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1 Introduction
The discrete time counterpart of the pseudo-linear
anti-windup controller design [1] is briefly
presented. The synthesis problem is synopsized in
theorem 1, which is given without proof. The
general notation and nomenclature is similar to [1].
A detailed presentation of the design method and
proofs of results will be presented elsewhere [2].

2   Controller Synthesis
Let the controllable and observable discrete time
plant be

( ) ( ) ( ) 11wuBxAx Γσσδσ ++=                    (1)

( ) 22wxCy Γσ +=                                       (2)

where nx ℜ∈ , mu ℜ∈ , py ℜ∈ , 11
kw ℜ∈ ,

22
kw ℜ∈  are the state, control input, output, state

disturbance and output disturbance discrete-time
variables of the system, and A , B , C , 1Γ , 2Γ  are
the associated state space data respectively.

In general ( )θσ  denote the saturation function
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The upper and lower saturation limits are denoted

as +xδ , −xδ  for xδ , +x , −x  for x  and +u , −u
for u . For an unconstrained component, say v , of

xδ , or x , or u , it is εδ =+
1vx  and εδ −=−

1vx , or

ε=+
1vx  and ε−=−

1vx , or ε=+
1vu  and ε−=−

1vu ,

respectively. ε  is an adaptive parameter satisfying
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Furthermore, define nn, ×ℜ∈αα  as
0=:ijα , if ( 1ix  and 1ixδ : unconstrained) or ( ji ≠ )

1=:ijα , if ( 1ix  or 1ixδ : constrained) and ( ji = )

1=:ijα , if ( 1ix  and 1ixδ : unconstrained) or ( ji = )

0=:ijα , if ( 1ix  or 1ixδ : constrained) or ( ji ≠ ).

Also, define αABBA:A
~ l−= .

Now, let the following assumptions hold.

Assumption 1: B  is full rank and ( )lBKer∈1Γ ,

where lB  is the left inverse of B .
Assumption 2: Saturation constraints are defined

with functions similar to (3), and only for:
a) The actuators’ outputs, states, and rate of

states.
b) Any state (not actuator state), which is

present in an actuator state space equation
(i.e. it is present in a differential equation (1),
where a control input component is present as
well).

As in [1], the objective is to design a feedback
controller, for the plant (1), (2) such that the closed
loop system is:

(i) Asymptotically stable.
(ii) Optimal in an H2 sense.

A solution to the above problem can be obtained
with theorem 1, which constitutes the controller
synthesis problem.

For the design, nth (full) order observer-based
controllers are used. Such controllers have the
general structure



( )( )u~u~cEycBcxcAcx −++= σδ             (4)

cxcCu~ =                                                    (5)
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In the present paper, ( )u~σ  is the radial ellipsoidal
saturation function, shown below.
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In (8), mmR ×ℜ∈  is a positive definite matrix.
Under (4)-(8), the closed loop system can be written
as

( ) ( ) ( )( ) 11wu~u~BxAx Γσσδσ +−+=          (9)

( ) ( )( )txCtu~ σ=                                             (10)
where,
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Theorem 1 ([2]): Let the observable and
controllable system (1)-(2), with assumptions 1-2
hold. Also let the nonnegative matrices 1R , 1V , and

the positive definite matrices 2R , 2V , and suppose

that ( )C,A
~

 is observable and there are

nnS ×∈Z,Y,X  satisfying
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Furthermore define
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and suppose that ( )1R,A  is observable. Then the
closed loop system (9)-(10) is asymptotically stable

if its initial conditions [ ]Tcoxox:ox =  satisfy
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Furthermore, the H2-type cost functional
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where K,,,t 210= , is given by ( ) oxT
oxoxJ Ω= .

Remark 2.1: The matrices 1R , 2R , 1V , 2V  in
(12)-(16), play the role of penalty matrices. Hence
for the deterministic case of (1)-(2), 1V  and 2V  can

be set as T:V 111 ΓΓ=  and T:V 222 ΓΓ= . 1R  and

2R  can be selected arbitrarily, or as in [1].
Remark 2.2: The set
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defines a subset of the domain of attraction of the
closed loop system. Theorem 1 is a sufficient
condition for asymptotic stability and therefore, it is
possible the closed loop system to be asymptotically
stable for initial conditions outside Ψ .
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