qn

�
has the same row

rank as matrix CV . On account of the equality

of row and column ranks of a matrix, the follow-

ing are concluded:

Case 1: l � n

Matrix CV has (full) row rank l, hence ma-

trix

�
CV

Q

�
has (full, when l = n, and de�-

cient when l < n) column rank l; i.e., exactly

l vectors of n vectors

�
Cv1
q1

�
; :::;

�
Cvn
qn

�
are

linearly independent. Putting the argument
in reverse direction, the last statement means

that the row rank of matrix

�
CV

Q

�
is l. Re-

garding that the row rank of CV is l, this is
tantamount to rows of Q being linear combi-
nations of rows of CV .
In brief, necessary and su�cient condi-

tions for pole placement and EEA of gen-
eral linear multivarible systems for distinct

eigenvalues are that

�
vi
qi

�
's (i = 1; :::; n)

be chosen such that V = ( v1 ::: vn ) be
full rank, and exactly l vectors of n vectors�
Cv1
q1

�
; :::;

�
Cvn
qn

�
be linearly independent.

Case 2: l > n

Matrix CV has (de�cient) row rank n (and

full column rank n), hence matrix

�
CV

Q

�
has

(full) column rank n; i.e., all of the n vectors�
Cv1
q1

�
; :::;

�
Cvn
qn

�
are linearly independent.

Putting the argument in reverse direction, the
last statement means that the row rank of

matrix

�
CV

Q

�
is n. Regarding that the row

rank of CV is n, this is equivalent to rows of
Q being linear combinations of rows of CV .
In brief, necessary and su�cient conditions

for pole placement and EEA of general linear
multivarible systems for distinct eigenvalues

are that

�
vi
qi

�
's (i = 1; :::; n) be chosen such

that V be full rank, and all of the n vectors�
Cv1
q1

�
; :::;

�
Cvn
qn

�
be linearly independent.

Note that such systems are among the class
of systems in which m+ l� 1 � n.
The above argument is summarized in the

following theorem.

Theorem : For the linear multivariable sys-
tem described by the following state and out-
put equations:

_X(t) = AX(t) +Bu(t)



y(t) = CX(t)

where A 2 Rn�n; B 2 Rn�m; C 2 Rl�n, and
B and C without loss of generality are full
rank, necessary and su�cient conditions for
multivariable pole placement and/or entire
eigenstucture assignment of the closed loop
system, i.e. �i 's and vi 's (i = 1; :::; n) as
distinct eigenvalues and associated eigenvec-
tors, through constant output feedback are

that

�
vi
qi

�
's (i=1,...,n), satisfying equations

(1) through (7), be chosen such that V be
full rank and exactly l0 vectors of n vectors�
Cv1
q1

�
; :::;

�
Cvn
qn

�
be linearly independent,

where l0 = l when l � n and l0 = n when
l > n.

Corollary 1 : When l � n evidently there
exists a full rank matrix M such that ma-

trix T =
�
C

M

�
be nonsingular. Applying the

state transformation Z = TX, system equa-
tions are transformed to,

_Z(t) = TAT�1Z(t) + TBu(t) (8)

y(t) = [Il�l 0]Z(t) (9)

Hence, regarding that the above similarity
transformation does not alter the eigenval-
ues and eigenvectors of the closed loop sys-
tem, the second condition of the Theorem is
equivalent to \ exactly l0 vectors of n vectors
( v1;1 ::: v1;l qT1 )

T
; :::;

( vn;1 ::: vn;l qTn )
T

be linearly indepen-
dent ".

Corollary 2 : When l > n the second con-
dition is trivial. Because, if vi 's are cho-
sen linearly independent, then CV has full
column rank, consequently all of the vectors�
Cv1
q1

�
; :::;

�
Cvn
qn

�
are linearly independent.

