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Abstract: -A cognitive intelligent approach to the control of an electromechanical positioning actuator using
Tendentious Vague Sets (TSets) is presented.

The electromechanical positioning actuator prototype discussed is essentially a position control system whos
constitutive elements are a PC based control unit, a Direct Torque Control (DTC) inverter and an induction
motor.

A generalisation of the fuzzy sets known as TSets is used to incorporate learning abilities into the syster
required to control an electromechanical positioning actuator.

The synthesis of the controller is described, highlighting the practical implementation details.

An analysis of the resulting system intelligent behaviour is presented, including its learning ability. A
comparison between the expected behaviour (simulation) and the obtained (experimental) is also presented.

Key-Words: intelligent Control, Position Control, TSets, Learning, Electromechanical Drives.

1 Introduction linguistic message, the credibility that the receiver

Being a vanguard research subject in the area ofittributes to the message should be considered an
electromechanical drives, the control of the angularimportant element of a linguistic processing.
speed of an induction motor has been the subject of TSets incorporate this credl_blllty fac_tor with the
many papers in recent yedts2]. However, there are ~ creation of thre_e_ membershlp funqtlons named
not many references to the angular position control ofoPtimistic, pessimistic and tendentious. For ~a
the induction motor. Higher cost motors, like Imgwsﬂc_mformgtpn they represent |t3_p055|b|||ty
Permanent Magnets, Variable Reluctance Machineslegree, impossibility degree and certainty degree,
(VRM) and Step Motors, are the most common réspectively.
selection for electromechanical positioning systems
machines. o

The development of intelligent controllers 2.1 TSet Definition
experienced a strong growing in the last decade. Thid\ tendentious vague set (TSet) is a generalisation of a

which allow, in a synthetic way, to control complex get in X iif:

systems and/or difficult modelling ones. Nevertheless - N
there is no normalisation in the development of these A= %{[“ﬁ (). K5 p(x)]’“,g (X)}%W@ @
controllers, and several approaches are currentlyynare:

used. In the following sections, a controller is .. o = _
developed by using a cognitive approach supportedi; - X — [0’]]:.“; (x) = Degre¢ x1 A D[OJ]’ IS

on the Tendentious Vague Sets (TSets) thapry[ a membership function that measures the optimisti
In this paper we prove the learning capabilities of _ = _
the TSets. degree of membership of x to the sét, with
xOX . ,ug‘p(x) =1-pP(x) with
: Py = = .
2 TSets Fundamentals H2:X — [0,1]: pf (x) = Degre¢ x0 A 0[0] s

The motivation to the TSets development derivesa membership function that measures the pessimistic
from analysis of the communication dialogue membership degree (or non membership) of x to the
elements between linguistic emitters and receivers. = . t. .

Due to the implicit elements passed within a St A, with xDX and ”Z\'X _’[O’]]’ IS a
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membership function given by:

[ o ! a Knowledge
ue (x)] +[u:p(x)] Base
1 (%) = D{/ A o] 2 with azo0 (2) l
that measures the tendentious membership degree @afess Coi;ric’t'i'gf
tendentious credibility) of x to the sét. ) Te”de.”“o.us—bl Decision | )y Tendentious
o o Vagueficatior Making Devagueficatiof
The credibility factoiax represents the credibility Interface Interface
of an element in a vague set that can fluctuate fro
total disbelief @ — -) to total believed — +©). Credibil
In this theory the following restrictions are always Eva|uatioyn
verified regardless of the x value.
pe (x) + ug (x)<1 Fig.1 TSet controller functional block diagram
UxOX (3
M2 (X) < pE () < " (%) © The mai i i
A VS HA W)= M e main structural difference to the classical fuzzy

From (3) the previous restrictions it can be seencontroller[7], is due to the existence of an internal
that TSets are a generalisation of the vague[dts feedback loop inside the controller.
and therefor also a generalisation of fuzzy sets.
Considering (1) and (3) some operations can be
defined either by extension from the fuzzy sets either3 Cognitive Intelligent Controller
by using the TSets particular characterisiils The intelligent control for electromechanical drives
One of the most important tools in the usage of thehas been presented several times in the last {@ars
TSets theory is to perform approximate reasoning. InThe usage of a set of techniques using artificial neural

the sequence of the generalismddus poneng5], networks, fuzzy logic and genetic algorithms has
the compositional inference rule using union andallowed the inclusion of intelligent behaviour in
intersection operators can be written as: electromechanical drivg9-1Q.

