
Exact and E�cient Determination of Geometric Predicates

IOANNIS Z. EMIRIS

INRIA Sophia-Antipolis, B.P. 93, 06902 Sophia-Antipolis, FRANCE, and
Department of Computer Science, University of Crete, Heraklio, GREECE.

emiris@sophia.inria.fr, http://www.inria.fr/saga/emiris

Abstract: - Typical geometric predicates, includ-

ing orientation and in-sphere tests, reduce to a

sign determination of multivariate polynomials. We

propose an exact and e�cient method that deter-

mines the sign of a multivariate polynomial ex-

pression with rational coe�cients, including ma-

trix determinants. Exactness is achieved by using

modular computation. Although this usually re-

quires some multiprecision computation, our tech-

niques enable us to carry out sign determination

by using only single precision. In this, and to ex-

ploit modern day hardware, we exclusively rely

on �oating point arithmetic. We show how our

method can be used to generate robust and e�-

cient implementations of geometric algorithms in-

cluding convex hull, Voronoi diagram computa-

tions and solid modeling. This method is easy

to implement and compares favorably with known

methods from a practical complexity point of view.

These claims are substantiated by experimental

results and comparisons to other existing approaches.

Key Words: - Geometric predicate, sign determi-

nation, single precision, determinant test, fast im-

plementation.

1 Introduction

In computational geometry, computer-aided de-

sign (CAD), geometric modeling and computer

graphics, most geometric predicates can be ex-

pressed by computing the sign of an algebraic ex-

pression. We are typically interested in the exact

determination of such a test with the additional

goal of speed. The latter goal motivates us to

use �xed-precision �oating-point (f.p.) arithmetic

since it has bene�ted from important infrastruc-

tural support and extremely e�cient hardware im-

plementations. F.p. arithmetic is only approxi-

mate, however. While this may be acceptable in

performing numerically stable computations, it is

unacceptable in deciding geometric predicates be-

cause the roundo� errors may easily lead to the

wrong sign, causing the algorithm to fail. This

problem is often referred to as the robustness prob-

lem [13].

This paper surveys methods that determine

exactly the sign of a multivariate polynomial with

rational coe�cients evaluated at a rational point.

It uses no operations other than modular arith-

metic and f.p. computations with a �xed �nite

(single) precision. The key feature is the verac-

ity of exact computation, combined with the e�-

ciency of f.p. arithmetic. Our methods can be used

in exact geometric predicates, as well as whenever

numerical techniques need an exact test.

More speci�cally, our algorithms perform ra-

tional algebraic computations modulo several primes,

which require only single-precision. The Chinese

remainder theorem enables us to combine the re-

sulting values together in order to recover the de-

sired output value. This is not a new trick: such a

representation of integers by their moduli is known

as Residue Number Systems (RNS) and is popular

because it provides a cheap and highly paralleliz-

able version of multiprecision arithmetic. The lat-

ter stage of combining the moduli to reconstruct

the explicit answer, however, has always been the

bottleneck of this approach because higher preci-

sion computations were required [16]. Our method

enables us to greatly accelerate this phase, since

it only needs some simple single precision compu-

tations.

Most of the results surveyed here have appeared

in [4, 5]. The closest predecessors of this work are



apparently [10, 14, 3]. More recently, other ap-

proaches in the same general vein have appeared,

such as [12].

2 Exact sign computation using

modular arithmetic

Our model of a computer is that of an f.p. pro-

cessor that performs operations at unit cost by

using b-bit precision (e.g., in the IEEE 754 dou-

ble precision standard, we have b = 53). For all

four arithmetic operations, the computed result is

always the f.p. representation that best approxi-

mates the exact result. This means that the rel-

ative error incurred by an operation returning x

is at most 2�b�1, and that the absolute error is

at most 2blog jxj�b�1c; logarithms in this paper are

base 2. In particular, operations performed on

pairs of integers smaller than 2b are performed

exactly as long as the result is also smaller than

2b. We systematically ignore under�ows and over-

�ows, by assuming that the range of exponent is

large enough. Given any real number x, it is rep-

resentable over b bits if x = 0 or if x2�blog xc+b is

an integer; ex denotes the representable f.p. num-

ber closest to x (with any tie-breaking rule if x is

right in-between two representable numbers).

