
7211

An Extension of the ODMG Data Model to Support Ternary
Relationships

ESPERANZA MARCOS
Sciences and technology Department

University Rey Juan Carlos
C/ Tulipan s/n, 28933-Móstoles (Madrid)

SPAIN

BELÉN VELA
Computer Sciences Department

Univ. Carlos II I of Madrid
C/ Butarque s/n 28911-Leganés (Madrid)

SPAIN

Abstract: - I t is well known that the object data model has improved the expression power with regard to the
relational model, supportin g constructors such as multi -valued attrib utes or inheritan ce. However, there are still
some other important constructors, as ternary relationships or composite objects, that are neglected by most of
the object data base systems, even by the object database standard, ODMG. Nevertheless, ternary relationships
(and n-ary relationships, in general) are supported by almost every conceptual model due to their importance in
modelling the real world . The problem is that n-ary relationships can only be used to define the conceptual
schema, and so, it is necessary to invent a way of covering the gap between n-ary relationships allowed at a
conceptual level and binary ones supported by the implementation models. To solve the mentioned problem,
we propose an extension of the ODMG data model to support ternar y relationships, based on the definition of a
new collection type.

Keywords: - Relationships, ternary relationships, object-oriented database systems, data models,
collection types, ODMG. IMACS/IEEE CSCC'99 Proceedings, Pages:7211-7218

1. Introduction
One of the most important improvements of
the new generation databases (object-oriented
and object-relational databases) with regard to
the relational ones is their capacity to support
complex objects and structures. In order to
achieve this goal, database models have
improved their expressiveness through new
primitives being now closer to the conceptual
models than the relational model was.
However, some important conceptual
constructors, as for example, aggregation or n-
ary relationships, are not still supported by the
database models, being necessary to maintain
its semantics through the applications.
Perhaps one of the most important constructors
to represent the real world is the relationship,
which allows representing the relationship
concept that is present at almost every
application. In spite of several proposals
extending the relationship semantics [1, 4, 11]
to support different meanings of the
relationship concept, currently, database
models, including the ODMG data model, just
support binary relationships [5, 8, 13].

In this paper, we propose an ODMG extension
to support ternary relationships through a new
collection type that we have called PairColl.
This proposal can be easily extended to support
n-ary relationships.
The remainder of the paper is organised as
follows. First, in section 2, we justify the need
of the ternary relationships in data models.
Afterwards, in section 3, we summarise the
current state of the relationships and collection
types in the ODMG data model. Then, in
section 4, we explain our proposal. Finally, in
section 5, we conclude pointing out some
possible extensions and future works.

2. Modelling with ternary
relationships
A relationship is an association between two or
more objects that belong in general, but not
mandatory, to different object types. When
only two objects participate in the association
it is called a binary relationship. However, it is
very common in the real world to find
associations that relate three or more objects.

7212

In such cases we speak of n-ary relationships.
A ternary relationship is an special case of n-
ary relationship, in which n is three.
Ternary, and n-ary relationships in general, are
very important constructors in a model to
represent the semantics of the real world.
Nearly all conceptual models, as E/R [7], UML
[2], MIMO [12], Merise [14], etc. support
ternary relationships. However, none of the
current database standards, the ODMG [5], the
SQL92 [13] as well as the future standard
SQL3 [8], supports this constructor. Moreover,
implementation models, neither object-
relational (as DB2 [6] or Oracle [15]) nor pure
object-oriented models (as GemStone [3],
Orion [10] or POET [16]) support ternary
relationships.
Thus, ternary relationships can be directly
represented in a database conceptual schema
but they cannot be represented in an
implementation one. For this reason, it is
necessary to define how ternary relationships
should be implemented. There are two
different ways to broach this problem:
a) The first one is to convert the relationship

in an object type (or in a table if we are
working with a relational product). This
solution forces to represent ternary
relationships, unlike the binary ones, as
object types. However, this is not a good
solution because in addition to the loss of

information, which is due to considering a
relationship as an object type, it also gives
rise to a more complex schema (notice that
the addition of a new object type involves
adding three binary relationships).

