
A Software Development Tool for Evolutionary Prototyping
 of Information Systems1

P. Paderewski, J. Parets-Llorca, A. Maya, M.J. Rodríguez, G. Sánchez, J. Torres, M.V. Hurtado
GEDES Research Group2

Departamento de Lenguajes y Sistemas Informáticos
Granada University

ETS Ingeniería Informática.
Avda. Andalucía, 38. 18071 –Granada

SPAIN

Abstract: Software Systems are executable models of complex Information Systems, which emerge from an intelligent
process of interaction between the modeler and the system which he recognizes as being modeled. We are developing an
approach to modeling Information Systems using evolutionary Software Systems because both should be able to evolve
in unison. We have defined the method MEDES and are developing the tool HEDES, a prototype in which a Modeling
System creates the structure of a Software System and makes changes to it (evolution) while the Software System is
working. The principal features and the architecture of MEDES and HEDES will be presented in this paper.

Key-Words: Software System, Information System, Evolution, Prototyping, Software Development tool.
CSCC'99 Proceedings, pp. 7521-7526

1 This research is supported by a project financed by Spanish CICYT (TIC97-0593-C05-04) which is a subproject of the
MENHIR project (TIC97-0593-C05).
2 The author is the research header of GEDES (Group on Specification, Development and Evolution of Software). This paper
presents the work which is being developed by the following researchers: Ana Anaya, Maria Visitación Hurtado, Patricia
Paderewski, José Parets, Maria José Rodríguez, Germán Sánchez, Jesús Torres.

1 Introduction
Software Systems are an important part of Information
Systems, which try to reflect the activity and decision in
organizations using processable data. However, most of
these Software Systems are designed in such way, that
adoptions to the new informational needs of the
organizations can not be made.

As for as we are concerned, Software Systems are
executable models of complex information systems which
emerge from an intelligent process of interaction between
the modeler and the system which he recognizes as being
modeled.

This point of view requires that Software Systems
and Information Systems should be able to evolve in
unison and that this evolving process could be conceived

and represented from the Development System point of
view. Our approach is not to design Software Systems
which can evolve by themselves recognizing the
informational needs of the organization. We still consider
that intelligence rests with the modeler and with the
modeling process itself. Therefore our interest is centered
around the research of this intelligent behavior, i.e. the
evolution of the representations which the modeler makes
for himself of the Information System that he is modeling.

This approach is gathered in our software
development method (MEDES). A method based on the
Theory of the General System [Le Moigne, 1977-90] and
very different from the commercial ones, because its aim is
to research the epistemological foundations of the
evolution process by trying to incorporate models of

evolution from different disciplines.
This conception of the modeling process of

Information Systems and its evolution through the
modeling of Software Systems is being implemented in a
software development tool which we call HEDES. The
aim of this paper is to present the main features of the tool
and the challenges that it will have to solve during its
development.

The paper is organized as follows. In the first
paragraph we will briefly summarize our approach in
modeling Information Systems using evolutionary
Software Systems. Secondly, we will present the main
features of the method and tool, which we are developing.
Subsequently, the architecture of the tool will be explained.
Finally, we will show the main trends of research in the
project.

2 MEDES: Evolutionary Modeling of
Information Systems
An explanation of the objectives, hypothesis, foundations
and characteristics of MEDES can be found in Parets-
Llorca [1995]. A brief summary of the approach is
presented in Parets et al. [1994] and Parets &Torres
[1996B].

2.1 Modeling system and modeled system
Systems, and therefore Software Systems, are artificial
constructions made by a modeling system from an
observation-conception of real phenomena.

The Information System (IS) is a complex
structure which reflects the activities of the organization in
which it is immersed and carries out the treatment of
information with in the organization. The IS will serve as a
support for taking decisions in the organization (some
authors talk about Strategic Information Systems).

Software Systems (SS) are a model of a part of
the Information System of which they form a subpart.
Their incorporation into the IS will always produce
changes which will oblige changes in the SS, the IS and,
probably, the organization.

Our approach implies an evolutionary relationship
between the Modeling System (MS) and the modeled
system (the IS): the SS should evolve through the activity
of the MS which adapts it to the new needs. For the
moment we prefer not to say that SSs are intelligent
because intelligence, apart from a representation of
themselves, implies the capability of changing this
representation in accordance with new finalities and
changes in the environment. We consider that intelligence,
the capacity of self-finalization, resides in the MS.