Let m1; : : : ;mk be k pairwise relatively prime

integers and let m =
Q

imi. For any number x

(not necessarily an integer), we let xi = x mod mi

be the only number in the range
�
�mi

2
; mi

2

�
such

that xi � x is a multiple of mi. This operation

can be extended modulo an f.p. number. Note

that the result of truncating x to a power of two

is always representable if x is representable. To

perform arithmetic modulo mi on integers by f.p.

arithmetic, we assume mi � 2b=2+1.

Problem 1 Let k, b, m1; : : : ;mk denote positive

integers, m1; : : : ;mk being pairwise relatively prime,

such that mi � 2b=2+1, and let m =
Qk

i=1mi. Let

x be an integer whose magnitude is smaller than

bm=2c. Given xi = x modmi, compute the sign of

x by using only modular and �oating-point arith-

metic both performed with b-bit precision.

We will solve this problem, even though x can be

huge and, therefore, not even representable by us-

ing b bits. In the worst case, our solutions require

O(k2) operations and therefore do not improve

asymptotically over the standard multiprecision

approach. They are simple, however, and require

little or no overhead. In practice, they only per-

form O(k) operations. Thus they are very well

suited for implementation.

3 Lagrange's method

According to the Chinese remainder theorem, x

is uniquely determined by its residues xi, that is,

Problem 1 is well de�ned and admits a unique

solution. Moreover, this solution can be derived

algorithmically from a formula due to Lagrange.

If x is an integer in the range
�
�m

2
; m
2

�
, xi

stands for the residue x mod mi, vi = m=mi =Q
j 6=imj, and wi = v�1i modmi, then

x =

 
kX

i=1

((xiwi) modmi) vi

!
mod m:

Trying to determine the sign of such an integer,

we compute the latter sum approximately in �xed

b-bit precision. Computing a linear combination

of large integers vi with its subsequent reduction

modulom can be di�cult, so we prefer to compute

the number

S =
x

m
= frac

 
kX

i=1

(xiwi) mod mi

mi

!
;

where frac(z) is the fractional part of a number x

that belongs to
�
�1

2
; 1
2

�
.

If S were computed exactly, then we would

have S = x=m, due to Lagrange's formula. If we

compute S by incrementally adding the ith term

and taking fractional part, the error bound fol-

lows the induction "i = "i�1+2�b�1+2�b; where

the term 2�b�1 accounts for the error on comput-

ing the ith term of S, and the term 2�b accounts

for the error on computing the incremental sum.

Moreover, "1 = 2�b�1. A technical problem can

arise if S is too close to a half-integer, because the

fractional part may not be computed properly. We

circumvent this by assuming that jxj is less than
m
2
(1� "k). In this way, we can ensure that S ap-

proximates x=m within an absolute error bound

"k = (3k � 2)2�b�1.

Therefore, if jSj is greater than "k, the sign of

x is the same as the sign of S, and we are done.

Otherwise, jxj � 2"km. Since mk � 2b=2+1, we



can say conservatively that 2"km is smaller than
m
2mk

(1 � "k�1), for all practical values of k and b,

and hence we may recover x already from xi =

x modmi for i = 1; : : : ; k�1, that is, it su�ces to

repeat the computation using only k � 1 moduli.

Recursively, we will reduce the solution to the case

of a single modulus m1.

We will present our resulting algorithm by us-

ing additional notation: m(j) =
Q

1�i�j mi; v
(j)
i =Q

1�`�j

`6=i

m`; w
(j)
i = (v

(j)
i )�1 modmi;

S(j) = frac

 
jX

i=1

xiw
(j)
i modmi=mi

!
;

so that m = m(k), vi = v
(k)
i , wi = w

(k)
i and

S = S(k). We must assume that x=m(k) is suf-

�ciently far from half-integers, hence we assume

that jxj � m(k)

2
(1 � "k): This assumption is vi-

olated with very low probability "k for random

xi and can be remedied by computing one more

residue xk+1.

Algorithm 1 : Compute the sign of x knowing

xi = x modmi

Precomputed data: mj, w
(j)
i , "j, for all 1 �

i � j � k

Input: integers k and xi 2
�
�mi

2
; mi

2

�
, for

all 1 � i � k

Output: sign of x, the unique solution of

xi = x modmi in
h
�m(k)

2
; m

(k)

2

�
Precondition: jxj � m(k)

2
(1� "k)

1. Let j  k + 1

2. Repeat j  j � 1,

S(j)  frac

 
jX

i=1

xiw
(j)
i modmi

mi

!

until jS(j)j > "j or j = 0

3. Return sign of S(j)

Lemma 3.1 [5] Algorithm 1 computes the sign of

x knowing its residues xi by using at most
k(k�1)

2

modular multiplications,
k(k�1)

2
f.p. divisions,

k(k�1)
2

f.p. additions, and k + 2 f.p. comparisons. All of

these operations can be implemented in f.p. arith-

metic.

