Discrete Time Pseudo-linear Anti-windup Controllers

V. A. TSACHOURIDIS
Control Systems Research, Department of Engineering
University of Leicester
University Road, Leicester LE1 7RH
ENGLAND (UK)

Abstract

This brief paper presents the synthesis of discrete time pseudo-linear feedback controllers.

Key-Words: - Saturation, pseudo-linear anti-windup controllers
CSCC'99 Proceedings: - Pages 7321-7322

1 Introduction

The discrete time counterpart of the pseudo-linear anti-windup controller design [1] is briefly presented. The synthesis problem is synopsized in theorem 1, which is given without proof. The general notation and nomenclature is similar to [1]. A detailed presentation of the design method and proofs of results will be presented elsewhere [2].

2 Controller Synthesis

Let the controllable and observable discrete time plant be

$$
\begin{align*}
& \sigma(\delta x)=A \sigma(x)+B \sigma(u)+\Gamma_{1} w_{1} \tag{1}\\
& y=C \sigma(x)+\Gamma_{2} w_{2} \tag{2}
\end{align*}
$$

where $\quad x \in \mathfrak{R}^{n}, \quad u \in \mathfrak{R}^{m}, \quad y \in \mathfrak{R}^{p}, \quad w_{1} \in \mathfrak{R}^{k}$, $w_{2} \in \mathfrak{R}^{k_{2}}$ are the state, control input, output, state disturbance and output disturbance discrete-time variables of the system, and $A, B, C, \Gamma_{1}, \Gamma_{2}$ are the associated state space data respectively.

In general $\sigma(\theta)$ denote the saturation function

$$
\sigma(\theta):=\left\{\begin{array}{cc}
\theta_{\max }, & \theta \geq \theta_{\max } \tag{3}\\
\theta, & \theta_{\min }<\theta<\theta_{\max } \\
\theta_{\text {min }}, & \theta \leq \theta_{\text {min }}
\end{array}\right.
$$

The upper and lower saturation limits are denoted as $\delta x^{+}, \delta x^{-}$for $\delta x, x^{+}, x^{-}$for x and u^{+}, u^{-} for u. For an unconstrained component, say v, of δx, or x, or u, it is $\delta x_{v 1}^{+}=\varepsilon$ and $\delta x_{\overline{v 1}}^{-}=-\varepsilon$, or $x_{\nu 1}^{+}=\varepsilon$ and $x_{\nu 1}^{-}=-\varepsilon$, or $u_{v 1}^{+}=\varepsilon$ and $u_{v 1}^{-}=-\varepsilon$, respectively. ε is an adaptive parameter satisfying

$$
k \varepsilon:=\left\{\begin{array}{c}
\operatorname{sign}(k) \infty, k \neq 0 \\
0, k=0
\end{array} \text { and } \tau+k \varepsilon:=\left\{\begin{array}{c}
\tau, \tau \neq 0 \\
k \varepsilon, \tau=0
\end{array} .\right.\right.
$$

Furthermore, define $\alpha, \bar{\alpha} \in \mathfrak{R}^{n \times n}$ as
$\alpha_{i j}:=0$, if ($x_{i 1}$ and $\delta x_{i 1}:$ unconstrained) or $(i \neq j)$
$\alpha_{i j}:=1$, if $\left(x_{i 1}\right.$ or $\delta x_{i 1}:$ constrained $)$ and $(i=j)$
$\bar{\alpha}_{i j}:=1$, if ($x_{i 1}$ and $\delta x_{i 1}:$ unconstrained) or $(i=j)$
$\bar{\alpha}_{i j}:=0$, if $\left(x_{i 1}\right.$ or $\delta x_{i 1}:$ constrained) or $(i \neq j)$.
Also, define $\tilde{A}:=A-B B^{l} A \bar{\alpha}$.
Now, let the following assumptions hold.
Assumption 1: B is full rank and $\Gamma_{1} \in \operatorname{Ker}\left(B^{l}\right)$, where B^{l} is the left inverse of B.