Remarks :

A: Each vector

�
vi
qi

�
2 R(n+m)�1 for i =

1; :::; n is spanned by m vectors Si;1; :::; Si;m,
being the basis vectors of the null spaces of
matrices (��iI +A B ), correspondingly.
B: The number of eigenvectors (or similarly�
vi
qi

�
vectors) to be assigned is n, yielding

that there are m� n unknowns to be delved
into.
C:A straightforward but tedious procedure to
follow to �nd eigenvectors satisfying the de-
rived conditions is as follows:
C:1: Form :�
vi
qi

�
= xi;1Si;1 + :::+ xi;mSi;m

for i = 1; :::; n
C:2: Solve for m� n unknowns xi;j ;
i = 1; ::; n ; j = 1; :::;m , satisfying,
C:2:1: V be full rank (and C.2.2 if l < n)
C:2:2: All (l+1)�(l+1) submatrices of mma-

trices

0
BBBB@

v1;1 : : : vn;1
...

...
...

v1;l : : : vn;l
q1;j : : : qn;j

1
CCCCA, j = 1; :::;m which

are (l + 1)� n, be singular.
D: The required output feedback matrix is
given by:
G = Q:CV T :(CV:CV T )�1 when l � n (and
preferably G = Q:CV �1 when l = n)
and when l > n an in�nite number of solu-
tions which can easily be found as follows:
Solve directly for m � l entries of G from
m � n < m � l equations: G:CV = Q;
m� (l�n) entries can be selected arbitrarily.
A class of solutions are obtained as follows:
Find n independent rows of CV to form an
n� n nonsingular submatrix CV 0 of CV ,
Form G0 consisting of the corresponding
columns of G,
Find G0 from G0 = Q:CV 0�1,
Evolve G by juxtaposing columns of G0 and
zero columns in place of other (left) columns
of G; i.e., the corresponding outputs are not
fed back.
If other (left) columns of G are wanted to be
nonzero columns, then in the above formula
Qmust be substituted with Q�G00:CV where



G00 is formed by juxtaposing zero columns
instead of columns of G0 and other (left)
nonzero columns of G.
E: The multivariable pole placement and/or
entire eigenstructure assignment via constant
output feedback can be solved by duality.
When �i 's and wi 's (i = 1; :::; n) are dis-

tinct eigenvalues and reciprocal eigenvectors
of the closed loop system, i.e.,

wT
j vi = �ij i; j = 1; :::; n (10)

and,
wT

i (A+BGC) = �iw
T
i (11)

i = 1; :::; n

equivalently it can be written as,

(��iI +AT CT )

�
wi

�i

�
= 0 (12)

i = 1; :::; n

in which,

�i = GTBTwi i = 1; :::; n (13)

or in compact form,

GT :BTW = � (14)

where

�
wi

�i

�
's for i = 1; :::; n belong to the

null spaces of matrices (��iI +AT CT ),
correspondingly.
Similarly, necessary and su�cient condition

for the last equation to yield GT is that all
rows of � be linear combinations of rows of
BTW . Therefore, by similar argument, nec-
essary and su�cient conditions of the above

theorem would change to: \

�
wi

�i

�
's (i =

1; :::; n), satisfying equations (10) through
(14), be chosen such that W = ( �1 ::: �n )
be full rank and exactly m0 vectors of n vec-

tors

�
BTw1

�1

�
; :::;

�
BTwn

�n

�
be linearly inde-

pendent, where m0 = m when m � n and
m0 = n when m > n", followed by corre-
sponding corollaries and remarks.

F: In case of repeated eigenvalues and de�-
cient rank matrices B and C, Theorem's con-

ditions change to: \

�
vi
qi

�
's (i = 1; :::; n) be

chosen such that rank of V equals the num-
ber of independent eigenvectors of A+BGC

(which must be checked after �nding G) and

rank of

�
CV

Q

�
= l0 , where l0=rank of CV

when rank of CV � n and l0 = n otherwise",
followed by corresponding corollaries and re-
marks.

3 Illustrative Examples
The following examples demonstrate the pro-
cedure of �nding eigenvectors satisfying the
Theorem's conditions.

