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Abstract: - A cognitive intelligent approach to the control of an electromechanical positioning actuator using
Tendentious Vague Sets (TSets) is presented.
     The electromechanical positioning actuator prototype discussed is essentially a position control system whose
constitutive elements are a PC based control unit, a Direct Torque Control (DTC) inverter and an induction
motor.
     A generalisation of the fuzzy sets known as TSets is used to incorporate learning abilities into the system
required to control an electromechanical positioning actuator.
     The synthesis of the controller is described, highlighting the practical implementation details.
     An analysis of the resulting system intelligent behaviour is presented, including its learning ability. A
comparison between the expected behaviour (simulation) and the obtained (experimental) is also presented.
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1   Introduction
Being a vanguard research subject in the area of
electromechanical drives, the control of the angular
speed of an induction motor has been the subject of
many papers in recent years [1-2]. However, there are
not many references to the angular position control of
the induction motor. Higher cost motors, like
Permanent Magnets, Variable Reluctance Machines
(VRM) and Step Motors, are the most common
selection for electromechanical positioning systems
machines.
     The development of intelligent controllers
experienced a strong growing in the last decade. This
can be explained due to its innate characteristics
which allow, in a synthetic way, to control complex
systems and/or difficult modelling ones. Nevertheless
there is no normalisation in the development of these
controllers, and several approaches are currently
used. In the following sections, a controller is
developed by using a cognitive approach supported
on the Tendentious Vague Sets (TSets) theory[3].
     In this paper we prove the learning capabilities of
the TSets.

2   TSets Fundamentals
The motivation to the TSets development derives
from analysis of the communication dialogue
elements between linguistic emitters and receivers.
Due to the implicit elements passed within a

linguistic message, the credibility that the receiver
attributes to the message should be considered an
important element of a linguistic processing.
     TSets incorporate this credibility factor with the
creation of three membership functions named
optimistic, pessimistic and tendentious. For a
linguistic information they represent its possibility
degree, impossibility degree and certainty degree,
respectively.

2.1   TSet Definition
A tendentious vague set (TSet) is a generalisation of a

fuzzy set, i.e. being X a set, 
�
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set in X iif:
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membership function given by:
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that measures the tendentious membership degree (or

tendentious credibility) of x to the set 
��
A .

     The credibility factor α represents the credibility
of an element in a vague set that can fluctuate from
total disbelief (α → -∞) to total believe (α → +∞).
     In this theory the following restrictions are always
verified regardless of the x value.
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     From (3) the previous restrictions it can be seen
that TSets are a generalisation of the vague sets [4]
and therefor also a generalisation of fuzzy sets.
     Considering (1) and (3) some operations can be
defined either by extension from the fuzzy sets either
by using the TSets particular characteristics [3].
     One of the most important tools in the usage of the
TSets theory is to perform approximate reasoning. In
the sequence of the generalised modus ponens, [5],
the compositional inference rule using union and
intersection operators can be written as:
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being U any union operator and I  any intersection
operator. To reduce the calculation time, the most
commonly used in electromechanical system are the
maximum and the minimum.

2.2   Tendentious Vague Controller
By using the TSets its possible to develop a
tendentious vague controller [6] with the ability to
correct the behaviour on real time by using the
credibility factor.
     In the basic TSet controller (fig. 1), the
tendentious vaguefication interface is the responsible
for the quantization of the process state and for the
tendentious vaguefication accordingly with the
credibility factor (α). The knowledge base stores the
linguistic rules in the conditional form, as well as
some information about the universe of discourse.
The tendentious devaguefication interface determines
the final control action corresponding to the three
scenarios. The decision making logic is responsible
for the compositional inference. And the credibility
evaluation determines the credibility factor variation
accordingly with the three output scenarios.

Fig.1   TSet controller functional block diagram

The main structural difference to the classical fuzzy
controller [7], is due to the existence of an internal
feedback loop inside the controller.

