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Abstract In this paper, a scheme ofon-line C-A invariant subspace algorithms, see [3] and
automatic tuning is proposedfor Pl controllers.  [7]. The linearized plant model is extended,
Thismethod is based on FDffilters, designed by adding the Pdynamic to the state equations.
Luenberger observersfor the linearized plant  pjstyrhances and errors of the linearizations
?O%?f;ilé? ‘zﬁ]ssega:]ogg'al-ﬂi“;v'zglzt'orgeost::ﬁ;'f requires a ghamic tuning of the Pcontrollers.

g y To achieve this goal, the error of the required

the state variables. The gain parameters of the P troll . ith t to th tual
new diagnostic model are involved in théailure controlier gains with respect 1o the actua

functions. Then, the tuning law is obtained by 9&n values will be interpreted as failure.
imposition of a simpke asymptotically stable Unfortunatey, the etended diagnostic model
differential equation, guaranteeing that the doesnt allow us to isolate the gain errors.
failure function tends tozero. Our method was Hence, the state variables will be rescaled with
applied succesilly for chemicd process the purpose that the new diagnostic model

control, stabilizing the pH in a plant unit. allows the isolation of the gain errors. The
error functions of the new diagnostic model
l. INTRODUCTION depend on the actual Bontroller gains error,

which can be forced to zero, impogithat the
gain errors to be the solution of a simple

the industy since the 70°s. The firatethods were . : - :
desgned for chage poirt detectim contributirg to 3%2:3;?6123; t(S)ttibl.e iilﬁig?tlﬁlezquf?g%n. t-rll—ige
improvement of the safgt of plants operations. . Y Y P

However, these detectionystans, principaly, imposed differential equation.
becane part of alan systems.

Improving the fault detection ahisolation it
has thought in detection of incipient chaes. This _
kind of techniques neethore preciseknowledye The modd of ary process in stud can be
abou the process and plants operation, hence faufPtained usig identification methods, statlgtlcal
detection ard isolation for incipient chages are Methods or throgh laws & the nature which
based onmodels, which ca be obtainal using 90vern the phemmenon, tha charactedes the
identification methods, statistical methods of"0c€ss: . o
through laws which depend on theature of e (r:e?snesr:(tj:drwttr?gfolkl)c?vt:iwreOufati?)n'RL cireuit
phenomenon . The method of fault detection " g ed '
and isolation used in this paper is developed in

[1], improving the FD filter desgn, based on

Faulk detectimm ard isolation has been used in

[I. DIAGNOSTIC MODELS



X=——x+—U 1) IV FAULT DETECTION AND ISOLATION
L L FILTER DESIGN

_ _ In this paper, a method to fault detection and
wherex is the current, L the inductance, R th§spjation in linear system is used. The mentioned
resistance and is the input voltage. Suppose thatyethod is based on observers and developed in

the nominal condition of the resistance is lost iﬂL] Let OO0 R' be the observable subspace:
time and its nominal value is defined by R pace:

R =R)+AR) @) O=i=zolm(A C).Let us denote byP yhe

orthogonal projection oR" onto O. It is shown
AR(t) is related to the deviation respect to théhat if a system is detectable then the necessary
nominal value. Using the equations (1) and (2) eonditions
diagnostic model with outpug(t) and fault v(t),

can be obtained 1. The weak separation
R 1 @ WP IMELEG @
X:—TX+IU+V IE3
y =X, wherev= EAR(t) ] 2. The fault observability, see [4]
L Ker(PL,) ={0} )

Ill. THE GENERALIZED DIAGNOSTIC - . , :
MODEL are also sufficient to design a FDI filter if the

inequality qzz p, holds. Detectability means
The example showed in section Il, leads to nofhat the system on the unobservable subspace is

classic diagnostic models with the followingasymptotically stable. It is known that Luenberger
structure. Observers let intact the unobservable subspace, see

7].
X(t) = AX(t) + Bu(t) + Lov(t) () v

y(t) = Cx(t) + Lov(t) A Design Methods

The first step is to define the observer
according to the generalized diagnostic model. The

J . . .
L v(t) = Z M, B%@‘JVJ (t) input u and the outpuy of the diagnostic system
1=1

where

are inputs of the observer and the observer state
X(t) is an estimated of the stax€t) :