Example 1 : For the linear multivariable

system A =

0
B@

1 0 2
0 0 0

�0:5 0:5 �1

1
CA ;

B =

0
B@

0 �1
1 1
0:5 0:5

1
CA ; C =

�
1 1 0
1 0 2

�
carry out

pole placement and/or entire eigenstructure
assignment for the desired closed loop eigen-
value set � = f�1;�2;�5g.
Applying the state transformation

Z = TX where T =

0
B@
1 1 0
1 0 2
0 1 0

1
CA system

equations are converted to

A0 =

0
B@
0 1 0
0 0 1
0 0 0

1
CA ; B0 =

0
B@
1 0
1 0
1 1

1
CA ;

C 0 =

�
1 0 0
0 1 0

�
. Solving for the ba-

sis vectors of the null spaces of matrices
(��iI +A B ), (or those of the transformed
system) where �1 = �1; �2 = �2; �3 = �5,
they are found as,

S1;1 = ( 1 0 1 �1 0 )T ;

S1;2 = ( 0 1 0 �1 1 )T ;

S2;1 = ( 1 0 2 �2 �2 )T ;

S2;2 = ( 0 1 �1 � 37 )T ;



S3;1 = ( 1 0 5 �5 �20 )
T
;

S3;2 = ( 0 1 �4 �1 21 )
T
;

Solvig,

det

0
@x1;1 x2;1 x3;1

x1;2 x2;2 x3;2

x1;1 2x2;1� x2;2 53;1 � 4x3;2

1
A 6= 0;

det

�
x1;1 x2;1 x3;1

x1;2 x2;2 x3;2

�x1;1 � x1;2 �2x2;1 � x2;2 �5x3;1 � x3;2

�
= 0;

det

�
x1;1 x2;1 x3;1

x1;2 x2;2 x3;2

x1;2 �2x2;1 + 3x2;2 �20x3;1 + 21x3;2

�
= 0,

the following are found among the in�nite
number of solutions:
X1 = fx1;1 6= 0; x1;2 = 0;
x2;1 = 6x2;2 6= 0; x3;1 = 1:5x3;2 6= 0g,
X2 = fx1;1 = 1; x1;2 = �1;
x2;1 = �3; x2;2 = 2; x3;1 = 3; x3;2 = 1g,
X3 = fx1;1 = 2; x1;2 = �1;
x2;1 = �3; x2;2 =

3

4
; x3;1 = 3; x3;2 =

3

2
g,

X4 = fx1;1 = 1; x1;2 = �1;
x2;1 = �3; x2;2 =

1

3
; x3;1 = 3; x3;2 =

5

3
g,

and the corresponding output feedback ma-
trices would be,

G1 =
�
�1 �7
0 �9

�
, G2 =

�
�4 �4
�10 �9

�
,

G3 =
�
�3 �5
�5 �9

�
, andG4 =

�
�2:5 �5:5
�10

3
�9

�
,

respectively.

Example 2 : For the linear multivariable

system A =

0
B@

1 0 2
0 0 0

�0:5 �0:5 �1

1
CA ;

B =

0
B@

0 �1
1 1
0:5 0:5

1
CA ; C =

0
BBB@
1 1 0
1 0 2
0 0 1
1 �1 2

1
CCCA carry

out pole placement and/or entire eigenstruc-
ture assignment for the desired closed loop
eigenvalue set � = f�1;�2;�5g.
Basis vectors Si;j 's are the same as those of
Example 1. Solving for 8 unknown entries of
matrix G, four of the in�nite number of so-
lutions which their fourth and third columns

are chosen

�
0
0

�
,

�
1
2

�
,

�
0
0

�
, and

�
�2
�3

�
, are,

G1 =

�
13 14 �7 0
18 18 �9 0

�
,

G2 =

�
15 16 �8 1
22 22 �11 2

�
,

G3 =

�
�1 0 0 �7
0 0 0 �9

�
,

G4 =

�
3 4 �2 �5
6 6 �3 �6

�
, respectively.

4 Conclusion

The entire eigenstructure assignment via con-
stant output feedback is a powerful tool of
specifying the time response of linear multi-
variable systems when states are not directly
available. The necessary and su�cient con-
ditions for pole placement and EEA via con-
stant output feedback of general linear mul-
tivariable systems were derived. As it is ob-
served, multivariable pole placement through
constant output feedback involves eigenvector
assignment; in other words, the multivariable
pole placement and EEA via constant output
feedback are in e�ect identical.
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