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Abstract: - This paper studies the stability analysis of multivariable fuzzy control systems. Particularly, the
stabilit y of Takagi-Sugeno (TS) systems is addressed. The results presented in the paper make possible the
application of both input-output and frequency response methods to TS systems identified from Input-Output
data. The paper also presents the Fuzzy Algorithm Stability Tool (FAST) toolbox developed in the project
Fuzzy Algorithm for Control of Multiple-Input Multiple-Output Fuzzy Systems (FAMIMO). Some
comparative examples illustrate the application of the proposed techniques.         CSCC’99 Proc.pp.7191-7196
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1 Introduction
The stability analysis of multivariable non-linear
feedback systems is a complex problem where is
diffi cult to obtain general results [7]. Furthermore,
most results on the stabilit y analysis of fuzzy control
systems are related to local stability around an
equilibrium point [13]. Only some authors have
studied the global stabilit y involving all the space in
which the variables associated to the process to be
controlled can vary [6]. However, the techniques
presented in this paper can also be applied to the
global stabilit y analysis of multivariable fuzzy
control systems. These global problems rise, for
instance, when an unstable plant is controlled with a
controller that saturates.
This paper summarises several results on the
stabilit y of multivariable fuzzy control system
obtained in the FAMIMO project. The paper
concentrates on the stability of continuous time
Takagi-Sugeno (TS) systems. These systems can be
easily computed from input-output data of the
process to be controlled [11]. Furthermore, rule-
based heuristic knowledge can be also included in
the model. It should be noted that several stability
analysis techniques could not be applied directly to
TS models. Particularly, the Input-Output and the
Frequency Response techniques are straightforward
applied only to linear system with static
nonlinearities in the feedback loop [6][9][10]. The
work done in FAMIMO extends the above
Input/Output and Frequency Response stability

techniques to systems with the process modelled by
a TS multivariable model and a fuzzy feedback
controller as shown in Fig. 1a. The feedback
structure in this figure is transformed into the
structure shown in Fig. 1b (Lur’e problem), with a
linear part and a feedback non-linear part composed
by the nonlinearties of the TS model of the process
and the fuzzy controller.
Several techniques could also be applied to
Mamdani type fuzzy control systems.
Some of the more significant up-to-date stability
analysis techniques for MIMO fuzzy systems have
been implemented in a Matlab Toolbox called
FAST, developed in the FAMIMO project.
The paper is organised as follows: Section 2
summarises the main features of the toolbox. Section
3 presents several comparative examples, showing
the possibilities of the different methods. Finally,
Section 4 is for the conclusions.

TSK MODEL
LINEAR PART

TSK MODEL
NONLINEAR PART

TSK CONTROLLER

TSK MODEL

TSK CONTROLLER

Fig. 1 a) TS fuzzy model with a Fuzzy controller.
b) Linear/Non-linear part decomposition.



2 The FAST Toolbox
A Matlab toolbox called FAST (Fuzzy Algorithm
Stability Tool) has been developed. The main
features of this tool are shown in Fig. 2. The toolbox
implements several methods for stability analysis of
MIMO fuzzy systems. Some of those methods have
been recently developed in the frame of the
FAMIMO ESPRIT Project. In the following a
description of the implemented methods is
performed.

2.1 State space qualitative analysis of fuzzy
control systems
The tool includes traditional heuristic techniques for
the stability analysis, such as the linguistic trajectory
method and the representation of the trajectories in
the phase portrait. Furthermore, stability and
robustness indices [1] based on the qualitative theory
of non-linear dynamical systems are also being
included. These indices have been recently extended
in the FAMIMO project for the application to TS
fuzzy systems.

2.2 Frequency response methods
The existing frequency response techniques for the
analysis of fuzzy control systems have been
traditionally applied to systems with a known linear
model of the process and a non-linear feedback
(fuzzy controller). This model requirement was a
significant limitation for practical usage in fuzzy
control engineering. However, using the
transformation presented above, the stability of TS
systems can be studied with these methods.
In FAMIMO the harmonic balance equation has
been used to search for limit cycles. In this case this
equation leads to

yyaNjG -=)()( w                       (1)

where )( itj
ii eay qw += are the complex representation

of sinusoids, )( wjG  is the frequency response of the
linear part, and N(a) is the describing function of the
non-linear part (see Fig 1b). The describing function
matrix of the feedback non-linear part is computed
by obtaining its response to sinusoidal inputs and
calculating the first harmonic of this response.
For a limit cycle to exist (1) should have a nontrivial
solution. To solve that equation, in the case where
the non-linearity is additively decomposable a
method suggested by Mees can be used [6]. For a
square G this method is based on the fact that (1) can

only have a solution if )()(1 aNjG +- w has at least
one zero eigenvalue. To check whether that happens
the Gershgorin theorem is employed [10]. This
theorem leads to the stability condition:
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A graphical tool to analyse the stability using the
Gershgorin´s bands has been implemented. The
intersection of the Gershgorin circles of the
multivariable linear system with the describing
function of the non-linear feedback system
determines the critical regions to study the stability.
A different method is based on the direct analysis of
the harmonic balance equation. Thus, the number of
encirclements of the characteristic loci of

