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Abstract: -This work presents an application of genetic algorithms to assembly sequence planning. This problerr
is more difficult than other sequencing problems that have already been tackled with success using these tec
niques, such as the classic Travelling Salesperson Problem (TSP) or the Job Shop Scheduling Problem (JSSP)
not only involves the arranging of tasks, as in those problems, but also the selection of them from a set of altel
native operations. And/Or graphs are used as an efficient structure for the representation of all the possible a
sembly plans. Thus the selection process results in a search in the And/Or graph of the product. Two represent
tions of solutions are compared in this work. The first one uses a binary chromosome that corresponds to an o
dering of the enumeration of all possible assembly sequences. Conventional genetic operators are used with tt
representation. In the other one a chromosome represents a sequence of tasks, compatible with the ordering c
straints imposed by the And/Or graph. Two families of genetic operators have been used for searching the whol
solution space. The first includes operators that search for new sequences locally in a predetermined assemt
plan, that of parent chromosomes. These operators are similar to those used in TSP and JSSP in the literatu
The other family of operators introduces new tasks in the solution, replacing others to maintain the validity of
chromosomes, and it is intended to search for sequences in other assembly plans.
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tions, specified by their effects on the parts. The
1 Introduction identification of assembly operations has been tack-

Genetic Algorithms (GAs) have been used to solve d€d Dy analysing the product structure, either using
variety of optimization problems with some success. interactive expertystems 2] [3] or, more recently,
Combinatorial problems are a class of problems parthrough planners working automatically from geo-
ticularly difficult to solve, sequencing problems in- Metric and relational model§][and from CAD mod-
cluded. Many of them have been studied using evo£!S and other non-geometric informatiof [10].
lutionary techniques, such as TSP and JSSP, well The identification of assembly operations usually
known as NP-complete problems. Starkweatbiea). leads to the set of all feasible _asserr_lbly plans. The
[11] and Syswerda []2as well as many others, study number of them grows exponentially with the number
these problems using genetic operators that perforn®f Parts, and depends on other factors, such as how
permutations in the solutions. the single parts are interconnected within the whole
This paper presents an application of GAs to thea_\ssembly, ie. t_he structure of the graph of connec-
problem of selecting and sequencing assembly oplions. In cht, this problem h_as begn proved to be NP-
erations. This is a more difficult planning problem complete in both the two-dimensional [@nd three-
than TSP and JSSP. It involves not only the optimaldimensional [8] [B] cases. _ _
arrangement of tasks, as in those problems, but also The representation of assembly plans is an impor-
the selection of them from a set of alternative opera-f@nt issue within this scope. The use of And/Or

tions, and taking into account the constraints imposedd'@phs for this purpose [$] is becoming one of the
to build a feasible assembly plan. most standard ways of representing all possible as-

Assemblyplannirg is avery importart problenin ~ S€mbly plans. They can be obtained by wingi the
the manufacturing of products. It involves the identi- OPPOSite problem, that of disassembly, but maintain-
fication, selection and sequencing of assembly operalnd the constraints of assembMost automatic plan-



ners work by this strategy. The result is a representa-
tion, which is adequate for a goal-directed approach.
Moreover, Homem de Mello and Sanderson [5] and
Wolter [14] showed that this structure is more effi-
cient in most cases than other enumerative ones.
An optimum assembly plan is now sought, selected
from the set of all feasible assembly plans. Two kinds
of approaches have been used for choosing an opti-
mal one. One, the more qualitative, uses rules in or-
der to eliminate assembly plans that includes difficult
tasks or awkward intermediate subassemblies. An-
other approach, the more quantitative, uses an
evaluation function that computes the merit of as-
sembly plans. There are various of these proposals in
the book edited by Homem de Mello & Lee [7], a Fig. 1. And/Or graph of product ABCDE
monograph of the subject.
The criterion followed in this work is the minimi-
zation of the total assembly timengkespanin the  sub-assembly of its initial node. In the And/Or graph
execution of the plan. To meet this objective, the al-representation of assembly plans, an And/Or path
gorithm starts from the And/Or graph (compressedwhose top node is the And/Or graph top node and
representation of all feasible assembly plans) and thavhose leaf nodes are the And/Or graph leaf nodes is
information about each assembly task (robot and tooRssociated to an assembly plan, and is referred to as
needed and estimation of assembly time). This is thean assembly tree. An important advantage of this rep-
approach followed by Del Valle & Camacho [4], that resentation, used in this work, is that the And/Or
apply A* algorithms to solve the problem. graph shows the independence of assembly tasks that
The rest of the paper is organized as follows: Seccan be executed in parallel. Figure 1 shows an exam-
tion 2 describes the problem of selection and se-ple of this representation. And nodes are represented
quencing of assembly tasks. The description of theas hyperarcs.
two representational models proposed for the GA is  The problem is focused on searching an optimal
found in Section 3 and some of the results obtainedassembly sequence, an ordering of an assembly plan
are presented in Section 4. Some final remarks ar¢one of the And/Or trees of the And/Or graph). The
made in the concluding section. evaluation of solutions implies a previous estimation
for the times and resources (robots, tools, fixtures...)
needed for each assembly task in the And/Or graph.