b) The second possible solution is to break off
the ternary relationship representing it with
two or three binary relationships, in
accordance with the cardinalities. However,
this solution is not always applicable
because some ternary relationships cannot
be represented as binary relationships
without some loss of information [9, 17]. If
we can represent a ternary relationship
through some binary ones then the
relationship is conceptually not really a
ternary one, although it had been
considered so in a first approach of the
conceptual schema. If the association is
really a ternary relationship then it cannot
be broken off without some loss of
information.

Figure 1(a) shows an example of ternary
relationship. In this example a teacher can
teach the same subject in one or more course/s.
In the same way, a subject in a course can be
taught by one or more teacher/s. And, finally a
teacher teaches in a course one or more
subjects. This association could be represented
with three binary relationships as it is shown in
figure 1(b).

TEACHER COURSE

SUBJECT

Teaches

N:M :P

TEACHER COURSE

SUBJECT

Teaches_C

Teaches_S Given_in

N:M

N:M N:M

However, figures 1(a) and 1(b) represent two
schemata that are not equivalent between them.
If we represent the relationship Teaches as it is
shown in figure 1(b) we would be able to
know, for example, that Alan Smith teaches
maths and history or that he teaches in the first
and in the second course. However, we would
not be able to know which matter Alan Smith
teaches in each course. So, the complete

information represented by the ternary
relationship is lost when the ternary
relationship is broken off into three binary
relationships and we are not able to know
which matter is taught by each teacher in each
course. Due to the fact that such cases can be
easily found in the real world, it is important
that the standard and implementation models
can directly support them.

Figure 1(a): An example of a ternary
relationship

Figure 1(b): An example of a
ternary relationship broken off

7213

3. Relationships in ODMG 2.0
The ODMG standard is the object database
standard proposed by the ODMG (Object Data
Management Group). ODMG defines an
Object Model and Object Definition Language
(ODL) that supports this model. It also
provides an Object Query Language (OQL)
and the C++, Smalltalk and Java ODL
bindings.
The ODMG object model supports only binary
relationships. A relationship is defined
implicitly by the definition of traversal paths

that are declared in pairs, one for each
direction of the binary relationship. A traversal
path definition includes the target type and
information about the inverse traversal path
found in the target type. A binary relationship
may be one-to-one, one-to-many or many-to-
many depending on how many instances of
each type participate in the relationship. The
multiple cardinality of the target type is
supported through collection types. If no
collection type is used, the cardinality on the
target side is one. Figure 2 shows an example
of a many-to-many binary relationship in ODL.

Figure 2: An example of a binary relationship in ODL

The ODMG data model supports the following
collection types: set, list, bag, array and
dictionary. However, only the set, list and bag
are allowed in the relationship definition.

Figure 3 shows the relationship specification in
the ODL grammar, as well as the main part of
the specification for the collection types.

Figure 3.- ODL grammar for binary relationships and for collection types

Set, list, bag, array and dictionary type are
defined in the ODL meta-schema as subtypes
of the collection meta-type, which itself is
defined as a subtype of the object meta-type.
Despite both, the array and the dictionary
type, are supported by the ODMG data model
as subtypes of the collection type, we can see
that they cannot be used to define
relationships. Our proposal consists on
defining a new collection type, similar to the
dictionary one, and allowing to use it in the
relationship definition. The idea of

implementing relationships as collections of
pairs is also used in other data models but with
a different approach. So, for example, in the
Object Data Model OM [18] relationships are
represented by a special form of collection,
called binary collection, in which each
element is a pair identifying the related
objects. The binary collections of OM are
similar to the PairColl collections that we
propose. Nevertheless, whereas a binary
collection can represent only binary

class teacher
 { attribute string (30) name;

attribute string (20) matter;
relationship set<course> teaches

 inverse taught_by::course;
void teacher ();
void ∼teacher ();};

class course
 { attribute string (30) description;

attribute short n_hours;
 relationship set <teacher> taught_by
 inverse teaches::teacher;

void course();
void ∼course ();};