)()( aNjG +w  around the point (-1,0) is studied [8].
A third method also developed in FAMIMO is based
on the robust analysis of limit cycles using singular
values. The method is applied to a system with a
multiplicative error D  model. A theorem to assure
the absence of limit cycles has been presented [3].
This theorem defines the following condition on the
model error:
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This new method for the robust analysis of limit
cycles using singular values is also available in the
FAST toolbox.

2.3 Input-Output stability
If G is a linear time-invariant representation of the
process to be controlled, its gain can be easily
computed using its frequency response:

))((sup)( ws
w

jGGg =                    (4)

where s  is the maximum singular value of the
matrix )( wjG . Furthermore, if H is a non-linear
static fuzzy controller, )(eH f= , its gain can be
obtained as:
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The small gain theorem states that a sufficient
condition for the stability of the closed-loop system
in Fig. 1.b is that 1)()( <HgGg . That is, the
product of the gains should be lower than 1.
Several stability criteria can be stated from the
applications of the above concepts. Particularly, the
circle criterion has been applied for the stability
analysis of both SISO and MIMO Mandani type
fuzzy control systems [9]. The conicity criterion
(Multivariable Circle Criterion) can be used to
generalise the above results. This criterion leads to
the following sufficient conditions for the stability of
the fuzzy control system [7]: 1<ci  where ci  is
called the conicity index, which is defined as



ghc rri /= , where )()( CHgCrh -=  is the conic

deviation and ))((/1)( 1-+= CGIGgCrg is the conic

robustness. In the above expressions C is called
centre of the cone. Thus, stability analysis is reduced
to find a centre such that 1<ci .
Usually, these methods are difficult to apply, and
require training to perform block transformation in
the control loop and to select parameters. The tool
helps to overcome these practical problems. For
example, three different methods have been
implemented in FAST to obtain a centre:
computation of the closest linear system to the non-

linear part, optimal linear feedback and optimisation
with the gradient descent method.

2.4 Lyapunov analysis using LMI: quadratic
stability and piecewise quadratic stability
A continuous time linear TS fuzzy model is
composed of rules such as:

MiuiBxiAxiLx L1  ;
.

  THEN   is   IF =+=      (6)

This system can be considered as a polytopic linear
differential inclusion (PLDI). Stability analysis of
PLDI and, consequently, of linear TS systems, is
reduced to find a common matrix P [11][13], valid
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Figure 2. Fuzzy Algorithm Stability Toolbox for Matlab.



for a set of linear matrix inequalities on the form

0>P and 0<+ PAPA T
ii , that can be solved by

means of new convex optimization techniques [2].
The quadratic Lyapunov function is given by

PxxxV T=)( .
The Lyapunov approach is usually very
conservative. Thus, it is not possible to find
quadratic Lyapunov functions of many stable fuzzy
control systems. However, in case of membership
functions with local support, which induce a
partition in the space of the input variables,
piecewise quadratic Lyapunov functions [5], offer
many solutions to stability problems that cannot be
solved with conventional techniques. A matrix iP
has to be computed for every region and the

Lyapunov function is defined by xPxxV i
T=)( .

These developments came from the work on the
stability of heterogeneous control system. Thus, a
tool for the implementation of Lyapunov stability
analysis of fuzzy multivariable systems using the
LMI software provided by another partner of the
FAMIMO project [4] has been used. That includes
the computation of a matrix to satisfy the quadratic
stability of piecewise linear systems (globally
quadratic Lyapunov function), or a set of matrices to
satisfy piecewise quadratic stability. The FAST tool
facilitates the application of the Lyapunov method to
TS systems generating automatically the fuzzy
partition and obtaining the LMI input data from the
fuzzy system definition.

3. Examples
This section presents some examples of the stability
analysis of fuzzy systems. Firstly, in order to show
the relevance of global stability analysis it will be
considered an unstable fuzzy system controlled by a
fuzzy controller. When no saturation of the control
action exist, the fuzzy controller is able to globally
stabilise the system (see Fig 3.a). However, if the
control action is saturated, new equilibria and limit
cycles could appear, as the saturation level is
increased (see Fig 3b-3c). These phenomena could
not be detected with conventional techniques as
Lyapunov direct method or Conicity criterion.

Example 1: Affine TS system
This example deals with an affine TS system, and
has been proposed by Johansson et al. [5] to
illustrate the use of piecewise quadratic Lyapunov
(PWQL) functions in a two dimensional case (see
Fig. 4).
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Figure 3. a) System without control action
saturation. b) -60 < u < 60. c) -20 < u <20.

