
Binary vs Symbolic Chromosomal Encoding in GA-based
Selection of Optimal Assembly Sequences

CARMELO DEL VALLE*, EDUARDO F. CAMACHO**

*Dept. Lenguajes y Sistemas Informáticos
** Dept. Ingeniería de Sistemas y Automática

Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla

SPAIN

Abstract: - This work presents an application of genetic algorithms to assembly sequence planning. This problem
is more difficult than other sequencing problems that have already been tackled with success using these tech-
niques, such as the classic Travelling Salesperson Problem (TSP) or the Job Shop Scheduling Problem (JSSP). It
not only involves the arranging of tasks, as in those problems, but also the selection of them from a set of alter-
native operations. And/Or graphs are used as an efficient structure for the representation of all the possible as-
sembly plans. Thus the selection process results in a search in the And/Or graph of the product. Two representa-
tions of solutions are compared in this work. The first one uses a binary chromosome that corresponds to an or-
dering of the enumeration of all possible assembly sequences. Conventional genetic operators are used with this
representation. In the other one a chromosome represents a sequence of tasks, compatible with the ordering con-
straints imposed by the And/Or graph. Two families of genetic operators have been used for searching the whole
solution space. The first includes operators that search for new sequences locally in a predetermined assembly
plan, that of parent chromosomes. These operators are similar to those used in TSP and JSSP in the literature.
The other family of operators introduces new tasks in the solution, replacing others to maintain the validity of
chromosomes, and it is intended to search for sequences in other assembly plans.
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1   Introduction
Genetic Algorithms (GAs) have been used to solve a
variety of optimization problems with some success.
Combinatorial problems are a class of problems par-
ticularly difficult to solve, sequencing problems in-
cluded. Many of them have been studied using evo-
lutionary techniques, such as TSP and JSSP, well
known as NP-complete problems. Starkweather, et al.
[11] and Syswerda [12], as well as many others, study
these problems using genetic operators that perform
permutations in the solutions.
     This paper presents an application of GAs to the
problem of selecting and sequencing assembly op-
erations. This is a more difficult planning problem
than TSP and JSSP. It involves not only the optimal
arrangement of tasks, as in those problems, but also
the selection of them from a set of alternative opera-
tions, and taking into account the constraints imposed
to build a feasible assembly plan.
     Assembly planning is a very important problem in
the manufacturing of products. It involves the identi-
fication, selection and sequencing of assembly opera-

tions, specified by their effects on the parts. The
identification of assembly operations has been tack-
led by analysing the product structure, either using
interactive expert systems [2] [3] or, more recently,
through planners working automatically from geo-
metric and relational models [6] and from CAD mod-
els and other non-geometric information [1] [10].
     The identification of assembly operations usually
leads to the set of all feasible assembly plans. The
number of them grows exponentially with the number
of parts, and depends on other factors, such as how
the single parts are interconnected within the whole
assembly, i.e. the structure of the graph of connec-
tions. In fact, this problem has been proved to be NP-
complete in both the two-dimensional [9] and three-
dimensional [8] [13] cases.
     The representation of assembly plans is an impor-
tant issue within this scope. The use of And/Or
graphs for this purpose [5] [6] is becoming one of the
most standard ways of representing all possible as-
sembly plans. They can be obtained by studying the
opposite problem, that of disassembly, but maintain-
ing the constraints of assembly. Most automatic plan-



ners work by this strategy. The result is a representa-
tion, which is adequate for a goal-directed approach.
Moreover, Homem de Mello and Sanderson [5] and
Wolter [14] showed that this structure is more effi-
cient in most cases than other enumerative ones.
An optimum assembly plan is now sought, selected
from the set of all feasible assembly plans. Two kinds
of approaches have been used for choosing an opti-
mal one. One, the more qualitative, uses rules in or-
der to eliminate assembly plans that includes difficult
tasks or awkward intermediate subassemblies. An-
other approach, the more quantitative, uses an
evaluation function that computes the merit of as-
sembly plans. There are various of these proposals in
the book edited by Homem de Mello & Lee [7], a
monograph of the subject.
     The criterion followed in this work is the minimi-
zation of the total assembly time (makespan) in the
execution of the plan. To meet this objective, the al-
gorithm starts from the And/Or graph (compressed
representation of all feasible assembly plans) and the
information about each assembly task (robot and tool
needed and estimation of assembly time). This is the
approach followed by Del Valle & Camacho [4], that
apply A* algorithms to solve the problem.
     The rest of the paper is organized as follows: Sec-
tion 2 describes the problem of selection and se-
quencing of assembly tasks. The description of the
two representational models proposed for the GA is
found in Section 3 and some of the results obtained
are presented in Section 4. Some final remarks are
made in the concluding section.

