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Abstract: In this work is presented an algorithm that generalizes a fuzzy set
describing existing knowledge in a model or rule, given another fuzzy set representing
new evidence. The algorithm proceeds by extending the focal elements of the initial set
and from the resulting possibility measure reconstructs a new generalized fuzzy set.
Since the algorithm is based on simple set operations it can be applied to information
defined over non numerical spaces.

Key-Words: Fuzzy Set Extension, Knowledge Updating.
CSCC'99 Proceedings: - Pages 7451-7456

1.  Introduction

In the present work we consider the
process of generalization by which
existing knowledge structures are
expanded in the light of new
information. More formally, consider a
space X and a knowledge
representation scheme that defines a
class C based on a property s, i.e.

( ){ }C x x X and s x is true= ∈:

A generalization process

( ){ }C x x X and s x is true= ∈: will

then extend C  to Cg  so that the

domain of property s will be extended
to include new elements, that is

∃ ∈ ∉ ∈y X y C and y Cg:

For the fuzzy set case,, let X be the
space of definition of a fuzzy set F  in
a model or a rule, with support set

( ){ }S x X xF F= ∈ ≠: µ 0 Suppose

further that G  represents a data fuzzy
set having support set

( ){ }S x X xG G= ∈ ≠: µ 0 .

Let by T denote the set of elements in
X that belong to the support set of G ,
but not too the support set of F , and
therefore have zero membership in it,
i.e.

( ) ( ){ }T x X x and xG F= ∈ ≠ =: µ µ0 0

The generalization algorithm will then
extend F  to a new fuzzy set S ,
containing all the elements in S F  plus
elements from T , so that

S S TS F= ∪ ′ and ∅ ≠ ′ ⊆T T

The next section describes the
proposed generalization algorithm.



2. An Algorithm for
Generalizing a Fuzzy Set

Consider a fuzzy set F , representing
existing information, the corresponding
possibility measure { }ii mF ,  (where

nFFF ⊆⊆⊆ ...21  the focal elements

assigned the basic probability masses

nmmm ,...,, 21  respectively), and let G

be a fuzzy set representing new
evidence and mGGG ⊆⊆⊆ ...21  the

focal elements of the corresponding
possibility measure [2].

Suppose that there exists index k  in
{ }n,...,2,1 , such that for some kF  in

nFFF ,...,, 21

G Fk1 ∩ = ∅ and
G Fk1 1∩ ≠ ∅+ .

i.e. the set 1G  containing the elements
with full membership in the concept
described by G  and the set kF  are

disjoint. Then using the possibility
measure with focal elements

F F F G F G F Gk k n m1 2 1 1 2, ,..., , ,...,∪ ∪ ∪+

and the basic probability masses

nmmm ,...,, 21 , we can generate a new

fuzzy set S .
In the case where m n k− + − ≠1 0 , the
last focal element Fn  is aligned with a

focal element jG  different from the last

mG , then the final focal element to

generate the generalized set S
becomes

mjjn GGGF ∪∪∪∪ + ...1

The above algorithm results in a set S
that is an extension of F , towards the
support set of G  , while preserving the

existing information in F . If by FS ,

GS , and SS  we denote the support sets

of F , G  and S  respectively, it is
obvious that

SF SS ⊆

Over these sets a probability
distribution can be defined [1], as
follows: For each FSx ∈  let pF  be the

smallest focal elements such that

{ } ∅≠∩ pFx

Since np FF ⊆⊆ ... , the value of the

probability distribution at the point x
can be defined as

( ) ∑=
n

p p

p

F

m
xp

pF  being the cardinality of pF  and

pm  the mass associated with it.

After the generalization of F , resulting
at the set S , the value of the
distribution at x  will now become

( ) ∑=′
n

r r

r

S

m
xp

where again rS  is the smallest focal

element such that { } ∅≠∩ rSx . This
defines a uniform probability
distribution over each focal element.

The amount ( ) ( )Dp p x p x= − ′0 0

where x0  an element of the core of F ,
gives an indication of the degree of the
generalization performed.

The above algorithm can be
parameterized as follows: Suppose that
the fuzzy set F  is updated given G ,
producing the set S . If now S  is
further updated given again the set G
as new evidence, then this outcome can
be considered as F updated given G
with a parameter equal to 2. This



corresponds to a more intense
generalization of the initial knowledge.
This procedure if repeated converges
when the smallest focal element 1G  is

unified with 1F  to produce the first
focal element that will generate S . The
number of repetitions needed to reach
the convergence state, constitutes an
upper limit for the values that the
parameter can take.
In that way is provided a means for
gradual updating using a parameter
with an intuitive meaning: It can take
integer values which correspond to the
number of repetitions of the new
evidence given by the set G . The
higher the number of repetitions the
greater will be the generalization of the
set F . The procedure reaches a
convergence state, at which no further
generalization is possible.