Assumption 2: Saturation constraints are defined with functions similar to (3), and only for:
a) The actuators' outputs, states, and rate of states.
b) Any state (not actuator state), which is present in an actuator state space equation (i.e. it is present in a differential equation (1), where a control input component is present as well).

As in [1], the objective is to design a feedback controller, for the plant (1), (2) such that the closed loop system is:
(i) Asymptotically stable.
(ii) Optimal in an H_{2} sense.

A solution to the above problem can be obtained with theorem 1, which constitutes the controller synthesis problem.

For the design, $\mathrm{n}^{\text {th }}$ (full) order observer-based controllers are used. Such controllers have the general structure

$$
\begin{align*}
& \delta x_{c}=A_{c} x_{c}+B_{c} y+E_{c}(\sigma(\tilde{u})-\tilde{u}) \tag{4}\\
& \tilde{u}=C_{c} x_{c} \tag{5}\\
& \tilde{u}^{-}:=\max \left(\left|-B^{l} A \alpha\right| x^{-},\left|B^{l} \alpha\right| \delta x^{-}, u^{-}\right) \tag{6}\\
& \tilde{u}^{+}:=\min \left(\left|-B^{l} A \alpha\right| x^{+},\left|B^{l} \alpha\right| \delta x^{+}, u^{+}\right) \tag{7}
\end{align*}
$$

In the present paper, $\sigma(\tilde{u})$ is the radial ellipsoidal saturation function, shown below.

$$
\sigma(\tilde{u}):=\left\{\begin{array}{c}
\tilde{u}, \tilde{u}^{T} R \tilde{u} \leq 1 \tag{8}\\
\left(\tilde{u}^{T} R \tilde{u}\right)^{\frac{-1}{2}} \tilde{u}, \tilde{u}^{T} R \tilde{u}>1
\end{array}\right.
$$

In (8), $R \in \mathfrak{R}^{m \times m}$ is a positive definite matrix.
Under (4)-(8), the closed loop system can be written as

$$
\begin{align*}
& \sigma(\delta \bar{x})=\bar{A} \sigma(\bar{x})+\bar{B}(\sigma(\tilde{u})-\tilde{u})+\bar{\Gamma}_{1} w_{1} \tag{9}\\
& \tilde{u}(t)=\bar{C} \sigma(\bar{x}(t)) \tag{10}
\end{align*}
$$

where,

$$
\begin{align*}
& \bar{x}:=\left[\begin{array}{c}
x \\
x_{c}
\end{array}\right], \bar{A}:=\left[\begin{array}{cc}
\tilde{A} & B C_{c} \\
B_{c} C & A_{c}
\end{array}\right], \bar{B}:=\left[\begin{array}{c}
B \\
E_{C}
\end{array}\right], \\
& \bar{C}:=\left[\begin{array}{ll}
0_{m \times n} & C_{c}
\end{array}\right], \bar{\Gamma}_{1}:=\left[\begin{array}{c}
\Gamma_{1} \\
0_{n \times k_{1}}
\end{array}\right] \tag{11}
\end{align*}
$$

Theorem 1 ([2]): Let the observable and controllable system (1)-(2), with assumptions 1-2 hold. Also let the nonnegative matrices R_{1}, V_{1}, and the positive definite matrices R_{2}, V_{2}, and suppose that (\tilde{A}, C) is observable and there are $X, Y, Z \in \boldsymbol{S}^{\boldsymbol{n} \times \boldsymbol{n}}$ satisfying
$X=\tilde{A}^{T} X \tilde{A}-\Sigma_{X}+R_{1}$
$Y=\tilde{A} Y \tilde{A}^{T}-\tilde{A} Y C^{T}\left(V_{2}+C Y C^{T}\right)^{-1} C Y \tilde{A}^{T}+V_{1}$
$Z=\tilde{A}_{Y}^{T} Z \tilde{A}_{Y}+\Sigma_{X}$
where,

$$
\begin{align*}
& \Sigma_{X}:=\tilde{A}^{\mathrm{T}} X B\left(R_{2}+B^{T} X B\right)^{-1} B^{T} X \tilde{A} \tag{15}\\
& \tilde{A}_{Y}:=\tilde{A}-\tilde{A} Y C^{T}\left(V_{2}+C Y C^{T}\right)^{-1} C \tag{16}
\end{align*}
$$