3   Cognitive Intelligent Controller
The intelligent control for electromechanical drives
has been presented several times in the last years [8].
The usage of a set of techniques using artificial neural
networks, fuzzy logic and genetic algorithms has
allowed the inclusion of intelligent behaviour in
electromechanical drives [9-10].
     In fact, the use of artificial neural networks or
fuzzy logic in the definition of control strategies is
sometimes the basis to define an intelligent control.
Nevertheless, this simplistic approach can not be
considered when dealing with complex systems [11].
     A generic systematisation can be made by
including different approaches, namely the ones
based in the observation of the human operators
performance followed by its behaviour mimetism. It
should also includes the human oriented machines
approach.
     With the usage of linguistic modelling, it is
possible to model dynamic complex systems.

3.1   The Behaviour Levels of Intelligent
Control Systems

The human behaviour has been discussed using
different approaches. Considering the method based
on the human capabilities [12], three levels of
performance can be distinguished in the human
behaviour limitations within deterministic
environments: 1) skill, 2) rules and 3) knowledge
level. (fig. 2).
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Fig.2  Human behaviour cognitive approach

     The cognitive approach based in human mental
models allows the identification of the components
on the task development and simultaneously a certain
degree of automatic implementation. The usage of
this approach needs nevertheless the extra
information that includes the definition of relevant
knowledge and processing strategies.

3.2   Controller Development Stages
In order to synthesise a tendentious vague controller,
with the structure presented earlier, a methodology
can be defined by tasks corresponding to several
stages. All of these tasks are at the rule level of
intelligent behaviour, with the exception of the
credibility evaluation. Therefor, the development of
tendentious vague controller for position control
methodology can be framed in each of the following
intelligent behaviour levels.

3.2.1   State System Identification
The first stage in the development of the tendentious
vague controller is to choose the input and output
variables of the controller, i.e. to choose the process
variables that should be observed and which of the
control actions should be considered.
     As with the non linguistic position controllers,
usually, the chosen variables are the motor position
error as well as its variation on a short time interval
and the active torque, for the controllers inputs and
output respectively.

     The second stage in the development of the
tendentious vague controller corresponds to the
definition of the interface conditions, i.e., to the
definition of the input and output variables
representation in terms of linguistic sets (TSets).
     The choice of the membership degrees for the
optimistic and pessimistic membership is based in
subjective criteria and a consequence of the analysis
to the tendentious vague characteristics of the
controlled system, nevertheless their choice does not
have large influence on the robustness of the resulting
controller. Therefor the chosen optimistic and
pessimistic membership functions of the
corresponding TSets (NG, NM, NR, ZE, PR, PM,
PG,) can be represented generically by each of the
following sets:
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being u a generic element of the universe of discourse
ξ the array that contains the optimistic membership
degrees of the TSets, and δ the array that contains the
pessimistic membership degrees of each TSet.
     Graphically the partition of each of the linguistic
variables is the one presented in figure 3.

Fig.3   Linguistic universe of discourse partition

     The universe considered for each of the input and
output variables is a discrete one with 21 levels of
quantization.

3.2.2   State-task Association
The third stage in the development of a tendentious
vague controller corresponds to the definition of the
knowledge base. At this level of behaviour this
procedure coincides with the determination of which
rules to apply in which circumstances.
     There are several knowledge acquisition methods
necessary to the formulation of the control rules [13].
In this controller, the option was to use a linguistic
model of the system to control based on the desirable
dynamic analysis of an electromechanical position
controller in the extreme situation corresponding to
an instantaneous step position reference variation.
The control rules are defined as conditional vague

NB  NM  NS   ZE    PS    PM   PB

u



statements like:
Premise: Quantified_input_variable is
Level_of_optimistic_membership and
Quantified_input_variable is_complementar to
Level_of_pessimistic_membership
Implication:  If premise_variable_1 and
premise_variable_2 then consequence
Consequence: Quantified_output_variable is
Level_of_optimistic_membership and
Quantified_output_variable is_complementar to
Level_of_pessimistic_membership

     The otherwise is also used as a linking element to
combine the different rules.
     The linguistic control rules defined accordingly
with the electromechanical positioning system
dynamics and with the experimental knowledge of
the closed loop electromechanical actuators are
(tables 1 and 2),[14]. For instance for the element in
the second line and fifth column:

If e = PS and ∆e = NM then NM < χ < NS
where χ represents the output limits of the vague
controller at that moment.