The number of iterations till the
convergence state can also be
considered as an index of the similarity
between the fuzzy sets F  and G  [3].
The following example illustrates the
algorithm.

Given a fuzzy set

2.0/70,3.0/60,7.0/50,1/40,8.0/30,4.0/20,1.0/10=F

considered a piece of existing
knowledge, and the set

3.0/70,6.0/60,1/50,8.0/40,6.0/30,2.0/20,1.0/10=G

representing new evidence, the
algorithm will proceed by taking the
union of the respective focal elements

{ }
{ } { }[ ]
{ } { }[ ]
{ } { }[ ]
{ } { }[ ]
{ } { }[ ]
{ } { }[ ] 1.0:10,20,70,60,30,40,5010,70,60,20,50,30,40

1.0:20,70,60,30,40,5070,60,20,50,30,40

1.0:70,60,30,40,5060,20,50,30,40

1.0:60,30,40,5020,50,30,40

1.0:40,5050,30,40

1.0:5030,40

2.0:40

∪
∪

∪
∪

∪
∪

This results in the possibility measure

{ }
{ }
{ }
{ }
{ }
{ }
{ } 1.0:10,70,20,60,50,30,40

1.0:10,70,20,60,50,30,40

1.0:70,20,60,50,30,40

1.0:70,20,60,50,30,40

3.0:60,50,30,40

1.0:50,30,40

2.0:50,40

or, after adding probability masses
assigned to identical sets.

{ }
{ }
{ }
{ }
{ } 2.0:10,70,20,60,50,30,40

2.0:70,20,60,50,30,40

3.0:60,50,30,40

1.0:50,30,40

2.0:50,40

This can generate the generalized fuzzy
set

3.0/70,4.0/60,8.0/50,1/40,8.0/30,4.0/20,1.0/101=M

If now we apply the algorithm with a
parameter 2 to F , the outcome will be
the set:

3.0/70,4.0/60,1/50,1/40,8.0/30,4.0/20,1.0/102=M

Diagrammatic representations of the
fuzzy sets are given in Figures 1, 2 and
3.
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3. Discussion of the
Characteristics of the
Generalization Algorithm

If a fuzzy set is regarded as a
representation model for uncertain
knowledge, then some of its
characteristics play an important role in
any attempt for its semantic
interpretation. As such we can
coonsider:

• The support set comprising the
elements with non-zero membership
to the concept described by the
fuzzy set.

• The core, i.e. the elements with full
membership in the fuzzy set.

• The spread of the set, giving an
indication of its fuzziness.

It seems therefore necessary that these
characteristics be taken into account
when the set is extended. Moreover,
the corresponding features of the new
evidence could influence the behavior
of the extension in which case the
process becomes context sensitive.
Algorithms operating on a fuzzy set in
a point-wise way, although
undoubtedly affected by its features,
they do not provide for a holistic and
intuitive treatment of the fuzzy set.
There are even cases where a counter
intuitive behavior is possible, such as
allowing a single membership value (for
instance a zero value) to influence the
overall result as in some proposals for
aggregation operators[4].

By extending the constituent focal
elements of the possibility measure
underlying the fuzzy set as proposed in
the present work, simple operations
from classical set theory can be utilized
to operate on a fuzzy set. Additionally
the number of repetitions of the same
evidence till the process converges,
depends on the features of the two
fuzzy sets, and therefore the context
becomes a determining factor.

The proposed algorithm is not
symmetric. If by ( )ABG /  we denote
the process of generalizing the existing
knowledge B given new evidence A ,
then

( ) ( )BAGABG // ≠
except in the case where BA = .



This is often the case in human
knowledge updating, especially in
situations of important safety
considerations, where the existing
knowledge may be the product of
careful collection of valuable expertise
or the coding of domain experts
judgment. The proposed algorithm
assigns to the data already in the
knowledge base a higher degree of
importance over the newly presented
evidence, implementing in a sense a
monotonic updating scheme. The use
of the repetition of the same piece of
knowledge as a means for determining
the degree of generalization, and as
such as a parameter, has an intuitive
interpretation: The extension of a fuzzy
set with a parameter higher than one,
indicates the presence of persistent
information, which justifies the greater
change in the initial knowledge towards
this piece of evidence.

The upper limit of this parameter – the
number of repetitions till convergence
state – is also an index of the
conceptual distance between the
entities represented by the fuzzy sets.
According to this interpretation the
convergence state produces a new
fuzzy set that includes the previous
two.

Finally, the application of the algorithm
can be extended to fuzzy sets defined
over non-numerical domains, since it is
based on simple set theoretic
operations.
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