If jxj > 2�km then only step k is performed,

involving only at most k f.p. operations of each

kind. This is to be contrasted with full recon-

struction, which requires �(k2) operations. Thus

algorithm 1 is of great practical value.

If actually x = 0, the algorithm can be greatly

sped up by testing if xj = 0 in step 2, in which

case we may directly pass to j � 1. Furthermore,

stage 3 is not needed unless x = xj = 0 for all j,

which can be tested beforehand.

4 Newton's method

An incremental version of Chinese remainder re-

construction, named after Newton, is described in

this section. The main advantage is that it can be

adapted to a probabilistic algorithm that does not

require an a priori bound on the magnitude of x.

This is the subject of section 4.1.

Let x(j) = x modm(j); for j = 1; : : : ; k; so

that x(1) = x1 and x = x(k). Let y1 = x1, and for

all j = 2; : : : ; k;

tj = w
(j)
j = (m(j�1))�1 mod mj;

yj =
�
xj � x(j�1)

�
tj modmj 2

h
�
mj

2
;
mj

2

�
:

Then, for all j = 2; : : : ; k,

x(j) =
�
x(j�1) + yjm

(j�1)
�
modm(j): (1)

All computation can be kept modulo mj , and

no �oating-point computation is required, in con-

trast to the previous section. The yj de�ne the

mixed-radix representation of x, which would of-

fer an alternative way to perform arithmetic on

long integers; see also [15, 16]. It is obvious, that

when yj 6= 0, then the sign of x(j) is the same as

the sign of yj since jx
(j�1)j � m(j�1)=2. If yj = 0,

the sign of x(j) is the same as that of x(j�1), for

j � 2, whereas the sign of x(1) = x1 = y1 is known.

If yj = 0 for all j, then this is precisely the case

when x = 0.

For 1 � i < j � k, we introduce integers

u
(j�1)
i =

�
m(i�1)tj

�
modmj =

 
j�1Y
l=i

ml

!�1

modmj:

Then tj = u
(j�1)
1 . Unrolling equation (1) in the

de�nition of yj shows that the quantities yj verify



the following equality for all j = 2; : : : ; k:

yj =

 
(xj � x1)u

(j�1)
1 �

j�1X
i=2

yiu
(j�1)
i

!
modmj :

Therefore, they can be computed by using modu-

lar arithmetic with bit-precision given by the max-

imum bit-size of them2
j . Here it su�ces to assume

that the absolute value of x is bounded bym(k)=2.

Algorithm 2 : Compute the sign of x; knowing

x modmi; by Newton's incremental method.

Precomputed data: mj, u
(j�1)
i , for all 1 �

i < j � k

Input: integers k and xi 2
�
�mi

2
; mi

2

�
for all

i = 1; : : : ; k

Output: sign of x, where x is the unique so-

lution of xi = x modmi in
h
�m(k)

2
; m

(k)

2

�
Precondition: None.

1. Let y1  x1, j  1. Set s to �1; 0 or 1, if

y1 is negative, zero or positive, respectively.

2. Repeat j  j + 1,

yj  

 
(xj � x1)u

(j�1)
1 �

j�1X
i=2

yiu
(j�1)
i

!
mod

mj ;

Set s to 1 or �1, if yj is positive or

negative, respectively.

If yj = 0 then s does not change.

until j = k.

3. Return sign of s

Lemma 4.1 [5] Algorithm 2 computes the sign of

x knowing its residues xi using exactly
k(k�1)

2
mod-

ular multiplications,
k(k�1)

2
modular additions, and

2k comparisons. All of these operations can be im-

plemented in f.p. arithmetic.

To compare with algorithm 1, realistically as-

sume that a modular addition is equivalent to 3=2

f.p. additions and one comparison, on the average.

Then, algorithm 1 requires at most
k(k�1)

2
f.p. di-

visions (which are essentially multiplications with

precomputed reciprocals) more than algorithm 2,

whereas the latter always requires
k(k�1)

4
extra f.p.

additions and
k(k+1)

2
additional comparisons.