Table 1   Optimistic linguistic control rules

∆= = NB NM NS ZE PS PM PB

NB NB NB NB NM NM PS PM
NM NB NB NM NS NM PM PB
NS NB NB NM NS NS PM PB
ZE NB NM NS ZE PS PM PB
PS NB NM PS PS PM PB PB
PM NB NM PM PS PM PB PB
PB NM NS PM PM PB PB PB

Table 2   Pessimistic linguistic control rules

∆= = NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE
NM NB NB NB NM NS ZE PS
NS NB NB NM NS ZE PS PM
ZE NB NM NS ZE PS PM PB
PS NM NS ZE PS PM PB PB
PM NS ZE PS PM PB PB PB
PB ZE PS PM PB PB PB PB

     On these tables the N, P, S, M and B are the
membership short form notation of negative, positive,
small, medium, and big, respectively.

3.2.3   Rule Usage During Task Execution
The fourth stage in the development of a tendentious
vague controller corresponds to the definition of the
tendentious vague inference algorithm, i.e. it
corresponds to the linguistic controller generation of
outputs for the optimistic and pessimistic scenario.

     Since in this case the controller can be included in
the MIMO category, with two inputs, ε and ∆ε, and
two outputs, χoptim and χpessim, then the linguistic rules
can be written accordingly with table 1 and 2 by
using the chosen tautology as follows:

Inputs:  ε is E and ∆ε is ∆E
Rules:
Rule 1: If ε is NE and ∆ε is NE then NB1 < χ < NB2

Otherwise rule 2: If ε is NE and ∆ε is NG then
NB1 < χ < NB2

Otherwise rule 3: If ε is NE and ∆ε is NM then
NB1 < χ < NB2

.   .   .

.   .   .
Otherwise rule 24: If ε is PE and ∆ε is PG then

PB1 < χ < PB2

Otherwise rule 25: If ε is PE and ∆ε is PE then
PB1 < χ < PB2

Consequence:    C_ optim <  <  C_ pessim    ξ

where E, ∆E, C_optim e C_pessim, are the values of
the linguistic variables ε, ∆ε, χoptim and χpessim,
respectively (the index in the membership refers to
the table used).
     The fifth stage in the development of the
tendentious vague controller is the tendentious
devaguefication, and corresponds to the
transformation of the vague tendentious actions into
precise and deterministic ones. This action
corresponds to the choice of the controllers non
linguistic actions that better represent the possibility
distribution of the control actions inferred, in this
case corresponding to the optimistic and pessimistic
scenario. The chosen strategy was the centre of
gravity (COG). For a discrete universe of discourse,
the non linguistic action is given by(6).
     Since the controllers decision time is important in
this electromechanical actuator, two decision lookup
tables are used which include the outputs of the
controller for all the possible input signals
combinations.
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     The building of these tables can be done à priori,
in order to reduce the controllers actuation time and
simplify the real time procedures. These tables
correspond to the limits of the controller action where
there is no adaptive control or any type of learning,
being the credibility factor (α) constant.



3.2.4   Knowledge Level Behaviour
The learning method used in this work is part of
learning methods based on a merit attribution and,
therefor, with reinforcement learning. This method
uses an unsupervised learning algorithm and can be
included in the methods that use linguistic inference
learning.
     The sixth and last stage in the development of this
controller corresponds to the metric definition that
allows the credibility evaluation of the obtained result
by considering the optimistic and pessimistic results,
in the following learning algorithm.
     The learning algorithm used emulates a human
learning model based on memory [15]. Accordingly
with this model, the learning process can be seen as a
information flux regulation through a duct that
includes brief memory, persistent memory, and
knowledge base, connected as shown in figure 4.

Fig.4   Memory based learning

     The knowledge base (KB) is used by the indexing
variables “ε” and “∆ε”, which depend on the actual
error and error variation functions and that contained
the output control variable. This knowledge base
starts with the optimistic scenario, consequence of the
tendentious devaguefication and with the learning
process gradually tending to the tendentious one.
     If no specific knowledge of the system is supplied
to the controller then the starting KB will be empty.
     Similarly to the KB the performance table (D) is
used to evaluate the performance of the controller at
any moment using for that purpose the actual values
of “ε” and “∆ε”. Therefor the KB is adapted when a
“bad” performance of the controller occurs,
accordingly with the performance quality given by D.
The D table is built considering the pessimistic
scenario, consequence of the tendentious
devaguefication.
     The main objective of this learning method is to
force the performance of the controller from an

unsatisfying performance zone to a satisfying one.