2 Assembly Sequence Planning These times should include an estimation for the
The process of joining parts together to form a unit jslimes needed for other operations, such as transporta-
known as assembly. The joining process results in thdion of parts and subassemblies. Another factor taken

connection of one part with parts already assembled!Nto account here, is the time necessary for changing

A sub-assemblv is a group of parts having the pro the tools in_ the_robots, which is of the same order as
Y arotp ot B g prop he execution time of the assembly tasks and there-

erty of being able to be assembled independently of _ _ _
other parts of the product. An assembly plan is a sefore cannot be disregarded as in Parts Manufacturing.
of assembly tasks with ordering amongst its elements.
Each task consists of joining a set of sub-assemblies . .
to give rise to an ever-larger sub-assembly. An as-3 The Genetic Algorithm
sembly sequence is an ordered sequence of the aghe nature of the Assembly Sequence Planning
sembly tasks satisfying all the ordering constraints.problem imposes a great difficulty in applying GAs: a
Each assembly plan corresponds to one or more asequence of tasks forms a correct solution if all of
sembly sequences. them belong to an assembly plan, i.e. an assembly
An And/Or graph is a representation of the set oftree of the And/Or graph, and they are ordered ac-
all assembly plans possible for a product. The Orcording to the precedence constraints imposed by the
nodes correspond to sub-assemblies, the top nodplan. An assembly task is defined by the subassem-
corresponds to the whole assembly, and the leablies used to form a greater subassembly, and by the
nodes correspond to the individual parts. Each Andresulting assembly. Thus, the presence of a task in a
node corresponds to the assembly task joining thesolution is strongly conditioned by the presence of
sub-assemblies of its two final nodes producing thetasks related to these subassemblies.




\‘;MOLO\ [1]0]1] coding is based in numbering all the possible indi-
(binary chromosomey viduals. For any non trivial subassemt8A in the
And/Or graph, the number of assembly sequences to
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(symbolic chromosome) g S SA; andSA; being _the subassemblies used by task
ResoUrCes one of the alternative tasks to bugdy, andNP,; and
Schedule) 4==—""__ | ofTasks NP, being the number of parts in those subassem-
Builder . . . .
blies. The combinatorial number takes into account
the different ways to form a sequence from two sub-
' sequences maintaining the relative order for the tasks
Mi[ OPL [><] op5 ]  [oP-i belonging to the same original subsequence. Note
M2 thatNP;; — 1 isthe number of necessary tasks to build
SAs. For any trivial subassembly (one part), the num-
M3 SallRaS - ber of sequence¢Smust be defined to be 1.

The enumeration of all the sequences will allow
encoding all the individuals, so that each sequence
will have a different integer, whose binary code is the

The first issue in applying GAs is the chromoso- chromosome. The number of sequences of the com-
mal encoding. Two ways of representing a solutionplete product give the length of the chromosome,
have been studied in this work: binary and symbolic.|ength: [log , NS(PRODUCT O The enumeration is
The first one allows the use of conventional crossoveryade so that for an@r node, corresponding to a
and mutation operators, but genetic information trans-sypassemblyBA all the sequences formed from the
ferred would be poor. A symbolic encoding would sgme initial task (departing from the Or node) are
require specific genetic operators, but it would be gjstributed consecutively. INRAND(SA) is the num-
more effective. . ber of alternative task departing from the Or node

Figure 2 shows how a chromosome is decoded t@orresponding t5A and these tasks are arranged,
produce a schedule. In the case of binary representg; tnanosay then the distribution of integers for the

tion, asequence builddaransforms it into a symbolic _ sequences starting with the taskre in the interval
one, that represents a sequence of tasks, compatible

in order with the constraints imposed by the And/Or 5 NS. z NS. E

graph (ordering and assembly plans). So, not all the g : : E

tasks sequences constitute a valid symbolic represeny;ip,

tation. The sequence builder is described in the next P +NP,-2
subsection. NS. = NS(SA.)INSS ! !