=50,y X(0)= AX()+ BUD+ DY)~ CX) (®)
it 30 =0x

where the dimension of the matrixes
AOR™ BOR™P,

~ xp . The gain matrix D OR™? is designed in order
COR™ LOR™, j=1....,J. povilinbe S e

to the estimation error be asymptotically stable

The dimension of the matrixes when there are no faults.
d do~ od 0d O
M HEHI R 22 EN HE Hy e A1) = ( Ae _
‘otg BT oo HieH q0=(A-DO&)n()= Cer ©)

with linear differential operators in its entries



There exists a gain matri® JR™, such that 2z =V(t) -z
the error equation is asymptotically stable if and, - 2,-2
only if the unobservable dynamic is asymptotically ? 2
stable, see [7]. :
In presence of faults, the error equation iy, =z, -z, (15)
expressed in the following way _
A w(t) = Mz(t
&) =(A-DO&)+( - D) ¥} (10 (0 =Mz | | |
n)=Ce(+ LD whe.re K - n+ z N . This system is, essennallyj
The next step is to find the transfer function fofultiPle integration. When the error system is
the error system considering the faults as inputs Stabilized for t <4, then v, (20 in

t O[ty, t,+ 7], if and only if w(t) is not zero in

=(C(sl-A+DC)™*(L, -D
1(8) = (ClsI~A+DC) (Lo ~Dlo) +LoM(s) - (11) the same interval. This system is called a detector.

In [1] it is proved that the gain matrix D can be
chosen such that:

1. The error system is asymptotically stable

2. The transfer function in (11) is of full rankA- Diagnostic Model.

, that means, its rank i§ p; . Hence, the | et uys consider the following linear time-
transfer function is left invertible with left invariant system

inverse G(s)
V(s) = G()n (9) (12) X= Ax+ Bu (16)

= Cx

V PI AUTOTUNING USING FAULT
DETECTION AND ISOLATION

The transfer matrix G(s) could contain terms

which are not realizable or unstable, therefore the n N .

next step is the cancelation of the non desire@ UR™", xU R, B R*, @J R",

poles in each term. Letr;, unstable poles from yith the control law = —k, y- KI ¥ ) dt,
(12) with multiplicity n , then (12) is multiplied by _ _
assuming set point = 0. If a new st&tetj'y(t)dt

S-a)"

D ( ) - _is defined, the closed loop system can be rewritten
' l. If additionally (12) has poles in ¢
(s+1)2"

. _ _ 17
infinite (is improper) (12) is multiplied by EE:EA ikpc (B)k. %% (7)
1

(s+1)™ where n, is the multiplicity of this |t the nominal values of the controller parameters

poles in infinite. These terms constitute g defined by

postfilter matrix Ko = K, + Ak, (18)
H(s) = *——< | _ _ _
(s+1)™*2" the diagnostic model of the closed loop system is
written into
The H(s) defines the transfer matrix from the (19)
inputs v(s) into new outputs«(s): —Bk,C — Bk
Z C 0
w(s) = H(s)v(s) (14)

+
The realization of (14) in the state space form is %%l %%2



wherev, = (Ak,C) x andv, =(4,,)z

R(t) = AX(t) + Bu(t) + D(y(t) - Cx(t)) (21)

The fault direction are not linear mdependenty(t) Cx(t)
hence, a new diagnostic model is required to

isolate these faults.

If the state vector is redefined
using G(s) =(C(sl-A+ DC)_l(LD -DLgp) +Lg) have

X =k z,x, =k,Cx=k,z and X=X,

with gain matrix D such that A— DC be

asdsymptotically  stable and the matrix

equation (25) a new diagnostic model is obtained fyl| rank. It is easy to verify thaG(s) 0 R*?,

g« _A<B b )

X, 0= ADX, O+ Ly [V, [

O Do Ok

where
k
3 o S g f
_ 0 Kpo 0
A=[rkpCB —koCB k, Chy
@ -B -B A @
| k,OD
U d k—D
0= PO []
L -0t _do
DT[] _dtD
oo o4
U [l
U ]