2   Assembly Sequence Planning
The process of joining parts together to form a unit is
known as assembly. The joining process results in the
connection of one part with parts already assembled.
A sub-assembly is a group of parts having the prop-
erty of being able to be assembled independently of
other parts of the product. An assembly plan is a set
of assembly tasks with ordering amongst its elements.
Each task consists of joining a set of sub-assemblies
to give rise to an ever-larger sub-assembly. An as-
sembly sequence is an ordered sequence of the as-
sembly tasks satisfying all the ordering constraints.
Each assembly plan corresponds to one or more as-
sembly sequences.
     An And/Or graph is a representation of the set of
all assembly plans possible for a product. The Or
nodes correspond to sub-assemblies, the top node
corresponds to the whole assembly, and the leaf
nodes correspond to the individual parts. Each And
node corresponds to the assembly task joining the
sub-assemblies of its two final nodes producing the

sub-assembly of its initial node. In the And/Or graph
representation of assembly plans, an And/Or path
whose top node is the And/Or graph top node and
whose leaf nodes are the And/Or graph leaf nodes is
associated to an assembly plan, and is referred to as
an assembly tree. An important advantage of this rep-
resentation, used in this work, is that the And/Or
graph shows the independence of assembly tasks that
can be executed in parallel. Figure 1 shows an exam-
ple of this representation. And nodes are represented
as hyperarcs.
     The problem is focused on searching an optimal
assembly sequence, an ordering of an assembly plan
(one of the And/Or trees of the And/Or graph). The
evaluation of solutions implies a previous estimation
for the times and resources (robots, tools, fixtures...)
needed for each assembly task in the And/Or graph.
These times should include an estimation for the
times needed for other operations, such as transporta-
tion of parts and subassemblies. Another factor taken
into account here, is the time necessary for changing
the tools in the robots, which is of the same order as
the execution time of the assembly tasks and there-
fore cannot be disregarded as in Parts Manufacturing.

3   The Genetic Algorithm
The nature of the Assembly Sequence Planning
problem imposes a great difficulty in applying GAs: a
sequence of tasks forms a correct solution if all of
them belong to an assembly plan, i.e. an assembly
tree of the And/Or graph, and they are ordered ac-
cording to the precedence constraints imposed by the
plan. An assembly task is defined by the subassem-
blies used to form a greater subassembly, and by the
resulting assembly. Thus, the presence of a task in a
solution is strongly conditioned by the presence of
tasks related to these subassemblies.
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Fig. 1. And/Or graph of product ABCDE



     The first issue in applying GAs is the chromoso-
mal encoding. Two ways of representing a solution
have been studied in this work: binary and symbolic.
The first one allows the use of conventional crossover
and mutation operators, but genetic information trans-
ferred would be poor. A symbolic encoding would
require specific genetic operators, but it would be
more effective.
     Figure 2 shows how a chromosome is decoded to
produce a schedule. In the case of binary representa-
tion, a sequence builder transforms it into a symbolic
one, that represents a sequence of tasks, compatible
in order with the constraints imposed by the And/Or
graph (ordering and assembly plans). So, not all the
tasks sequences constitute a valid symbolic represen-
tation. The sequence builder is described in the next
subsection.
     A schedule builder transforms the symbolic repre-
sentation into a legal assembly schedule, taking into
account the precedence constraints and the shared re-
sources to be used (machines and tools). This transla-
tion is made easily because of the simplicity of that
representation. The result could be visualized as a
Gantt chart, and it allows the fitness function (the
makespan) to be calculated.
     Note that, depending on the assignation of re-
sources to tasks and their durations, different sym-
bolic chromosomes could be mapped into a unique
schedule. It will happen when tasks do not share the
same resources and could be executed in parallel.

3.1 Binary Representational Model
An individual, represented as a binary chromosome,
corresponds to a valid sequence of tasks. This en-

coding is based in numbering all the possible indi-
viduals. For any non trivial subassembly SA in the
And/Or graph, the number of assembly sequences to
build it is:

SAi1 and SAi2 being the subassemblies used by task ti,
one of the alternative tasks to build SA, and NPi1 and
NPi2 being the number of parts in those subassem-
blies. The combinatorial number takes into account
the different ways to form a sequence from two sub-
sequences maintaining the relative order for the tasks
belonging to the same original subsequence. Note
that NPi1 – 1 is the number of necessary tasks to build
SAi1. For any trivial subassembly (one part), the num-
ber of sequences NS must be defined to be 1.
     The enumeration of all the sequences will allow
encoding all the individuals, so that each sequence
will have a different integer, whose binary code is the
chromosome. The number of sequences of the com-
plete product give the length of the chromosome,
length = log 2 NS (PRODUCT) . The enumeration is
made so that for any Or node, corresponding to a
subassembly SA, all the sequences formed from the
same initial task (departing from the Or node) are
distributed consecutively. If NAND(SA) is the num-
ber of alternative task departing from the Or node
corresponding to SA, and these tasks are arranged,
t1,..., tNAND(SA), then the distribution of integers for the
sequences starting with the task ti  are in the interval
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The information to be saved is the lower bound of the
interval, named base(ti). The sequence builder (see
Fig. 3) is based in all that information to construct a
sequence from a binary coded integer in the interval
[0..NS(PRODUCT)). The algorithms use the opera-
tions first, rest and :: for obtaining the first task of a
sequence, the sequence minus the first task, and the
sequence resultant from a first task and a sequence;
comb(m, n) denotes the combinatorial number, and
div(a, b) returns the quotient and the rest of the inte-
ger division.
     Ideally, if all numbers in the expressions would be
2k for any integer k, the most significant bits would
represent the first task selected, the next bits would
represent the sequence of tasks from the first subas-
sembly, and that of the second subassembly, Finally,

time
OP-10OP-7

OP-9OP-4

OP-11OP-1 OP-5

OP-11OP-9OP-10OP-5OP-7OP-1 OP-4

And/Or
Graph

Times &
Resources
of Tasks

M1

M2

M3

Schedule
Builder

10 1 0 10 0

Sequence
Builder

(binary chromosome)

(symbolic chromosome)

Fig. 2. Decoding of chromosomes.
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the less significant bits would represent the merge of
the sequences. That scheme would repeat recursively
for each sequence, i.e. the second and the third se-
quence of bits (see Fig. 4).
     Actually, the distinction of bits is no clear, and the
genetic information transferred will not be so high. It
would happen that two consecutive integers with the
same more significant bits refer to two very different
assembly sequences, even with different assembly
tasks. Note that less significant bits will lose more
genetic information than most significant ones.

3.1.1   Genetic Operators
Conventional crossover and mutation operators have
been used with the binary representation. In the case
of crossover, only simple crossover has been consid-
ered, because of the poor genetic information that less
significant bits could transfer, as indicated before.

 3.2 Symbolic Representational Model
As indicated before, a symbolic encoding of an indi-
vidual represents a sequence of tasks, compatible in
order with the constraints imposed by the And/Or
graph (ordering and assembly plans), but without
taking into account the resources to be used. That was
the input to the schedule builder (Fig. 2).
     Two families of genetic operators have been used
for searching the whole solution space. The first in-
cludes operators that search locally for new sequences
in a predetermined assembly plan, that of parent chro-
mosomes. These operators, referred to below as Re-
Ordering Tasks operators, are similar to those used
for TSP and JSSP in the literature, but obviously re-
sult to be insufficient to find the optimum. The other
family of operators is intended to search for se-
quences in other assembly plans, and are referred to
as Re-Planning operators. This is basically made by
introducing a new task in a solution, and substituting
certain tasks for others in order to maintain the valid-
ity of the chromosomes.

3.2.1   Re-Ordering Tasks (ROT) Operators
This kind of operator is intended to search for new
sequences in a predetermined assembly plan. Because
of the improbability of two sequences of the same as-
sembly plan coinciding in a population, they are im-
plemented as mutation operators. They operate in a
chromosome by selecting a random task in the se-
quence and attempting to move it to another random
position. Their predecessor or successor tasks might
be also involved in the movement, so that they may
keep in their positions or move with the selected task.
Those possibilities give us four different genetic op-
erators. The transposition of tasks is performed so
that the resultant individual is legal.

3.2.2   Re-Planning Tasks (RP) Operators
This kind of operator is intended to search for se-
quences in other assembly plans. The resultant indi-
viduals will contain new assembly tasks, coming
from another individual present in the population
(crossover operators) or generated randomly (muta-
tion operators). Some other new tasks are required in
order to complete a correct chromosome, so that they
substitute some others.
     The sequences generated by these genetic opera-
tors will maintain the position of tasks they had in the
parents, and the new task will fill the blanks, at some
compatible order with the precedence constraints.
     RP Crossover (RP-C) operators take two individu-
als (parents) and generate two children, trying to
merge genetic information from the two parents. Be-
cause of the nature of Assembly Planning there will
be little chance of constructing a new solution from
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Fig. 4. Binary encoding of individuals.