<rel_dcl> ::= relationship
<target_of_path>
<identifier>
inverse <inverse_traversal_path>

<target_of_path>::= <identifier>
| <rel_collection_type> <<identifier>>

<inverse_traversal_path>::=
 <identifier>::<identifier>

<rel_collection_type>::= set | list | bag

<coll_type>::=
<coll_spec> <<simple_type_spec>>
| dictionary <<simple_type_spec>,

<simple_type_spec>>
<coll_spec>::= set | list | bag

7214

relationships, a PairColl collection will be
used to represent ternary relationships.

4. Extending the ODMG data model
to support ternary relationships
There are different approaches to support
ternary relationships in a data model:

1) The first one is to support ternary
relationships by a star configuration, see
figure 4(a), considering relationships as
“first category” objects which relate
different object types [4, 11].

2) The second approach is representing
ternary relationships by a ring

configuration, see figure 4(b), through
links or traversal paths where each
object type is related to every object
type involved in the relationship. Notice
that this solution is different to represent
ternary relationships as three binary
ones, because in a ring configuration
each object is simultaneously related
with two other objects. For example,
think in a ring of three children taken by
their hands; all of them are joined
together in a ternary relationship rather
than in three binary ones.

R1

Figure 4(a): A ternary relationship
supported by a star configuration

Figure 4(b): A ternary relationship
supported by a ring configuration

The star configuration allows a better
representation of the real world because of the
semantics that it is able to support. For
example, this configuration allows representing
relationships, either binary or n-ary, with their
own attributes or even, their own relationships
[12, 14]. However, a ring configuration does
not allow representing directly relationships
with attributes and, when a relationship has
attributes, it is necessary to define a new object
type to represent it. Despite the efficiency
depends on the implementation, in some
queries the ring configuration could be more
efficient because each object keeps directly the
references to the objects with which it is
related.
In spite of the advantages and disadvantages of
each alternative, we have chosen the ring
configuration in order to keep the ODMG
philosophy because this is the way in which the
ODMG data model represents the binary
relationships. Defining ternary relationships by
a star configuration will force us to redefine the
binary relationships model in the ODMG data
model introducing the relationship concept as a
“first category” object.

Thus, ternary relationships can be defined as an
association which, unlike the binary
relationships, relate more than two object
types. In order to support them we must
introduce the following changes to the ODMG
data model:

a) Defining a new collection type, called
PairColl, by a new interfaz. Moreover
we must to extend the ODL grammar,
in a similar way as the dictionary type,
in order to allow keeping collections of
pairs of object types.

b) Defining a ternary relationship
interface in the ODMG meta-schema,
and modifying the ODL grammar to
allow defining ternary relationships by
the new PairColl collection type.

c) Studying the possible implications over
the OQL.

The extended ODMG and ODL will be called
ODMG+ and ODL+ respectively.

4.1 The new PairColl collection type
The PairColl collection type should be similar
to the dictionary type with some changes. The
dictionary type is defined as “an unordered

7215

sequence of key-value pairs with no duplicate
keys. Each key-value pair is constructed as an
instance of the following structure: struct
Association {any key; any value;}” [5]. The
dictionary type is not able to support ternary
relationships because the key must be unique,
and due to this fact a ternary relationship with
n:m:p multiplicity cannot be represented. Thus,
the PairColl should be defined as a dictionary
type without the key restriction.
Definition:

A PairColl object is an unordered collection
of key-key pairs with no duplicate pairs.

Each key-key pair is constructed as an
instance of the following structure: struct
Pair {any key; any key;}, through the
PairColl <<v1, v2>> template.
PairColl =
 {<k1, k2> / k1, k2 ∈ T ∧ k1≠ k2, ∀ <k1,

k2>}, where T is any valid ODMG type
A PairColl interface must be defined. It should
be a subtype of the collection type, like the
dictionary type. Figure 5 shows the Collection
and PairColl interfaces definition.