4   Simulation Layout and Results
In order to simulate the controllers behaviour in this
section, the block diagram of the simulated system
(fig. 5) was implemented in the MATLAB
environment.

Fig.5   Model of the electromechanical actuator

     The induction motor was modelled, considering
the 3-fase induction machine model in the stationary
referential αβ in p.u. (Appendix 2).
     For the Direct Controller Inverter (DTC) the D
strategy [2] was used in the selection of the voltage

Fig.6   Model of the DTC inverter

     In figure 7, (intelligent position controller model
block), it is visible that the central element is the
knowledge base which is stored into a lookup table
for easy usage in real time. The initial knowledge
base considered for the purpose of this simulation
was empty, therefor emulating the total lack of
knowledge from the system behaviour, and
consequently the worst possible scenario.

Fig.7   Intelligent position controller block diagram
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     The simulation result (fig. 8) of a sinusoidal
positioning reference with 2rad (approx. 115º) of
amplitude and with 1Hz frequency shows that the
controller is able to learn and therefor after an initial
learning stage (first and second signals), to follow the
reference with minimum errors (third signal).

Fig.8   Position control simulation results

5   Experimental Prototype Layout and
Results
To validate the previous simulation results, a
experimental prototype was built (fig. 9).
     The digital controller is implemented in a PC with
a general purpose signal acquisition board. The
software source developed (in graphical
programming language “G”), presented a sequential
structure.
     The DTC inverter applies the derived torque with
a delay of roughly 5ms.

Fig.9   Experimental prototype elements

The position sensor used was an photoelectric
incremental encoder with a 360 pulses per turn
resolution. This sensor was chosen due to its
robustness and frequency operation range up to
100kHz.
     The electromechanical actuator position tracking
result of a sinusoidal reference similar to the
simulated one, in the beginning of the learning
process, validates the simulation results and therefor
the proposed method. The position tracking error

during this tracking process (fig.10), shows that the
controller can learn since no knowledge of the
actuator was given to the controller in the starting
stage.

Fig.10   Starting experimental position tracking error
results of a sinusoidal reference (Vertical Scale = 2
rad/div; Horizontal Scale =1 s/div)

6   Conclusion
In this paper an electromechanical positioning
actuator, that uses TSets to incorporate cognitive
knowledge, was presented. It was seen that TSets can
emulate the real world uncertainties through the
credibility degree that allows the internal self
correction of the TSet controller and to increase the
controllers intelligence, without resorting to
laboratory experiments and allowing the creation of
universal knowledge bases.
     The controller synthesis, based in the intelligent
human behaviour at the rule and knowledge levels,
was presented. The controller synthesis stages
allowed the inclusion of a learning algorithm that
mimics a memory based learning human model.
     Although the controller supporting development is
very complex, its experimental implementation is
quite simplified due to the knowledge base tables
manipulation scheme used. The simulation and
experimental results presented attested this
behaviour, despite non modelled dynamics.

Appendix 1
Three phase induction motor data:
Pn= 1.5kW; Nn= 1380 rpm; f= 50Hz; Un= 380V(Ç)
In= 3,9A; cosϕ ∈[0,53; 0,78]; mn= 10,4Nm; Rs=
5,745 Ω (at 25ºC); Ls= 65mH; J= 0,0037kg.m2;
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Appendix 2
Three phase induction model:
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where rs is the stator resistance, rr is the rotor
resistance, xs is the stator self-induction, xr is the
rotor self-induction, xM is the mutual induction (being
x determined as x = L/Lbase), TM is the acceleration
constant (TM = J.Ωbase/Mbase), TN is the nominal time
constant (TN = 1/Ωsnominal), mL is the load torque, θ is
the angular position, ωm is the angular speed, i
represents an electrical current, u a voltage and ψ one
of flux components, the indices ‘r’ represent rotor
quantities and the indices ‘s’ stator quantities, the α
and β designate the coordinates of a referential
solider with the stator (stationary).
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