A schedule builder transforms the symbolic repre- 1 = NS(SA) NS AZ)@ NP, -1 E
sentation into a legal assembly schedule, taking intoThe information to be saved is the lower bound of the
account the precedence constraints and the shared rgyterval, namedbasdt). The sequence builder (see
sources to be used (machines and tools). This translasjg. 3) is based in all that information to construct a
tion is made easily because of the simplicity of thatsequence from a binary coded integer in the interval
representation. The result could be visualized as g0, N§JPRODUCT). The algorithms use the opera-
Gantt chart, and it allows the fitness function (the tionsfirst, restand:: for obtaining the first task of a
makespan) to be calculated. sequence, the sequence minus the first task, and the

Note that, depending on the assignation of re-sequence resultant from a first task and a sequence;
sources to tasks and their durations, different sym-combn, n) denotes the combinatorial number, and

bolic chromosomes could be mapped into a uniquediv(a, b) returns the quotient and the rest of the inte-
schedule. It will happen when tasks do not share theyer division.

Fig. 2. Decoding of chromosomes.

IE

same resources and could be executed in parallel. Ideally, if all numbers in the expressions would be
_ _ 2 for any integerk, the most significant bits would
3.1 Binary Representational Model represent the first task selected, the next bits would

An individual, represented as a binary chromosome represent the sequence of tasks from the first subas-
corresponds to a valid sequence of tasks. This ensembly, and that of the second subassembly, Finally,



3.2  Symbolic Representational Model

As indicated before, a symbolic encoding of an indi-
vidual represents a sequence of tasks, compatible in
order with the constraints imposed by the And/Or
graph (ordering and assembly plans), but without
taking into account the resources to be used. That was

Algorithm SEQUENCHX, SA
if SAnon trivial
<task SA,SA> ~ (x,SA
X « X — base(tasik
<qy,ri> « div (x, comb NP, NP))

<O r2> « div (g, NS(SA)) the input to the schedule builder (Fig. 2).
s1 — SEQUENCHG,, SA) Two families of genetic operators have been used
S — SEQUENCHT, SA) for searching the whole solution space. The first in-
S « task:: MERGE(s;, S, NPy, NPy, 1) cludes operators that search locally for new sequences
elses « [] in a predetermined assembly plan, that of parent chro-
return s mosomes. These operators, referred to beloReas
Ordering Tasksoperators, are similar to those used
Algorithm MERGE(sy, S, NPy, NP5, X) for TSP and JSSP in the literature, but obviously re-
if =[] returns; sult to be insufficient to find the optimum. The other
if s,=[] returns, family of operators is intended to search for se-
else if x < comb(NP; + NP,— 3,NP; — 2 guences in other assembly plans, and are referred to
s « MERGE(rest6,), S, NP, — 1,NP,, X); as Re-Planningoperators. This is basically made by
return first &) 1 s introducing a new task in a solution, and substituting
else certain tasks for others in order to maintain the valid-
X — X — comb P, +NP, — 3,NP; —2); ity of the chromosomes.

S « MERGE(s, rest&), NP, NP, — 1,X);

return first &) :: s 3.2.1 Re-Ordering Tasks (ROT) Operators

This kind of operator is intended to search for new

endif
sequences in a predetermined assembly plan. Because
Algorithm SEQUENCE-BUILDERx, PRODUCT of the improbability of two sequences of the same as-
return SEQUENCH(Xx PRODUC',y sembly plan coinciding in a population, they are im-

plemented as mutation operators. They operate in a

chromosome by selecting a random task in the se-
Fig. 3. The Sequence Builder. guence and attempting to move it to another random
position. Their predecessor or successor tasks might
the less significant bits would represent the merge otbe also involved in the movement, so that they may
the sequences. That scheme would repeat recursivelyeep in their positions or move with the selected task.
for each sequence, i.e. the second and the third seFhose possibilities give us four different genetic op-
guence of bits (see Fig. 4). erators. The transposition of tasks is performed so
Actually, the distinction of bits is no clear, and the that the resultant individual is legal.
genetic information transferred will not be so high. It
would happen that two consecutive integers with the3.2.2 Re-Planning Tasks (RP) Operators
same more significant bits refer to two very different This kind of operator is intended to search for se-
assembly sequences, even with different assemblyjuences in other assembly plans. The resultant indi-
tasks. Note that less significant bits will lose more viduals will contain new assembly tasks, coming

genetic information than most significant ones. from another individual present in the population
(crossover operators) or generated randomly (muta-
3.1.1 Genetic Operators tion operators). Some other new tasks are required in

