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 Abstract:  In this paper, a scheme of on-line
automatic tuning is proposed for PI controllers.
This method is based on FDI filters, designed by
Luenberger observers for the linearized plant
model, in closed loop. The isolation of the PI
controller gains can be achieved by reescaling of
the state variables. The gain parameters of the
new diagnostic model are involved in the failure
functions. Then, the tuning law is obtained by
imposition of a simple asymptotically stable
differential equation, guaranteeing that the
failure function tends to zero. Our method was
applied successfully for chemical process
control, stabilizing the pH in a plant unit.

I. INTRODUCTION

Fault detection and isolation has been used in
the industry since the 70´s.  The first methods were
designed for change point detection contributing to
improvement of the safety of plants operations.
However, these detection systems, principally,
became part of alarm systems.

Improving the fault detection and isolation it
has thought in detection of incipient changes. This
kind of techniques need more precise knowledge
about the process and plants operation, hence fault
detection and isolation for incipient changes are
based on models, which can be obtained using
identification methods, statistical methods or
through laws which depend on the nature of
phenomenon .  The method of fault detection
and isolation used in this paper is developed in
[1], improving the FDI filter design, based on

C-A invariant subspace algorithms, see [3] and
[7]. The linearized  plant model is extended,
adding the PI dynamic to the state equations.
Disturbances and errors of the linearizations
requires a dynamic tuning of the PI controllers.
To achieve this goal, the error of the required
PI controller gains with respect to the actual
gain values will be interpreted as failure.
Unfortunately, the extended diagnostic model
doesńt allow us to isolate the gain errors.
Hence, the state variables will be rescaled with
the purpose that the new diagnostic model
allows the isolation of the gain errors. The
error functions of the new diagnostic model
depend on the actual PI controller gains error,
which can be forced to zero, imposing that the
gain errors to be the solution of a simple
asymtotically stable differential equation. The
dynamic autotunig is computed from this
imposed differential equation.

II. DIAGNOSTIC MODELS

The model of any process in study can be
obtained using identification methods, statistical
methods or through laws of the nature, which
govern the phenomenon,  that characterizes the
process.

Consider the behavior of a RL circuit
represented by the following equation:
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where x is the current, L the inductance,  R the
resistance and u is the input voltage. Suppose that
the nominal condition of the resistance is lost in
time and its nominal value is defined by

 R R t R t0 = +( ) ( )∆ (2)

∆∆R(t) is related to the deviation respect to the
nominal value. Using the equations (1) and (2) a
diagnostic model with output y(t) and fault v(t),
can be obtained
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III.  THE GENERALIZED DIAGNOSTIC
MODEL

The example showed in section II, leads to non-
classic diagnostic models with the following
structure.
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where the dimension of the matrixes are
A Rn n∈ × , B Rn p∈ × ,
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with linear differential operators in its entries

IV  FAULT DETECTION AND ISOLATION
FILTER DESIGN

In this paper, a method to fault detection and
isolation in linear system is used. The mentioned
method is based on observers and  developed in

[1]. Let O Rn⊂  be the observable subspace:
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.Let us denote by P  yhe

orthogonal projection of nR  onto O.  It is shown
that if a system is detectable then  the necessary
conditions

1. The weak separation
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2.  The fault observability, see [4]
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are also sufficient to design a FDI filter if the

inequality q ≥∑ ip  holds. Detectability means

that the system on the unobservable subspace is
asymptotically stable. It is known that Luenberger
Observers let intact the unobservable subspace, see
[7].

A Design Methods

The first step is to define the observer
according to the generalized diagnostic model. The
input u and the output y of the diagnostic system
are inputs of the observer and the observer state
�( )x t  is an estimated of the state x t( ) :
�( ) �( ) ( ) ( ( ) �( ))

�( ) �( )

x t Ax t Bu t D y t Cx t

y t Cx t

= + + −
=

(8)

The gain matrix  D Rn q∈ ×   is designed in order
to the estimation error be asymptotically stable
when there are no faults.

�( ) ( ) ( ), ( ) ( )e t A DC e t t Ce t= − =η (9)



There exists a gain matrix D Rn q∈ × , such that
the error equation is asymptotically stable if and
only if the unobservable dynamic is asymptotically
stable, see [7].