The premises of the rules induce a state space
partition into 25 regions (9 operating regions and 16
interpolation ones). Using PWQL (see Section 2) it
is possible to compute a matrix iP  for every region,
that ensures the stability of the global system:

P1

0.0084 0.0060 -0.0002

0.0060 0.0054 0.0032

-0.0002 0.0032 0.0448

= ¼ P25

0.0043 0.0020 0.0026

0.0020 0.0042 0.0059

0.0026 0.0059 0.0225

=

Therefore, the global asymptotic stability is assured.
In order to apply conicity and harmonic balance
equations, the affine system is split into a linear part
and a non-linear part. The cone centre
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provides a conicity index of: 0.9965, and therefore,
the system is stable (see Section 2).
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Figure 4. Globally stable system and Lyapunov
level curves.

To apply the harmonic balance method, the dual
describing function has been used, to deal with the
non-symmetrical characteristic of the nonlinearities
in the fuzzy control system. A solution exists if the
two indexes, )),()0(det( 1001 IaaNGI +=  and

)),()(det( 1012 IaaNjGI += w , are zero. In this
way, the results shown in Table 1 are obtained. Such
results are congruent with the previous ones.

Example 2: TS Model + TS Controller
This example considers a TS model with a feedback
TS controller without saturation in the control
action. In this case the system is globally stable as
can be verified by simulation (see Fig. 5). For this
example a piecewise quadratic Lyapunov function
was not found, and therefore no conclusions about
stability could be done.
However, applying the conicity criteria or harmonic
balance equations, the stability of the system can be
stated. A conicity index of 0.9962 is obtained for the
cone centre

1.0029 0.0002

0.0002 0.9948
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4
´

.

In the case of harmonic balance equations, stability
can be also assured (see Table 1).
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Figure 5. Globally stable system without saturation.

Example 3: Control action saturation
If a saturation in the control action exists
(i.e., 5.75.7 <<- u ), an unstable limit cycles appears
as shown in Fig. 6.
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Figure 6. Unstable limit cycle due to saturation.

Using piecewise quadratic Lyapunov function or
conicity criteria no stability results were obtained.
However, using the harmonic balance equations a
solution exists, and a limit cycle, with frequency

7310.3=w , is detected (see Table 1). Therefore the
system is not globally stable. This example shows a
case where frequency methods are substantially
more powerful than the other methods.

Example 4: Saddle points
The last example corresponds to a system with two
saddle points (see Fig. 7). Again, Lyapunov and
conicity criteria can not provide stability
conclusions. Nevertheless, a solution to the
harmonic balance equation is obtained (see Table 1),
where w close to zero )0001.0( =w  is usually
referred in the literature as a new equilibrium point.

Example I1 I2 a0

T a1

T
w Conclusion

1 3.2307 0.0277 [0.0127 0.4298] [1.9870 0.4747] 0.8897 Stable

2 0.007 0.003 [0.4686 0.5019] [0.9262 0.9846] 3.0701 Stable

3 4.3149 x 10-8 2.6320 x 10-8 [0.0117 0.0108] [1.6031 1.0063] 3.7310 Unstable Limit Cycle

4 3.1465 x 10-12 1.6839 x 10-7 [0.5577 0.8535] [0.9569 1.5991] 0.0001Multiple Equilib. Points

Table 1:  Results of Frequency Response analysis
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Figure 7. Multiple equilibrium points.

4.  Conclusions
This paper has studied the stability of multivariable
fuzzy control systems. Lyapunov approach is usually
very conservative. Thus, it is not possible to find
quadratic Lyapunov functions of many stable fuzzy
control systems. Piecewise quadratic functions offer
many solutions to stability problems that cannot be
solved with conventional techniques.
Input-Output methods can also be straightforward
applied to MIMO systems. The direct application of
the small gain theorem leads to conservative stability
results. The conicity criterion decreases
conservatism, but this is still significant. These
methods require training to select the involved
parameters. Thus, several techniques have been
implemented in FAMIMO to overcome this practical
difficulty. Frequency response methods do not suffer
of the same conservatism inherent to other stability
analysis techniques. The application of classical
frequency response techniques in multivariable
systems is complex. However, the tools developed in
FAMIMO can be applied without significant
expertise.
In the paper some different approaches have been
compared through particular examples. For local
analysis around the operating point all the
methodologies display similar results. However, for
global problems (multiple equilibrium or limit
cycles) the advantages of frequency methods have
been pointed out. Thus, the comparative analysis of
all the existing techniques to analyse the stability of
multivariable fuzzy control systems, carried out in
the FAMIMO project, reveals that there is no a
single method better than the others. In fact several
methods are complementary.
All the above techniques for stability analysis are
being integrated in a Matlab Fuzzy Algorithm
Stability Tool called FAST.
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