= e ure) ut (e ure) ot In fact, the use of artificial neural networks or
R(y) ‘LXJ Mg K g s\ 1 e [ (4) fuzzy logic in the definition of control strategies is
being U any union operator and any intersection ilomet{hmels thetﬁ_ass_to Iqetf'ne an mterl]llgent conttr(t))l.
operator. To reduce the calculation time, the most everineless, this sImplistic approach can not be
commonly used in electromechanical system are thecon5|dered vyhen deallng_wnh complex syst¢irs.
maximum and the minimum. _ A ‘generic  systematisation can be made by
including different approaches, namely the ones

based in the observation of the human operators
performance followed by its behaviour mimetism. It
should also includes the human oriented machines
approach.

With the usage of linguistic modelling, it is
possible to model dynamic complex systems.

2.2 Tendentious Vague Controller
By using the TSets its possible to develop a
tendentious vague controll¢6] with the ability to
correct the behaviour on real time by using the
credibility factor.

In the basic TSet controller (fig. 1), the

tendentious vaguefication interface is the responsiblee’ 1 The Behaviour Levels of Intelligent
for the quantization of the process state and for the™ Control Systems 9

tendentious vaguefication accordingly with the The human behaviour has been discussed using

credibility factor ¢1). The knowledge base stores the . o
linguistic rules in the conditional form, as well as different approaches. Qqn3|der|ng the method based
n the human capabilitie$l2], three levels of

some information about the universe of discourse.’ el ;
The tendentious devaguefication interface determine%erforr_nance can t_)e dlstlng_ws_hed n the_hur_nan
the final control action corresponding to the three eh_awour .I|m|tat|c_)ns within deterministic
scenarios. The decision making logic is responsibleenv'ron.mems' 1) skill, 2) rules and 3) knowledge
for the compositional inference. And the credibility level. (fig. 2).

evaluation determines the credibility factor variation

accordingly with the three output scenarios.



External The second stage in the development of the

Criteria tendentious vague controller corresponds to the
definition of the interface conditions, i.e., to the
- definition of the input and output variables
- Secondar representation in terms of linguistic sets (TSets).
Knowledge Pr?glem B El)v'ecl?lon —p{ Objectives The choice of the membership degrees for the
Level b Planning optimistic and pessimistic membership is based in
f T subjective criteria and a consequence of the analysis
| {r to the tendentious vague characteristics of the
System State - Task controlled system, nevertheless their choice does not
Rules State [y -Task (- Stored have large influence on the robustness of the resulting
Level ID Assocition Rules controller. Therefor the chosen optimistic and
= T pessimistic = membership  functions of the
e corresponding TSets (NG, NM, NR, ZE, PR, PM,
Character Sensor/Moto PG,) can be represented generically by each of the
Skill stics Automatic following sets:
Level Extraction Actions 0 5 &
0 J
LHZ (u) = Z 0
0 =1 ]
Clues Senso# B 5 5 (5)
nPut " crrators [H% P(u) = Z_J
0 =1 Y

Fig.2 Human behaviour cognitive approach , . : .
g g PP being u a generic element of the universe of discourse

The cognitive approach based in human mentalE the array that contains the optimistic membership
models allows the identification of the components dégrees of the TSets, addhe array that contains the
on the task development and simultaneously a certaii?€SSimistic membership degrees of each TSet.
degree of automatic implementation. The usage of Graphically the partition of each of the linguistic
this approach needs nevertheless the extra/@rables is the one presented in figure 3.
information that includgs the defi_nition of relevant NB NM NS ZE PS PM PB
knowledge and processing strategies.

3.2 Controller Development Stages

In order to synthesise a tendentious vague controller
with the structure presented earlier, a methodologyF
can be defined by tasks corresponding to several
stages. All of these tasks are at the rule level of
intelligent behaviour, with the exception of the

credibility evaluation. Therefor, the development of
tendentious vague controller for position control

methodology can be framed in each of the following
intelligent behaviour levels.

u
ig.3 Linguistic universe of discourse partition

The universe considered for each of the input and
output variables is a discrete one with 21 levels of
quantization.