Figure 5: PairColl interface definition in ODMG+

In addition to the operations defined in the
Collection interface, collection objects,
including PairColl objects, inherit the
operations of the Object interface as, for
example, comparison between two collections,
copy of a collection, etc.
The bind, unbind and find operations create a
pair from the two keys received as arguments.
Afterwards, they call the insert_element,
remove_element and contains_element in order
to insert, remove or select an element in the
PairColl respectively.
PairColl redefines the insert_element,
remove_element and contains_element
inherited from the Collection interface. These
operations are valid for the PairColl when the
specified argument is a Pair parameter
generated by the correspondent bind, unbind
and find operations. The insert_element

operation, after the addition of the new object,
checks that the object passed as an argument
does not belong already to the set. The
remove_element operation removes the
element from the PairColl that matches the
(v1, v2) pair passed as an argument. In the
same way the search of a pair is done using the
two values of the pair. Therefore, when the
(v1, v2) pair passed as an argument matches
some pair in the PairColl a true value is
returned.
Once defined the PairColl type, we have to
add a new production rule to the ODL
Grammar (see figure 6) to include this new
collection type. The modifications with regard
to the ODL standard are introduced in bold
type; the terminal symbols are introduced in
italic type.

interface Collection: Object {
exception InvalidCollectionType {};
exception ElementNotFound{any element;};
unsigned long cardinality();
boolean is_empty();
boolean is_ordered();
boolean allows_duplicates();
boolean contains_element(in any element);
void insert (in any element);
void remove (in any element)

 raises (ElementNotFound);
Iterator create_iterator (in boolean stable);
BidirectionalIterator create_bidirectional_iterator (in boolean stable)

raises (InvalidCollectioType);};

interface PairColl : Collection{
void bind (in any k1, in any k2);
void unbind (in any k1, in any k2);
void find (in any k1, in any k2);};

7216

Figure 6.- ODL+: extension of the grammar for defining the
new collection type PairColl

4.2 Adding ternary relationship to the
ODMG data model
The first step is to define the meta-schema
extensions. A TernaryRelationship interface,
which inherits from the Property interface,
must be defined in the ODMG meta-schema.

Figure 7 shows the TernaryRelationship
interface definition that is similar to the
definition of the Relationsip interface

.

Figure 7: ODMG+: TernaryRelationship interface definition in the meta-schema

To represent the traversal direction of the
ternary relationship, three
TernaryRelationships meta-objects are
required. Operations to form and drop the
ternary relationship, as well access operations
for manipulating its traversals, are defined
implicitly, just as they are defined for the
Relationship interface. It could be also
considered the possibility of introducing in the
ODMG meta-schema a new interface. In this
case, Relationship and TernaryRelationship
would be defined as subtypes of this new
interface.

Despite the TernaryCardinality type defines all
possible combinations, by the moment we have
only considered ternary relationships whit
n:m:p maximum cardinalities.
Once defined the TernaryRelationship
interface, we must also introduce the definition
of the ternary relationship in the ODL
Grammar. Thus, the ODL specification shown
in the figure 3 will be transformed in the
specification of the figure 8, where a <rel_dcl>
can be a binary or a ternary relationship
respectively defined through the <binary_rel>
or the <ternary_rel> specification.