AOR™22 y OR x, R, %, OR"
defining the outputs ay, = z,y, =7

0 (21)
ﬁyylﬂ ~%(1D v,

for this diagnostic model, the faults are defined

v, =AK, z,v, = Ak, z

because there are two faults related to the
controller parameters. The following step is to

invert G(s) to findv=G™ (). If the system is

not realizable it will be necessary a postfilter
matrix, getting the detector system In order to

find in an adaptive way the controller parameters,
it is necessary to have the expressionvigirom

the detector equation or from the erterm. In
both cases the result could be non causal, but in a
practical sense, it would mean that it is required
error derivatives or output detector derivatives
which are on line computable. Oneés obtained

it is possible to get Ak, andAk, from

=k, z,v, = Ak, z where zy 7 are outputs of
the diagnostic model which are measurable or
computable. The last step is to find the controller
parameters such that the faults tend to zero
asymptotically

ko[ A O [Nk, (22)
B e
using (18) we get
Ak, (t) = kpo =k, (1) (23)
Ak, (t) =k, =k (1)

After derivating (23) and substituting in (22) the
dynamic expression is obtained for the controller
parameters

VI ACADEMIC EXAMPLE

Consider a particular case (Proportional

B. Adaptive Tuning of Pl Controller Parameters Controller) in order to control a first order system.

L u(s) (24)

After getting the diagnostic model, the following y(s) = s—-1

step is to design the Luenberger observer

kp = —kpy



assuming that the set point is zero. The respective

differential equation is the following Its respective differential equation
y=@Q/1)y+(K/1)u (25) W=-w+v,. (33)

If the proportional parameter is defined as In discrete time, is possible to compuwtein spite
K, (t) = Kpo + 2K, (1), (26) of that the transfer function from into v, is

improper because we only need error or output
then, the diagnostic model can be expressed in thetector derivatives. For

follwing way
Ak, (1) = vy (1) 1 y(t) (34)
y=(A-Kkp)/T)y+(K/T)Vv, (27)
v, = Ak, Y it is desired that
The next step is to compute an observer such Akp = ~ADK, (35)

that A-DC<0, with o _ _ _
D =(1/1),A-DC = (-Kk, /T)  assuming derivting (26) and using (35) is obtained
that K > 0andk, > 0. Therefore the observation

I a6
error is defined by Ko (t) = Ok, (t) = -AAk,,A >0 (36)

— KK K (28) Th'is is a dynamical expression for the co_ntroller

e= Pet+—v, gain. To the computationally implementation of

T T this autotuning, it is necessary to discretize the
n=~Ce differential equations

Its transfer function is
X(k=T)+(T/1)y(k)

x(k) =

(cK/T1) (29) (- (T(~Kkgpo +1) / T) +(TC/ 1))
n(s) = mVl(S) : e(k) = y(k) - X(k), n = Ce
i w(k) = w(k =T) + (T /KC)(n(k) —n(k —T)) + (Tkys, / C)n (k)
1+7)

Inverting the expression in (29), we get o
w9 =MD (¢ ke) +n ke,
s+ (Kk, /T) (30)

S
(ckimy i g = 40 (37

y(k)
The transfer function from into v, is improper, ke(K) =kKe(k=T) +T*A* Ak (k)
hence, a postfilter is needed:

vy(8) =

whereT must be chosen such that discretization be
1 (31) e
h(s) = . efficient .
(s+)) Let the nominal model be
The fault detector system is the following 38
G(s) = 01i o), (38)
w(s) = h(s)v,(s), 32 S
() (1) (8) ) (32) k, ==15y, y(0)=0.01
+ T
w(s) = S+ (Kke )r](s). settingT=0.01.

“(s+D) (cK/7)



First Case of Simulation

Nominal Conditions:
K=1,
T =0.1 fort>700 and t <450.

Fault Conditions:
K=1,
T =0.5 for 450<t< 700.

In this case there is no unstability in the fault oot
condition, however the detector system detects th
fault. When adaptive gain is applied, the fault is
loop

corrected guaranteeing the closed

specificationsSee Figures 1 and 2.
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Fig.1 System response without adptive gain. First Case
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Fig2. System response with adaptive gain. First Case

Second Case of Simulation

Nominal Conditions:

K=1,

T =0.1 fort>700 and t <450.
Fault Conditions:

K=0.1,

T =0.1 for 450<t< 700.