2.2 Function, structure and evolution
Traditionally the modeling process of Information and
Software Systems implies the capture of two aspects of its
interaction: function and structure. In fact, the majority of
Information and Software Systems development methods
and tools only emphasize these two points of view.
Obviously both aspects are important, but they lose
dynamical capacities without the possibilities of structural
and functional changes through time.

In MEDES we represent Software Systems using
the concepts of the Theory of the General System:
processors, environments, systems, actions, events and
decision. We begin with a basic structure of a software
system integrated by these elements and by a historical
representation of the functioning and of the structure of the
system.

The function can be conceived using the concepts
of action, event and state, assuming the temporal
discontinuity with which the Modeling System recognizes
the actions. An action is the possibility of carrying out a
transformation. The consciousness of the system action,
which the MS has, resides in the possibility of identifying a
change in its state (production of an event). We conceive
an event as information which represents the actions that
have been carried out in the system.

Structurally a Software System will be
constituted by autonomous processors capable of carrying
out actions, an interface which allows the system to behave
as a processor, and a memory of events (the history of the
system). To allow flexibility in the relationships between
processors and systems, MEDES includes hierarchical
integration and the possibility of direct interaction between
them, considering that each processor can be substituted
by a more complex system. Because the structure of a
system is a form stable enough to be recognized by the
modeler, [Le Moigne, 1977-90] we can define the
structure of a Software System as ‘the patterns of behavior
and decision in a moment of time, patterns stable enough
to be modeled and to work during any given period of
time’.

In this context, the notion of System History
represents the trajectory of the functional and structural
changes of the Software System through time adopting the
view of the General System Theory.

 The distinction between structure and function
and their event representation allows us to introduce the
concepts of Functional History of the System (SFH) and
Structural History of the System (SSH). SFH stores the
result of the actions that the processor/system carries out
through time. SSH memorizes the information related to
the changes in the structure. Both memories store
information as events.

The capacity of evolution3 is achieved by
introducing the notions of evolution interface and Genetic
Subsystem (GS) The first allows a Modeling System to
take some actions in order to modify the structure of
processors and the capacities of action and decision of the
System which it is modeling. The second allows us to
model evolution by processing the actions of the evolution
interface. To model the work of the Modeling System we
introduce the concept of METASYSTEM: a software
system, which allows us to interact with the developed
systems. In order to allow for evolution, the MetaSystem
will be responsible for the actions which imply changes of
structure in a system, storing the resulting events in the
SSH. The interactions between both systems, the Software
System and its MetaSystem, can be seen in Fig.1.

SFH

SSH

Modeling System

GS - Genetic Subsystem

Software Metasystem

GS

Software System

Software System Evolution

Fig.1

3 MEDES AND HEDES: features
In the previous paragraph the most important concepts
used in MEDES have been explained. These concepts need
a further refinement in order to have operational
representations which, finally, could be implemented. In
this paragraph we develop the previous notions using more
concrete representations. These representations have been
obtained in a process of interaction between the
methodological level (MEDES) and the practical level
(HEDES). This explains that the concepts are valid at both
levels.

3
To understand the notion of evolution Le Moigne

introduces the concepts of CINEMATICS (functional
changes in a system) and DYNAMICS (structural changes
which allows new forms of functionality). We use the term
dynamics in this sense.

3.1 System and processors
In MEDES and HEDES, the distinction between the
notion of System and processor is only a question of level
of abstraction. A System has an external environment and
a processor works inside a System. Fig.2 shows the basic
scheme of functioning of one of these processors. Because
a System could be included inside another System, it can
be used as processor.

SFH

System SFH

Processor

DE_ENDRESPONSE

DE_PRE STIMULUS

 response

 event

 stimulus

 event

Fig.2
A pattern of activation of the actions of the

processors based on a biological Stimulus-Elaboration-
Response model is used. An important part of this
functionality is the decision which we represent as PRE,
DURING and POST conditions on the realization of the
actions. This form of decision allows the processors to
activate themselves through stimuli memorized in the SFH,
being monitored during the execution of their actions.