Figure 8.- ODL+: extension of the ODL grammar with ternary relationships

<rel_dcl>::= <binary_rel>|<ternary_rel>

<binary_rel>::= relationship <target_of_path> <identifier> inverse <inverse_traversal_path>

<target_of_path>::= <identifier>| <rel_collection_type> <<identifier>>

<inverse_traversal_path>::= <identifier>::<identifier>

<rel_collection_type>::= set | l ist | bag

<ternary_rel>::= ternaryrelationship <ternary_target_of_path> <identifier>

inverse <ternary_inverse_traversal_path>

<ternary_target_of_path>::= <ternary_rel_collection_type> <<identifier>, <identifier>>

<ternary_inverse_traversal_path>::= < <identifier>:: <identifier> , <identifier>:: <identifier> >
<ternary_rel_collection_type >::= paircoll

<coll_type>::=
<coll_spec> <<simple_type_spec>>
| dictionary <<simple_type_spec>, <simple_type_spec>>
| paircoll <<simple_type_spec>,<simple_type_spec>>

<coll_spec>::= set | list | bag

enum TernaryCardinality {c1_1_1, c1_1_N, c1_N_M, c1_N_1, cN_1_1, cN_M_1,
cN_1_M, cN_M_P};

interface TernaryRelationship: Property{
exception ternaryintegrityError {};
ternaryrelationship TernaryRelationship traversal

inverse <TernaryRelationship::traversal, TernaryRelationship::traversal>;
TernaryCardinality getTernaryCardinality; };

7217

The definition of the binary relationships has
not been modified. The ternary relationships
specification defines the <ternary_ target_ of_
path> and an <identifier>, which is the name of
the ternary relationship, as well as the
<ternary_ inverse_ traversal_ path>. The
<ternary_ target_ of_ path> specification
defines a <ternary_ rel_ collection_ type>,
which is a PairColl specification. The
<ternary_ inverse_ traversal_ path> defines

two pairs <identifier>:: <identifier>, one for
each object type involved in the relationships.
The <identifier> placed before the colon refers
to the related object type, whereas the
<identifier> placed after the colon is the name
of the relationship in the related object type.
Figure 9 shows, as an example, the ODL
definition of the ternary relationship taken
from figure 1.

Figure 9.- A ternary relationships example in ODL+

4.3 Implications over the OQL
To navigate through traversal paths, the OQL
provides the dot operator which has two
different notations, “.” and “->”, equivalent
between them. The OQL syntax to navigate
trought related objects is the following:

query ::= query dot relationship_name
dot ::= . | ->

According to the new ODL proposal, the dot
operator should permit navigating through
double traversal paths in order to retrieve the
two objects related with a specific object by a
ternary relationship.
Thus, the following query,

select t.teaches
from t in teachers
where t.name= ”Alan Smith”

retrieves a literal PairColl <Course, Matter>
containing the courses and matters taught in
each course by Alan Smith. So, now we are
able to know that Alan Smith teaches maths in
the first course and history in the second
course.
Navegating through a double transversal path
complicates the accesing to the attributes of the
related objects. This is possible but rather

tedious, requiring a nested ‘select-from-where’.
It could be also convinient to introduce some
extension to the OQL in order to simplify this
kind of querys.

5. Conclusions and Future Works
In this paper we have proposed an extension of
the ODMG data model to support ternary
relationships, through a new collection type
called PairColl. In addition, we have redefined
the ODL grammar in order to include the
PairColl type definition and the ternary
relationship definition. Some of the OQL
implications have also been considered.
Our proposal has still some weaknesses that we
have to consider in our next works. Therefore,
we should extend the OQL to allow retrieving
the attributes of the related objects without a
nested ‘select-from-where’. We have also to
define some other OQL extensions as, for
example, the PairColl constructor. We have
also to extend the ODL proposal to support all
possible maximum cardinalities (c1_1_N,
c1_N_N, etc.) rather than only support n:m:p
ternary relationships. Moreover, we will study

class Teacher (extend teachers)
{...ternaryrelationship paircoll < Course, Matter> teaches

inverse < <Course>:: taught_by, <Matter>::given_by >;
 ...};
class Course (extend courses)
{... ternaryrelationship paircoll < Teacher, Matter> taught_by

inverse < <Teacher>:: teachs, <Matter>::gived_by >;
 ...};
class Matter (extend matters)
{... ternaryrelationship paircoll < Teacher, Course> gived_by

inverse < <Teacher>:: teach, <Course>::taugh_by >;
 ...};

7218

the convinience of extending this proposal to
support n-ary relationships.
Now, we are working in a formal description
of the ternary relationships and we are also
implementing in C++ the PairColl type, using
generic data types, and the ternary
relationships (considering the referential
integrity, consistency, etc.). Afterwards, we
will extend the POET data model, which is a
pure object-oriented database system based on
C++ [16], including the PairColl type and
ternary relationships.