Furthermore define

$$
\begin{align*}
& \Omega:=\left[\begin{array}{cc}
X+Z & -Z \\
-Z & Z
\end{array}\right] \tag{17}\\
& E_{c}:=B \tag{18}\\
& C_{C}:=-\left(R_{2}+B^{T} X B\right)^{-1} B^{T} X \tilde{A} \tag{19}
\end{align*}
$$

$$
\begin{align*}
B_{c} & :=-\tilde{A} Y C^{T}\left(V_{2}+C Y C^{T}\right)^{-1} \tag{20}\\
A_{c} & :=\tilde{A}+B C_{c}-B_{c} C \tag{21}\\
\bar{R}_{1} & =\left[\begin{array}{cc}
R_{1} & 0_{n \times n} \\
0_{n \times n} & C_{c}^{T} R_{2} C_{c}
\end{array}\right] \tag{22}
\end{align*}
$$

and suppose that $\left(\bar{A}, \bar{R}_{1}\right)$ is observable. Then the closed loop system (9)-(10) is asymptotically stable if its initial conditions $\bar{x}_{O}:=\left[\begin{array}{ll}x_{O} & x_{C O}\end{array}\right]^{T}$ satisfy $\bar{x}_{O}^{T} \Omega \bar{x}_{O}<\lambda_{\max }^{-1}\left(\bar{C}^{T} R \bar{C} \Omega^{-1}\right)$.
Furthermore, the H_{2}-type cost functional

$$
\begin{align*}
J\left(\bar{x}_{O}\right):= & \sum_{t=0}^{\infty}\left[x(t)^{T} R_{1} x(t)+\tilde{u}(t)^{T} R_{2} \tilde{u}(t)\right. \\
& +2 \bar{x}(t)^{T} \bar{A} T \Omega \bar{B} \bar{C}(\tilde{u}(t)-\sigma(\tilde{u}(t))) \\
& \left.+(\tilde{u}(t)-\sigma(\tilde{u}(t)))^{T} \bar{B}^{T} \Omega \bar{B}(\tilde{u}(t)-\sigma(\tilde{u}(t)))\right] \tag{22}
\end{align*}
$$

where $t=0,1,2, \ldots$, is given by $J\left(\bar{x}_{O}\right)=\bar{x}_{O}^{T} \Omega \bar{x}_{O}$.
Remark 2.1: The matrices $R_{1}, R_{2}, V_{1}, V_{2}$ in (12)-(16), play the role of penalty matrices. Hence for the deterministic case of (1)-(2), V_{1} and V_{2} can be set as $V_{1}:=\Gamma_{1} \Gamma_{1}^{T}$ and $V_{2}:=\Gamma_{2} \Gamma_{2}^{T} . R_{1}$ and R_{2} can be selected arbitrarily, or as in [1].

Remark 2.2: The set
$\Psi:=\left\{\bar{x}_{O} \in \mathfrak{R}^{2 n}: \bar{x}_{O}^{T} \Omega \bar{x}_{O}<\lambda \overline{m a x}^{-1}\left(\bar{C}^{T} R \bar{C} \Omega^{-1}\right)\right\}$ defines a subset of the domain of attraction of the closed loop system. Theorem 1 is a sufficient condition for asymptotic stability and therefore, it is possible the closed loop system to be asymptotically stable for initial conditions outside Ψ.

References:

[1] V. A. Tsachouridis and I. Postlethwaite, Pseudolinear Anti-wind Controllers for a Single Machine/Infinite Bus Power System under Exciter and Steam Control Valve Saturation, appearing in the present conference proceedings.
[2] V. A. Tsachouridis and I. Postlethwaite, A New General Method of Designing Anti-wintup Controllers for Systems with Saturation Constraints on the Actuators' Outputs, States and State Rates, to be submitted.