In presence of faults, the error equation is
expressed in the following way
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The next step is to find the transfer function for
the error system considering the faults as inputs

)())()(()( 1 svLDLLDCAsICs OOD +−+−= −η (11)

In [1] it is proved that the gain matrix D can be
chosen such that:

1. The error system is asymptotically stable
2. The transfer function in (11) is of full rank

, that means, its rank is ∑ ip . Hence, the

transfer function is left invertible with left
inverse G(s)

                  )( )()( ssGsv η= (12)

The transfer  matrix G(s) could contain terms
which are not realizable or unstable, therefore the
next step is the cancelation of the non desired
poles in each term. Let αi , unstable poles from

(12) with multiplicity ni , then (12) is multiplied by
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poles in infinite. These  terms constitute a
postfilter matrix
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The H(s)  defines  the transfer matrix from the
inputs  v(s) into new outputs w(s):

              )()()( svsHsw = (14)

The realization of (14) in the state space form is
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where  k n ni= + ∑0 . This system is, essentially,

multiple integration. When the error system is
stabilized for t <0t  then v tj ( ) ≠ 0 in

t t t∈ +[ ,0 0 τ ] , if and only if )( j tw  is not zero in

the same  interval. This  system is called a detector.

V PI AUTOTUNING USING FAULT
DETECTION AND ISOLATION

A.  Diagnostic Model.
Let us consider the following linear time-

invariant system
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with the control lawu k y k y t dtP I= − − ∫ ( ) ,

assuming set point = 0. If a new state ∫= dttyz )(

is defined, the closed loop system can be  rewritten
as
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If the nominal values of the controller parameters
are defined by
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the diagnostic model of the closed loop system is
written into

21

00

00

0

v
B

v
B

z

x

C

BkCBkA

z

x Ip







+






+










 −−
=





�

�

(19)



where v k C xp1 = ( )∆  and zv kI )(2 ∆=
The fault direction are not linear independent,

hence, a new diagnostic model is required to
isolate these faults.

If the state vector is redefined as
zkCxkxzkx ppI �=== 21 ,  and x x3 = , using

equation (25) a new diagnostic model is obtained
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for this diagnostic model, the faults are defined
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B.  Adaptive Tuning of PI Controller Parameters

After getting the diagnostic model, the following
step is to design the Luenberger observer
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with gain matrix  D such that CDA
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full rank. It is easy to verify that 22)( ×∈ RsG ,
because there are two faults related to the
controller parameters. The following step is to

invert G(s) to find η)(1 sGv −= . If the system is
not realizable it will be necessary a postfilter
matrix, getting the detector system w.  In order to
find in an adaptive way the controller parameters,
it is necessary to have the expression for v, from
the detector equation or from the error term. In
both cases the result could be non causal, but in a
practical   sense, it would mean that it is required
error derivatives or output detector derivatives
which are on line computable. Once v is obtained,
it  is possible to get Ip kk ∆∆  and  from

zkvzkv PI �∆=∆= 21 ,  where zz �y   are outputs of
the diagnostic model which are measurable or
computable. The last step is to find the controller
parameters such that the faults tend to zero
asymptotically
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using (18) we get
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After derivating  (23) and substituting in (22) the
dynamic expression is obtained for the controller
parameters

VI ACADEMIC EXAMPLE

Consider a particular case (Proportional
Controller) in order to control a first order system.
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assuming that the set point is zero. The respective
differential equation is the following
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If the proportional parameter is defined as
)()( 0 tkktk pPp ∆+= , (26)

then,  the diagnostic model can be expressed in the
follwing way
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The next step is to compute an observer such
that A-DC<0, with
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Its  transfer function is
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Inverting the expression in (29), we get
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 The transfer function from η into 1v  is improper,
hence, a postfilter  is needed:
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 The fault detector system is the following
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Its respective differential equation
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In discrete time, is possible to compute v   in spite
of that the transfer function from η into 1v  is
improper because we only need error  or output
detector derivatives. For
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derivting (26) and using (35) is obtained
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This is a dynamical expression for the controller
gain. To the computationally implementation of
this autotuning, it is necessary to discretize the
differential equations
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where T must be chosen such that discretization be
efficient .
Let the nominal model be
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setting T=0.01.