References:
[1] Bertino and Guerrini, “Extending the ODMG

Object Model with Composite Objects”,
Proceedings of the 1998 ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages & Applications
(OOPSLA’98), in ACM SIGPLAN Notices,
Vol. 33, No. 10, Oct. 1998, pp.259-270.

[2] G. Booch, J. Rumbaugh and I. Jacobson,
“Unified Modelling Language, V1.0” , Rational
Software Corporation, January 1997.

[3] Breitl, R., et al., "The GemStone data
management system", in Object-Oriented
Concepts, Databases, and Applications, pp.
283-308, W. Kim, and F. Lochovsky (eds.),
Addison-Wesley, 1989.

[4] D. Calvanese and M. Lenzerini, “Making
Object-Oriented Schemas More Expressive”.
Proceedings of the Thirteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of
Database Systems (SIGMOD/PODS 94),
Minneapolis, Minnesota USA, May 24-26,
1994, pp. 243-254.

[5] R.G.G. Cattell and Douglas K. Barry, “The
Object Database Standard: ODMG 2.0”,
Morgan Kaufmann Publishers, San Francisco
1997.

[6] D. Chamberlin. “Using the New DB2-IBM’s
Object-Relational Database System”. Morgan
Kaufmann, 1996.

[7] P. Chen, “The Entity/Relationship Model:
Toward a Unified View of Data”. ACM
Transactions on Database Systems, Vol. 1, No.
1, March 1976.

[8] C.J.Date with Hugh Darwen, “A guide to the
SQL standard”. Mc. Graw-Hill , 1997.

[9] J. Dullea and Il-Y. Song, “An Analysis of the
Structural Validity of Ternary Relationships in
Entity Relationship Modeling”, in Proc. of the
Conference on Information Knowledge
Management (CIKM’9 8), 1998.

[10] Kim, W., et al., "Features of the ORION
object-oriented database system", in Object-
Oriented Concepts, Databases, and
Applications, pp. 251-282, W. Kim, and F.
Lochovsky (eds.), Addison-Wesley, 1989.

[11] M. Kolp and A. Pirotte, “A n Aggregation
Model and its C++ Implementation”. In
Proceedings of the Fourth International
Conference on Object Oriented Information
Systems, Brisbone, Australia, 1994.

[12] E. Marcos, “MIMO: Propuesta de un
Metamodelo de Objetos y su aplicación al
diseño de bases de datos”. PhD. Thesis,
Universidad Politecnica de Madrid, 1997.

[13] J. Melton and A.R.Simon, “Understanding the
New SQL: A Complete Guide”. Morgan-
Kaufmann, 1993.

[14] Morejon, “MERISE: Vers une modélisation
orientée object”. Les Éditions d’Organisation,
1994.

[15] Oracle, “Objects and SQL in Oracle8”. Oracle
Technical White paper. Presented in the
Extended DataBase Technology conference
(EDBT’98). Valencia (Madrid), Mars 1998.

[16] “POET/Programmer’s Guide 4.0”, POET
Software Corporation, 1996.

[17] Il-Y. Song and T.H.Jones, “Ternary
Relationship Decomposition Strategies Based
on Binary Imposition Rule”, IEEE 1995

[18] A. Steiner and M.C.Norrie, “Temporal Object
Modelling”. Proceedings of the 9th International
Conference on Advanced Information Systems
Engineering (CASE’97). Ed. A.Olivé and J. A.
Pastor, Spring Verlag, 1997.