3.2.2 State-task Association

The third stage in the development of a tendentious
vague controller corresponds to the definition of the
knowledge base. At this level of behaviour this

3.2.1 State System ldentification o . O ,
Y éarocedure coincides with the determination of which

The first stage in the development of the tendentiou | v in which ci
vague controller is to choose the input and outputru eTshto apply in w ICI lflrculmjtances. . hod
variables of the controller, i.e. to choose the process ere are several knowledge acquisition methods

variables that should be observed and which of the'€cessary to the formulation of the control ryeg.
control actions should be considered. In this controller, the option was to use a linguistic

As with the non linguistic position controllers model of the system to control based on the desirable
usually, the chosen variables are the motor positionfdynamic analysis of an electromechanical position
error as well as its variation on a short time interval CONtroller in the extreme situation corresponding to

and the active torque, for the controllers inputs and®" instantaneous step posi_tion reference_ \_/ariation.
output respectively. The control rules are defined as conditional vague



statements like: Since in this case the controller can be included in

Premise: Quantified_input_variablés the MIMO category, with two inputg, andAg, and
Level_of_optimistic_membershapd tWO OUPULS Xoptim @NdXpessim then the linguistic rules
Quantified_input_variablés_complementar to can be written accordingly with table 1 and 2 by
Level_of_pessimistic_membership using the chosen tautology as follows:

Implication: If premise_variable_&and

premise_variable_#Zhen consequence Inputs: € is E andAe is AE
ConsequenceQuantified_output_variables Rules:

Level_of_optimistic_memberstapd
Quantified_output_variables_complementar to
Level of pessimistic_membership

Rule 1: Ife is NE_ andAe is NE thenNB; <X < NB;
Otherwise rule 2: I€ is NE andAe is NG then
NB; <X <NB;

L L Otherwise rule 3: € is NE andAe is NM then
The_otherwise is also used as a linking element to— NB, <¥ < NB,
combine the different rules. 1=X
The linguistic control rules defined accordingly B
with the electromechanical positioning system . PR .
dynamics and with the experimental knowledge of QtherWise rule 24: I£ is PE and\e is PG _then

the closed loop electromechanical actuators are ) PBl<X <PB .
(tables 1 and 2)14]. For instance for the element in Otherwise rule 25: It is PE and\e is PE then
the second line and fifth column: PB, <X <PB
If e = PS and\e = NM thenNM < x < NS Consequence: C_optim <¢ < C_pessim
where X represents the output limits of the vague
controller at that moment. where E,AE, C_optim e C_pessim, are the values of
Table 1 Optimistic linguistic control rules the linguistic variablese, A, Xopim 8N Xpessim
e "NB M. NS >E__IPS _1PM 1 PB respectively (the index in the membership refers to
the table used).
NB_NB_INB _INB__NM _NM PS |PM The fifth stage in the development of the

INM [NB NB NM NS |NM PM [PB
INs [NB [NB |INM NS [NS |[PM |PB
lzE [NB |[NM INS [zE [PS [PM |PB
Ps NB [NM |PS PS [PM| PB| PB
PmM - NB [NM PM [PS [PM |[PB | PB
PB [NM NS [PM  [PM [PB [PB | PB

tendentious vague controller is the tendentious
devaguefication, and corresponds to the
transformation of the vague tendentious actions into
precise and deterministic ones. This action
corresponds to the choice of the controllers non
linguistic actions that better represent the possibility
distribution of the control actions inferred, in this

case corresponding to the optimistic and pessimistic
scenario. The chosen strategy was the centre of

Table 2 Pessimistic linguistic control rules
Ace INB NM NS [zE [Ps |[PM [PB

NB [NB INB |NB |NB |[NM NS |ZE gravity (COG). For a discrete universe of discourse,
INM INB NB NB NM NS [ZE |PS the non linguistic action is given by(6).