4.1 A probabilistic variant

We propose below a probabilistic variant of algo-

rithm 2 which, moreover, removes the need of an

a priori knowledge of k. The principal feature

of Newton's approach is its incremental nature.

In our variant, this may lead to faster termina-

tion, before examining all k moduli. Informally,

this should happen whenever the magnitude of x

is signi�cantly smaller than m(k)=2, in which case

we would save the computation required to obtain

xj for all larger j. This saves a signi�cant amount

of computation if termination occurs earlier than

the static bound indicated by k.

Step 2 is modi�ed to include a test of yj against

zero. Clearly, yj = 0 precisely when x(j) = x(j�1).

Then we may deduce that x(j) = x(k) = x, with

a very high probability, and terminate the itera-

tion. In terms of mixed-radix representation, this

assumes that when yj = 0 then all more signi�-

cant yi's will also be zero. This is no di�erent from

escaping in multiprecision arithmetic when some

digit (or sequence of consecutive digits) turns out

to be zero, assuming then that the higher order

digits also turn out to be zero.

By lemma 3.1 of [10], this algorithm termi-

nates with a failure with probability bounded by

(k�2)=mmin; wheremmin = minfm1;m2; : : : ;mkg:

5 Experimental results

5.1 Sign reconstruction

We present several benchmark results of our di-

verse methods for reconstructing the sign of an in-

teger x 2
h
�m(k)

2
; m

(k)

2

�
represented by its residues

xi = x mod mk, i = 1; : : : k. Most of these are due

to S. Pion at INRIA Sophia-Antipolis [4, 5, 6].

The measurements are performed on a 200MHz

Sun Ultra Sparc workstation. We see for instance

that they are negligible with those of the follow-

ing determinant sign computation, showing that

sign determination in RNS using our methods be-

comes a negligible portion of the determinant sign

computation.

5.2 Determinant sign

We present several benchmark results of the de-

scribed methods for computing the sign of a de-

terminant and compare them with di�erent exist-



ing packages, so as to assert the practical inter-

est of our algorithms: Method FP is a straight-

forward f.p. implementation of Gaussian elimina-

tion which, of course, cannot guarantee correct-

ness of the result. In particular, FP fails for ill-

conditioned matrices. Method MOD is our imple-

mentation of modular Gaussian elimination. Method

PROB is an implementation of modular Gaussian

elimination using the probabilistic Newton variant

described in section 4.1, where the computation is

stopped when the probability of having a bad re-

sult is about 2�53. In all the random matrices we

tested, PROB never failed. Method CL has been

implemented by us based on [9, 7]. As we compare

with methods that handle arbitrary dimensions,

we did not specialize the implementation for small

dimensions as is done in [7] (this would provide an

additional speedup of approximately 3). Method

GMP is an implementation of Gaussian elimina-

tion using the GNU Multiprecision Package, for

dimension lower than 5, and an implementation

of Bareiss' extension of Gaussian elimination, for

higher dimensions. Method LEDA uses the rou-

tine for the determinant sign of an integer matrix

of Leda [8].

All implementations are in C, except LEDA

which is in C++. Note that all methods could

also be �ltered, which would yield running times

comparable to those of FP, on random inputs.

All tests were carried out on a 200MHz Sun

Ultra Sparc workstation. Each program is com-

piled with the compiler that gives best results.

Each entry in the following tables represents the

average time of one run in microseconds, with a

maximum deviation of about 10%. We concen-

trated on determinant sign evaluation and consid-

ered three classes of matrices: random matrices,

whose determinant is typically away from zero,

almost-singular matrices with single-precision de-

terminant, and lastly singular matrices with zero

determinant. The coe�cients are integers of bit-

size 53�n (due to restrictions of Clarkson's method).

Among the methods that guarantee exact com-

putation, our implementations are at least as ef-

�cient as the others, and for certain classes of

input they signi�cantly outperform all available

programs. Furthermore, our approach applies to

arbitrary dimensions, whereas methods that com-

pute a f.p. approximation of the determinant value

are doomed to fail in dimensions higher than 15

because of over�ow in the f.p. exponent. The run-

ning times are displayed in tables 1�3. (For small

dimensions, specialized implementations can pro-

vide an additional speedup for all methods.) Our

code is reasonably compact and easy to maintain.

Some side e�ects may occur, due to the way

we generate matrices. The code of the modular

package is free, and anyone can benchmark it on

the kind of matrices that he uses. It is available

via

http://www.inria.fr/prisme/personnel/pion/progs:
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