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Abstract: - Over the past decade wavelet transforms have received a lot of attention from researchers

in many di�erent areas. Both discrete and continuous wavelet transforms have shown great promises

in such diverse �elds as image compression, image de-noising, signal processing, computer graphics, and

pattern recognition. Most of the work has been done on scalar wavelets. In this paper, we investigate

translation-invariant (TI) multiwavelts in image de-noising. The complexity of our TI multiwavelet

algorithm is O((n log n)2), where the image dimension is n � n. We conduct our experiments by using

di�erent threshold values for soft thresholding.
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1 Introduction

The restoration and enhancement of degraded im-

ages are of fundamental importance in image pro-

cessing applications. Images can be corrupted by

various noise processes such as additive Gaussian

noise due to a noisy sensor, lossy compression, and

transmission over noisy channels.

The non Translation Invariant(TI) image de-

noising is realized by decomposing the noisy image

into a multiresolution wavelet representation and

performing a soft-thresholding to remove the trun-

cation artifacts. The �nal image is obtained by ap-

plying inverse wavelet transform on the threshold

wavelet domain image. It should be noted that

even though the derivation of wavelet shrinkage

method is based on the Gaussian assumption, it

can also be applied to non-Gaussian noise except

that the threshold value in this case is not asymp-

totically optimal. This thresholding method has

various optimal properties, such as smoothness

and adaptation, over a wide range of spaces.

Translation-Invariant(TI) scalar wavelets play

an important role in signal and image de-

noising([2], [12]). For signals, Coifman and

Donoho [2] proposed a TI de-noising scheme to

suppress artifacts by averaging over the de-noised

signals of all circular shifts. Their experimental re-

sults con�rmed that scalar TI wavelet de-noising

performs better than non-TI scalar wavelet de-

noising for 1-D signals. Yu et al [12] extended

Coifman and Donoho's approach to 2-D and 3-D

TI wavelet de-noising. Also, directional invariant

scalar wavelet transform was discussed in [12].

Multiwavelets have recently been developed

by using translates and dilates of more than

one mother wavelet functions ([8]-[11]). They

are known to have several advantages over scalar

wavelets such as short support, orthogonality, sym-

metry, and higher order of vanishing moments.

Strela et al. [8] claimed that multiwavelet soft

thresholding o�ers better results than the tradi-

tional scalar wavelet soft thresholding. Since scalar

TI wavelet de-noising also has better performance

than the traditional scalar wavelet de-noising, it is

natural to attempt TI multiwavelet de-noising and

compare the results with scalar TI wavelet



de-noising.

The organisation of this paper is as follows.

Section 2 gives a short introduction to multiwavelets.

Section 3 explains how TI multiwavelet de-noising

works. And �nally section 4 shows some experi-

mental results.

2 Discrete Multiwavelet Transform

Multiwavelet basis uses translations and dilations
of L � 2 scaling functions f'k(x)g1�k�L and L
mother wavelet functions f k(x)g1�k�L. If we write
�(x) = ('1(x), '2(x), : : : , 'L(x))

T and 	(x) =

( 1(x),  2(x), : : : ,  L(x))
T , then we have

�(x) = 2

2N�1X
k=0

Hk�(2x� k); (1)

and

	(x) = 2

2N�1X
k=0

Gk�(2x� k): (2)

where fHkg0�k�2N�1 and fGkg0�k�2N�1 are L�L
�lter matrices.

As an example, we give the most commonly
used multiwavelets developed by Geronimo, Hardin
and Massopust [7]. Let
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then the two functions '1(x) and '2(x) can be

generated via (1). Similarly, the two mother wavelet

functions  1(x) and  2(x) can be constructed by

(2).

Let VJ be the closure of the linear span of

2J=2�l(2
J t � k); l = 1; 2; k 2 Z. With the above

constructions, it has been proved that �l(t�k); l =
1; 2; k 2 Z form an orthonormal basis for V0, and

moreover the dilations and translations 2j=2 l(2
j�

k); l = 1; 2; j; k 2 Z form an orthonormal basis for
L2(R). In other words, the spaces Vj ; j 2 Z, form
an orthogonal multiresolution analysis of L2(R).
Let

H(w) =

3X
k=0

Hke
iwk; (3)

G(w) =

3X
k=0

Gke
iwk: (4)

From the orthogonality, we have

H(w)HT
(w) +H(w + �)HT

(w + �) = I2 (5)

G(w)GT
(w) +G(w + �)GT

(w + �) = I2 (6)

H(w)GT
(w) +H(w + �)GT

(w + �) = 02 (7)

where T means the complex conjugate transpose,
I2 and 02 denote the 2 � 2 identity and all zero
matrix, respectively. Let f 2 V0, then

f(t) =
X
k2Z

(c1;0;k�1(t� k) + c2;0;k�2(t� k))

=
X
k2Z

(c1;J0;k2
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J0=2�2(2

J0t� k))
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X
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X
k2Z
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(8)

where

ci;j;k =

Z
f(t)2j=2�i(2

jt� k)dt (9)

di;j;k =

Z
f(t)2j=2 i(2

jt� k)dt (10)

for i = 1; 2; j; k 2 Z and J0 < 0. By the di-
lation equations, we have the following recursive
relationship between the coe�cients (c1;j;k; c2;j;k)

T
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Multiwavelets have some advantages in compari-

son to scalar ones. For example, such features as

short support, orthogonality, symmetry, and higher

order of vanishing moments, are known to be im-

portant in signal processing. A scalar wavelet can-

not possess all these properties at the same time.