Conventional crossover and mutation operators haverder to complete a correct chromosome, so that they

been used with the binary representation. In the casgubstitute some others.

of crossover, only simple crossover has been consid- The sequences generated by these genetic opera-

ered, because of the poor genetic information that lesgors will maintain the position of tasks they had in the

significant bits could transfer, as indicated before. parents, and the new task will fill the blanks, at some
compatible order with the precedence constraints.

| | l l | | | | | | | RP Crossover (RP-C) operators ta_ke two ino_lividu-
als (parents) and generate two children, trying to

merge genetic information from the two parents. Be-

cause of the nature of Assembly Planning there will

Fig. 4. Binary encoding of individuals. be little chance of constructing a new solution from

———
selection 1 task SAT SA Ferge




significant parts of any two solutions. The generation  The values corresponding to the higher part of the
of children is made by selecting one task in one of thegraphics in figures 5, 6 and 7 represent the average of
parents, so that their successor tasks in that parent aB® trials. The lower part represents the best result in
also selected. The remaining tasks in the new indi-all trials. Moreover, all values represent the average
vidual will be selected from the other parent, when-of 10 different distributions of durations and shared
ever possible, or randomly, in order to complete a le-resources among the tasks. They show the best solu-
gal chromosome. tion found until the number of evaluations indicated.
RP Mutation (RP-M) takes an individual and The graphics include also the value of the optimum
modifies it by changing a random subtree of the as-solution (OPT) and the performance of a random al-
sembly plan for another, selected randomly and ac-gorithm (RND).
cording to the constraints imposed by the And/Or  Figure 5 shows that there is no substantial differ-
graph. The positions of the new tasks in the sequencence in the results obtained by the standard crossover
will be the same that held the substituted tasks. and mutation operators in the binary representation
model working alone (C and M, C slightly worse than
M) or together (ALL, slightly better than M). In all
4 Experiments and Results cases, they improve the results from the random algo-
As indicated above, numerous factors have an influ-ithm amply. _ o
ence in the complexity of the proposed problem. Figure 6 shows the operation of the specific ge-
Some of the most important factors are the number of/tiC operators in the symbolic representation model.
parts of the product to be assembled, the size and € high difficulty for merging genetic information
structure of the And/Or graph, and the distribution of rom two any individuals could explain the relatively
durations and shared resources (robots, tools, fix[P0Or results obtained by RP-C in comparison with
tures...) among all possible assembly tasks that could0S€ expected from typical crossover operators. In
compose the solution. fact, RP-M obtains slightly better results, maybe be-
A hypothetical product has been used in order to°@Use it preserves more genetic mforrr_\atlon in the in-
evaluate the genetic operators described in the previdividuals. Moreover, ROT operators improve more
ous section. That product is formed by 30 parts, andluickly at first. At last, their performance is condi-
the number of connections among them is the mini-tionéd by the assembly plans generated in the initial
mum. The product includes in its And/Or graph vari- Population. A last curve is generated in Fig. 6. It
ous alternative tasks for ea€r node, and contains Shows the results obtained by a GA with all referred

396 Or nodes and 764nd nodes. There are about OPerators working together (ALL). A quite improve-
10* possible individuals. Note that the number of dif- ment can be observed. This reflects the combination

ferent schedules depends not only on the number off the two effects: ROT operators optimize assembly
sequences, but also on the distribution of shared rePlans that have been generated, and RP operators ob-

sources (and their number) and durations among alf&in new assembly plans. _ _
tasks. Thus, various individuals could be transformed! h€ better results from the two models studied, bi-

in a unique schedule. nary vs symbolic representation are resumed in Fig.
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Fig. 5. Results from the binary model. Fig. 6. Results from the symbolic model.
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