Algorithm SEQUENCE (x, SA)
if SA non trivial

< task, SA1, SA2 >  ←   (x, SA)
x  ←  x  –  base (task)
< q1, r1 >  ←  div (x, comb (NP1, NP2))
< q2, r2 >  ←  div (q1, NS (SA2))
s1  ←  SEQUENCE (q2, SA1)
s2  ←  SEQUENCE (r2, SA2)
s  ←  task :: MERGE (s1, s2, NP1, NP2, r1)

else s ← [ ]
return  s

Algorithm MERGE (s1, s2, NP1, NP2, x)
if  s1 = [ ]  return  s2;
if  s2 = [ ]  return  s1

else if  x < comb (NP1 + NP2 – 3, NP1 – 2)
s  ←  MERGE (rest(s1), s2, NP1 – 1, NP2, x);
return  first (s1) ::  s

else
x  ←  x  –  comb (NP1 +NP2 – 3, NP1 – 2);
s  ←  MERGE (s1, rest(s2), NP1, NP2 – 1, x);
return  first (s2) ::  s

endif

Algorithm SEQUENCE-BUILDER (x, PRODUCT)
return SEQUENCE (x, PRODUCT)

Fig. 3. The Sequence Builder.



significant parts of any two solutions. The generation
of children is made by selecting one task in one of the
parents, so that their successor tasks in that parent are
also selected. The remaining tasks in the new indi-
vidual will be selected from the other parent, when-
ever possible, or randomly, in order to complete a le-
gal chromosome.
     RP Mutation (RP-M) takes an individual and
modifies it by changing a random subtree of the as-
sembly plan for another, selected randomly and ac-
cording to the constraints imposed by the And/Or
graph.  The positions of the new tasks in the sequence
will be the same that held the substituted tasks.

4   Experiments and Results
As indicated above, numerous factors have an influ-
ence in the complexity of the proposed problem.
Some of the most important factors are the number of
parts of the product to be assembled, the size and
structure of the And/Or graph, and the distribution of
durations and shared resources (robots, tools, fix-
tures...) among all possible assembly tasks that could
compose the solution.
     A hypothetical product has been used in order to
evaluate the genetic operators described in the previ-
ous section. That product is formed by 30 parts, and
the number of connections among them is the mini-
mum. The product includes in its And/Or graph vari-
ous alternative tasks for each Or node, and contains
396 Or nodes and 764 And nodes. There are about
1021 possible individuals. Note that the number of dif-
ferent schedules depends not only on the number of
sequences, but also on the distribution of shared re-
sources (and their number) and durations among all
tasks. Thus, various individuals could be transformed
in a unique schedule.

     The values corresponding to the higher part of the
graphics in figures 5, 6 and 7 represent the average of
50 trials. The lower part represents the best result in
all trials. Moreover, all values represent the average
of 10 different distributions of durations and shared
resources among the tasks. They show the best solu-
tion found until the number of evaluations indicated.
The graphics include also the value of the optimum
solution (OPT) and the performance of a random al-
gorithm (RND).
     Figure 5 shows that there is no substantial differ-
ence in the results obtained by the standard crossover
and mutation operators in the binary representation
model working alone (C and M, C slightly worse than
M) or together (ALL, slightly better than M). In all
cases, they improve the results from the random algo-
rithm amply.
     Figure 6 shows the operation of the specific ge-
netic operators in the symbolic representation model.
The high difficulty for merging genetic information
from two any individuals could explain the relatively
poor results obtained by RP-C in comparison with
those expected from typical crossover operators. In
fact, RP-M obtains slightly better results, maybe be-
cause it preserves more genetic information in the in-
dividuals. Moreover, ROT operators improve more
quickly at first. At last, their performance is condi-
tioned by the assembly plans generated in the initial
population. A last curve is generated in Fig. 6. It
shows the results obtained by a GA with all referred
operators working together (ALL). A quite improve-
ment can be observed. This reflects the combination
of the two effects: ROT operators optimize assembly
plans that have been generated, and RP operators ob-
tain new assembly plans.
The better results from the two models studied, bi-
nary vs symbolic representation are resumed in Fig.

Fig. 5. Results from the binary model. Fig. 6. Results from the symbolic model.
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7. It shows that symbolic representation obtains better
results, as was to be expected.

4   Conclusions
A GA has been proposed to solve an assembly se-
quence problem, a much more difficult problem than
other sequencing problems that have already been
tackled using similar techniques, such as TSP and
JSSP. It involves the selection of assembly operations
that will form the assembly plan, in addition to their
optimal arrangement. Two ways of representing a
solution have been studied in applying GAs: a binary
encoding based in numbering all the possible solu-
tions, and a symbolic one that represents an ordered
sequence of tasks. The results obtained show that the
symbolic representation with the specific genetic op-
erators used is more adequate for finding a better so-
lution than conventional crossover and mutation op-
erators working with the binary encoding.
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Fig. 7. Binary vs Symbolic.
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