In this case the fault conditions cause loss of
stability which is detected by the fault detector.

When adaptive gain is applied are guaranteed the
stability and closed loop specifications. See

Figures 3 and 4.

Output System

D
o
5

0 L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

©10° Output Fault Detector

ok N ®w » o«

0 100 200 300 400 500 600 700 800 900 1000

Fig.3 System response without adptive gain. Second

Case
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Fig.4. System response with adaptive gain. Second
Case

VI. INDUSTRIAL APPLICATION

The autotuning of PI controllers proposed in
this paper, was implemented to solve a pH control
problem in a chemical plant (Chlorine Plant) with
satisfactory results. The problem is to control the
pH in the Depleted Brine NaCL+ H,O) with

200 gpl ofNaCl approximately. This Brine comes
to the process unit with pH close to 2 and the
objective is to obtain a pH close to 8.5 by adding
of Caustic Soda (NaOH) with an approximated
concentration of 12%.



The difficulties that there exist to control theachieve this goal the proportional gain is defined
pH are related with multiples disturbancedy
originated in different units of the plant which
affect the system in a direct and indirect way. 1
Changes in the soda concentration, affect the KP(t)zEWEZ(t)’ (40)
system producing deviations in its dynamic respect ®
to the nominal behavior. Because of this fact it % 1

hard to control the system with the required

specifications. i . £ th inal Kdt) i
The original control strategy was designed ggonlinearities of the nominal system a qt)is

compensate the nonlinearities related to tHesed to correct the deformations produced in the
process gain using a Pl controller with adaptivélrve through gain autotuning using the proposed
gain. The tuning of the proportional gain Wa@et_hod. The expression for the closed loop system
achieved according to the information obtainet$ 9iven by
from titration data assuming that the soda -
concentration doesn’t change. This fact causes thift) = ((1— K (t)) /1) y(t) + 1/ T)v,(t) (41)
the strategy isn’t robust with respect to suco (t) = ARy/(t)
changes. 1

Our method was applied to correct

deformations in the characteristic curve, caused b ] ) ]
changes in the soda concentration and othéilnllowmg the steps exposed in section VI for the

disturbances. academic example, similar expressions can be
The first step to design the new strategy was tfpbtained for the detector filter and the control law
system identification in open loop using stef:hat guarantees the closed loop specifications

change methods in order to get the system modgrrecting the deformations of the nominal curve.
with nominal conditions.

Defining the statey = (pH — set pointandu =
NaOH Flow the obtanied linear aproximation is

here the termﬁ is usedto compensate the

The following graphics show the result of the
method, applied to pH control.

the following
. 1 .
Y(t) = = YO + K@) (39) Depleted Biine pH
u(t) = -Kpy(t) 55
. 1000
K(t) depends on the pH and on the operational 80 b
conditions. In nominal operational conditions the | = qoolla LI JAldlA —
characteristic process gain curve is the following = ollal !
200
K vs pH 0,00
15 "8I3 85X
xlO /.__-__-\ — Hm#@m@:ﬁ
Z L™ = e minue s
1 2 3 45 6 7 8 9 1011 12 13
pH Fig.6 System Response without Autotunig

Fig5. Characteristic Curve K vs pH
The characteristic curve could be deformed in
presence of disturbances That deformation can be
interpreted as a deviation of the controller
proportional gain respect to a nominal value. The
purpose is to autotune the proportional gain in
order to compensate such deformations. To
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Fig.7 System Response with Autotuning

VII CONCLUSION

[5]

[6]

[7]

Using the fault detection and isolation method
developed in [1] based on FDI filters, designed by

Luenberger observers, was possible to synthesize a

scheme of on-line autotunig for PI controllers.
Disturbances and error of the linearizations can be

compensated by autotunig the

controller

parameters. The tuning law is obtained by

imposition of asymptotically stable differential

equation that guarantees the required closed loop

specifications. This method was

applied

succesfully to solve a pH control problem in a

Clorine Plant guaranteeing the closed

loop

specification in spite of the nonlinearities related to
the nominal model, the disturbances coming from
others unit of the plant an deviation in the soda

concentration.
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