INS [NB [NB [NM NS [ZE [PS |[PM Since the controllers decision time is important in
lzE [NB |NM NS [zE |PS |[PM [PB this electromechanical actuator, two decision lookup

IPS |NM NS [zE [PS [PM [ PB [ PB tables are used which include the outputs of the

IPM_|Ns [z [Ps [PM [PB [ PB [ PB controller for all the possible input signals
PB |z |ps |[pm [PB [PB [ PB| PB combinations.

21 21
On these tables the N, P, S, M and B are the Z“xo(uj)-“j zﬂxkp(uj)-ui
. . . e _ )=l _ )/ (6)
membership short form notation of negative, positive, ¢, =—F—— 0 ¢ =% ——
small, medium, and big, respectively. Z py (u)) Z My, (U))
=1 =1

The building of these tables can be danaiori,
3.2.3 Rule Usage During Task Execution in order to reduce the controllers actuation time and
The fourth stage in the development of a tendentiousimplify the real time procedures. These tables
vague controller corresponds to the definition of the correspond to the limits of the controller action where
tendentious vague inference algorithm, i.e. itthere is no adaptive control or any type of learning,
corresponds to the linguistic controller generation of peing the credibility factor) constant.
outputs for the optimistic and pessimistic scenario.



3.2.4 Knowledge Level Behaviour unsatisfying performance zone to a satisfying one.
The learning method used in this work is part of
learning methods based on a merit attribution and,

therefor, with reinforcement learning. This method 4  Simulation Layout and Results
uses an unsupervised learning algorithm and can bg, grder to simulate the controllers behaviour in this

learning. _ _(fig. 5) was implemented in the MATLAB
The sixth and last stage in the development of this,vironment.

controller corresponds to the metric definition that
allows the credibility evaluation of the obtained result | Power | E DTC Ugsy Induction
by considering the optimistic and pessimistic results, | Supply — Inverter — Motor

in the following learning algorithm.

The learning algorithm used emulates a human mreff B m¢ -
learning model based on memdds]. Accordingly Reference 6ref || Position 0
with this model, the learning process can be seen as aGenerator » Controller Load

information flux regulation through a duct that

includes Dbrief memory, persistent memory, andfig5 Model of the electromechanical actuator
knowledge base, connected as shown in figure 4.

The induction motor was modelled, considering
Performance Patience the 3-fase induction machine model in the stationary
(D) (P) referentialaf in p.u. (Appendix 2).
For the Direct Controller Inverter (DTC) the D
strategy[ 2] was used in the selection of the voltage
Brief Persistent Knowledge
Memory Memory | ¥’ Base Torque Torque Inverter
(BM) » w7 P ke and Flux M and Flux [ Em ) Vector
References Wt | Compare| €y Selection
P TT : s
ower | g orqueé | j ;| Induction
< S Supply P and Flux <2 Motor
,d¥ ystem ————— Estimation
< 0

. } Fig.6 Model of the DTC inverter
Fig.4 Memory based learning g

: . , In figure 7, (intelligent position controller model
The knowledge base (KB) is used by the Irldex'ngblock), it is visible that the central element is the

variables £” and “Ae”, which depend on the actual |,yjedge base which is stored into a lookup table
error and error variation functions and that contalnedfOr easy usage in real time. The initial knowledge

the output control variable. This knowledge basep,qe considered for the purpose of this simulation
starts with the optimistic scenario, consequence of thg, 4o empty, therefor emulating the total lack of
tendentious devaguefication and with the Ieamingknowledge ’ from the system behaviour, and

process gradg_ally tending to the tendentiogs one.  consequently the worst possible scenario.
If no specific knowledge of the system is supplied

to the controller then the starting KB will be empty. )

Similarly to the KB the performance table (D) is g*‘)(‘r %0 ¢ ' Kn%vglsegge
used to evaluate the performance of the controller at T _
any moment using for that purpose the actual values
of “€” and “Ae”. Therefor the KB is adapted when a 8 As ic
“bad” performance of the controller occurs,
accordingly with the performance quality given by D. o £ . Scale
The D table is built considering the pessimistic Quantization Learning Adapt
scenario, consequence of the tendentious Ae
devaguefication. s

The main objective of this learning method is t0 Fig 7 Intelligent position controller block diagram
force the performance of the controller from an