Therefore, multiwavelets can give better results

than the scalar wavelets in image compression and

de-noising [8].

3 TI Multiwavelet De-noising

The algorithm for TI multiwavelet de-noising is

quite similar to the case for TI scalar wavelet de-

noising. The noisy image is transformed into mul-

tiwavelet domain by applying TI GHMmultiwavelets

along the rows and columns, respectively. Because

the GHM multiwavelet transform needs two rows

for the input, we group two adjacent rows when

we do the transform along row and two adjacent

columns when transforming along columns. A soft

or hard thresholding is applied to the resulting

multiwavelet coe�cients. In order to get the de-

noised image, we perform inverse multiwavelet trans-

form along the columns and rows, respectively.

At the �rst glance, this proposal seems to be

impractical because a naive implementation of the

method increases the complexity of wavelet shrink-

age algorithm from O(n2) to O(n4) for n� n im-

ages. Fortunately, the O(n log n) fast algorithm in

1-D can easily be generalised to 2-D case so that

the algorithm can be implemented withO((n log n)2)

complexity.

Both the soft (shrink or kill) and the hard (keep

and kill) thresholding methods compare the input

to a given threshold and set it to zero if its mag-

nitude is less than the threshold. The idea is that

coe�cients insigni�cant relative to the threshold

are likely due to noise, whereas signi�cant coe�-

cients are important signal structures. Threshold-

ing essentially creates a region around zero where

the coe�cients are considered negligible. Outside

this region, the threshold are kept to full precision.

The choice of the threshold is critical in wavelet

shrinkage. If it is too small or too big then the

wavelet shrinkage estimator will tend to over�t or

under�t the data. Donoho and Johnstone(1994)

proposed the universal threshold �
p
2 log n where

n is the number of points in the signal. Despite the

simplicity of such a threshold, they showed that

the resulting nonlinear wavelet estimator is spa-

tially adaptive and is asymptotically near-minimax

within the whole range of Besov spaces. In the case

of image de-noising the threshold can be adjusted

to be �
p
2 log n2 = 2�

p
logn. However, as we shall

see in the next section, this threshold is far too big

for image de-noising.

4 Experimental Results

We explore the applications of the TI multiwavelet

transform in image de-noising. In order to compare

the results with other papers, we use the famous

image, Lenna, in our experiments. The dimension

of the image is 256 � 256 pixels with each pixel

having a gray level ranging from 0 to 255. The

multiple wavelets used in our experiments is the

GHM multiwavelets. Even though hard threshold-

ing can be used in the thresholding process, we

only use soft thresholding. The reason for this is

that hard thresholding does not perform as well as

soft thresholding in our previous experiments for

signal de-noising [1].

Figure 1 shows some images obtained by using

our proposed algorithms. There are three rows in

Figure 1. The �rst row has a SNR= 2dB, the sec-

ond row has a SNR= 5dB, while the third row has

a SNR= 10dB. For each row we have four images

numbered (a) to (d). Image (a) is the noisy image

produced by adding white noises onto the original

clean image. Images (b) to (d) are the images re-

stored by using our algorithm with threshold equal

to 1:5, 2:5, and 5, respectively. It is clear that the

theoretical threshold 2�
p
logn is too big for this

kind of application. We �nd that a threshold of

1:5 gives nearly minimal mean square error(MSE)

in Table 1.

5 Conclusion

In this paper we discuss and implement an algo-

rithm for image de-noising using TI multiwavelets.

Experimental results show that the TI multiwavelet

de-noising gives better results than the conven-

tional TI scalar wavelet de-noising. Also, the TI



SNR Soft Thresholds

1.5 2.0 2.5 3.0 4.0 5.0

2 17.5 19.9 22.6 25.2 29.7 33.5

3 13.8 15.9 18.3 20.5 23.9 27.0

4 11.7 13.6 10.3 17.7 20.9 23.4

5 10.6 12.2 13.9 15.7 18.8 21.1

10 10.9 11.7 12.2 12.9 14.3 15.9

20 9.7 10.6 11.1 11.2 11.6 12.1

Table 1: MSE for TI de-noising for di�erent

thresholds and Signal-to-Noise Ratio(SNR)

SNR Soft Thresholds

1.5 2.0 2.5 3.0 4.0 5.0

2 21.8 23.8 25.9 27.7 31.0 33.6

3 16.8 19.3 21.4 23.4 26.2 28.5

4 13.6 15.8 17.9 19.9 23.2 25.4

5 11.9 13.7 15.6 17.4 20.5 23.1

10 10.4 10.6 11.1 12.0 14.1 15.9

20 10.3 10.9 10.9 10.9 11.4 12.0

Table 2: MSE for Non-TI de-noising for di�erent

thresholds and Signal-to-Noise Ratio (SNR)

multiwavelets perform better than the non-TI mul-

tiwavelets in our experiments for image de-noising.

Furthermore, er also found that the theoretical

threshold in [4] is too big for this kind of appli-

cations.
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(a) (b)
Noisy Image THR = 2.5   THR = 5.0THR = 1.5

(c) (d)

Figure 1: Experimental results for di�erent SNR's and thresholds with TI de-
noising. The SNR's for row 1, 2 and 3 are 2dB, 5dB and 10dB, respectively. (a)
Noisy image with Gaussian noise added (b) De-noised image with soft threshold
1:5 (c) De-noised image with soft threshold 2:5 (d) De-noised image with soft
threshold 5:0