First Case  of Simulation

Nominal Conditions:
K = 1,

1.0=τ   for t >700 and t <450.

Fault Conditions:
K = 1,

5.0=τ  for   450 ≤ t ≤ 700.

In this case there is no unstability in the fault
condition, however the detector system detects the
fault. When adaptive gain is applied, the fault is
corrected  guaranteeing the closed loop
specifications. See Figures 1 and 2.
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Fig.1 System response without adptive gain. First Case
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Fig2. System response with adaptive gain. First Case

Second Case  of Simulation

Nominal Conditions:
K = 1,

1.0=τ   for t >700 and t <450.
Fault Conditions:
K = 0.1,

1.0=τ  for   450 ≤ t ≤ 700.

 In this case the fault conditions cause loss of
stability which is detected by the fault detector.
When adaptive gain is applied are guaranteed the
stability and  closed loop specifications. See
Figures 3 and 4.

   Fig.3 System response without adptive gain. Second
Case

  Fig.4. System response with adaptive gain. Second
Case

VI. INDUSTRIAL  APPLICATION

The autotuning of PI controllers  proposed in
this paper, was implemented to solve a pH control
problem in a chemical plant (Chlorine Plant) with
satisfactory  results. The problem is to control the
pH in the Depleted Brine ( OHNaCL 2+ ) with
200 gpl of NaCl approximately. This Brine comes
to the process unit with pH close to 2 and   the
objective is to obtain a pH close to 8.5 by adding
of Caustic Soda (NaOH) with an approximated
concentration of 12%.
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The difficulties that there exist to control the
pH are related with multiples disturbances
originated in different units of the plant which
affect the system in a direct and indirect way.
Changes in the soda concentration, affect the
system producing deviations in its dynamic respect
to the nominal behavior. Because of this fact it is
hard to control the system with the required
specifications.

The original control strategy was designed to
compensate the nonlinearities related to the
process  gain using a PI controller with adaptive
gain. The tuning  of the proportional gain was
achieved according to the information obtained
from titration data assuming that the soda
concentration doesn’t change. This fact causes that
the strategy isn´t robust with respect to such
changes.

Our method was applied to correct
deformations in the characteristic curve, caused by
changes in the soda concentration and other
disturbances.

The first step to design the new strategy was the
system identification in open loop  using step
change methods in order to get the system model
with nominal conditions.

Defining the state  y = (pH – set point) and u =
NaOH Flow the obtanied linear aproximation is
the following
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K(t) depends on the pH and on the operational
conditions. In nominal operational conditions the
characteristic process gain curve is the following

         Fig5. Characteristic Curve K vs pH
The characteristic curve could be deformed in
presence of disturbances That deformation can be
interpreted as a deviation of the controller
proportional gain  respect to a nominal value. The
purpose is to autotune the proportional gain in
order to compensate such deformations. To

achieve this goal the proportional gain is defined
by
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used to correct the deformations produced in the
curve through gain autotuning using the proposed
method. The expression for the closed loop system
is given by
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Following the steps exposed in section VI for the
academic example, similar expressions can be
obtained for the detector filter and the control law
that guarantees the closed loop specifications
correcting the deformations of the nominal curve.

The following graphics show the result of the
method, applied to pH control.

         Fig.6 System Response without Autotunig
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               Fig.7  System Response with Autotuning

VII CONCLUSION

Using the fault detection and isolation method
developed in [1] based on FDI filters, designed by
Luenberger observers, was possible to synthesize a
scheme of on-line autotunig for PI controllers.
Disturbances and error of the linearizations can be
compensated by autotunig the controller
parameters. The tuning law is obtained by
imposition of asymptotically stable differential
equation that guarantees the required closed loop
specifications. This method was applied
succesfully to solve a pH control problem in a
Clorine Plant guaranteeing the closed loop
specification in spite of the nonlinearities related to
the nominal model, the disturbances coming from
others unit of the plant an deviation in the soda
concentration.
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