6

) Digital ) DTC

during this tracking process (fig.10), shows that the
The simulation result (fig. 8) of a sinusoidal controller can learn since no knowledge of the
positioning reference with 2rad (approx. 115°) of actuator was given to the controller in the starting
amplitude and with 1Hz frequency shows that the stage.
controller is able to learn and therefor after an initial

learning stage (first and second signals), to follow the geds— e
reference with minimum errors (third signal). L o
12 :
5.00% :
Scope L
N e e
’I “I RS i ! N /\ a -k n/\ M. “ nv...g.Mﬂ S—
g ' - ; 5 i : T
RS ! "u‘j | ‘ TH B L e S e e e
IR N s
I I I I =Filter= =0ffset= =Record Length= =Trigger=
. .. R R Smoothing : OFF CH1 : 0.00%v Main : 10K Mode @ AUTO
Fig.8 Position control simulation results BW 1 FULL CHZ: 000V  Zoom : 10K Type : EDGE CH1 &
CH3 : 0.0v Delay : 0.0ns

CH4 o.ov Hold OFf : MINIMUM

Fig.10 Starting experimental position tracking error

5 Experimental Prototype Layout and results of a sinusoidal reference (Vertical Scale = 2
Results rad/div; Horizontal Scale =1 s/div)

To validate the previous simulation results, a
experimental prototype was built (fig. 9). .

The digital controller is implemented in a PC with 6 C,Ondusmn _ L
a general purpose signal acquisition board. Theln this paper an electromechanical positioning
softvare  source  developed (in  graphical actuator, that uses TSets to incorporate cognitive
programming language “G”), presented a Sequentiaknowledge, was presented. It was seen that TSets can

structure. emulate the real world uncertainties through the
The DTC inverter applies the derived torque with credlbll_lty degree that allows the mjternal self
a delay of roughly 5ms. correction of the TSet controller and to increase the

controllers intelligence, without resorting to
laboratory experiments and allowing the creation of
universal knowledge bases.

The controller synthesis, based in the intelligent
human behaviour at the rule and knowledge levels,
was presented. The controller synthesis stages
allowed the inclusion of a learning algorithm that
mimics a memory based learning human model.

Although the controller supporting development is
very complex, its experimental implementation is
The position sensor used was an photoelectricduite simplified due to the knowledge base tables
incremental encoder with a 360 pulses per turnmanlpulatlon scheme used. The simulation anpl
resolution. This sensor was chosen due to itseXPerimental results presented attested this
robustness and frequency operation range up t¢*€haviour, despite non modelled dynamics.
100kHz. .

The electromechanical actuator position tracking”APPendix1 _
result of a sinusoidal reference similar to the Nrée phase induction motor data:
simulated one, in the beginning of the learning Pr= 1.5KW; Ni= 1380 rpm; f= 50Hz; = 380V(*)
process, validates the simulation results and therefol™ 3,9A; co®$ 0[0,53; 0,78, m,= 10,4Nm; R=
the proposed method. The position tracking error5:745Q (at 25°C); L= 65mH; J= 0,0037kg.fn

Controller Inverter

ref Iaref

)

m

Fig.9 Experimental prototype elements



Appendix 2
Three phase induction model:

0 : d . :

[(Msa :rsls7r+TNa(X§a+X @)

= d

H‘SE: r5i$3+TNa(XL§+X  g)

o d

%): Ug = Kirg + Ty awra +wmwrﬁ
_ d

@): Upg = Itlig +Ty awrﬁ ~ Wl g

[l

d 1

= N - i -

[Utwm_TM ’(wsalsa wsﬁl S() ml]

o,

O~ “m

B\Ura = Xrira +XMisa

Bﬂrﬁ = Xrirﬁ +XMisﬁ
where ¢ is the stator resistance, is the rotor
resistance, xis the stator self-induction,, Xs the
rotor self-induction, ¥ is the mutual induction (being
x determined as x = Lilsd, Twm is the acceleration
constant (11 = JQpasdMpasd, Tn is the nominal time
constant (T = 1Qqnomina), ML is the load torque is
the angular positionwy, is the angular speed, i
represents an electrical current, u a voltagejaotie
of flux components, the indices ‘r' represent rotor
guantities and the indices ‘s’ stator quantities, dhe
and B designate the coordinates of a referential
solider with the stator (stationary).
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