3.2 Histories and time representation
The events stored in the SFH are related to the System
functioning and represent actions carried out in the system
(symbolization of the realization of an action, information
about an external stimulus, which affects an action, etc.).
On the other hand, the events stored in the SSH are related
to actions carried out over the system structure: creation or
removal of a processor, addition of preconditions to an
action, and changes of the preconditions, etc.

Given that events occur through time, each event
should be allocated in a temporal structure. One of the
most interesting results of our research is that functional
and structural events can be represented and managed in a
homogeneous way using the same temporal structure and
the same temporal inference machine. In fact we introduce
a representation of time and we use predicate temporal
logic [Gabbay&Reynolds, 1995] to model queries over the
history of events [Anaya et al.1996, 1997]

3.3 Composability through collaboration
So far we have considered a HIERARCHICAL structure
of a system, i.e. a processor is a part of a Software System
and only has meaning inside a system. Yet we can
conceive a COLLABORATIVE structure where a
processor has a ‘working for’ relationship with the system.
Because this conception of software systems allows
autonomy and the possibility of a processor/systems
working for more than one system (simultaneously), we
introduce direct communication between the processor
interfaces.

The use of collaborative actions is a powerful
mechanism in modeling evolution because a software
system can be derived from one processor using
reproduction and collaboration. In addition it allows us to
model autonomy and complex relationships between the
Software System and its processors, its environment and
its metasystem

4 HEDES: architectural design
The development of HEDES stems from the biological
analogy: reproduction-differentiation-maturation in a
cyclic and recursive way. We are developing the tool under
an object-oriented language (Smalltalk) using and
interpreter of the SDL (System Description Language, in
Parets&Torres [1996A]) and a minimal software
structure (the CORE). Fig.3 offers the approach. HEDES
is the first and primitive MetaSystem with an interpreter of
the SDL and an elemental system (ES) with the core
capabilities. Using the SDL this elemental system can be
evolved in order to obtain other Systems and
MetaSystems.

From the point of view of the functionality of the
tool we distinguish three types of features which are being
implemented in different steps:
1) HEDES CORE

Includes the implementation of the memories and the
functionality of the processors using events and conditions
expressed in First Order Temporal Logic.

The Genetic subsystem which allows the basic
changes in a system is also implemented.

A refinement of this core involves concurrency and
collaboration which are non being implemented.
2) SYSTEM REESTRUCTURATION

Implies the possibility of advanced changes in the
structure of a defined system and includes different
possibilities (reclassification of processors, change
propagation, event structure change, self-evolution and
learning) that we are studying at a theoretical level (see
next paragraph).

3) SYSTEM OPTIMIZATION
The growth of the histories of systems and processors

implies a loss of functional efficiency. This historical
representation is useful in modeling the evolution process
but more efficient representations should be used. In order
to manage this problem, we research the possibilities of
transforming history in attributes by means of an
operational representation of the activity based in CPN
(Colored Petri Nets), Relational Data Bases and the
OASIS Model [OASIS 3.0, 1998]. We also research the
problem of forgetting part of the history. Although our
results have not been implemented yet the theoretical
results are promising.

SDL interpreter

Modeling System

ES – Elemental System

ES

SFH

Primitive HEDES Structure

HEDES

Action Interface

Fig.3

5 Trends of research
Although the notion of evolution is 150 years old [Darwin,
1859], its application to different scientific disciplines has
only begun to be carried out this century. At the end of the
XIX century Engels applied the notion to the study and
explanation of human societies [Engels, 1884]. In the first
part of the XX century the concepts were developed in
biology and were applied to

Epistemologic Theory of the G.S. Biological models
Of evolution

Learning
models

Classification

models

Methodological
(MEDES)

Functionality Structure Concurrence Self-evolution and

Reproduction
Evolutionary
Classification

Practical
(HEDES)

SFH
Decision

SEH
Meta-

decision

Running
monitor

Genetic subsystem

(Reasoning system)

Dynamic
classes

Instrumental:
Representation

Temporal logic
OASIS Model

Coloured Petri Nets

Temporal logic
Artificial intelligence

Delegation

Instrumental:
Implement.

Object-orientation (Smalltalk/VisualWorks)

OASIS

the understanding of the origin of life [Oparin, 1936].
Physics, always apart from the irreversibility which
implies the biological evolution, assumed evolution when
the new cosmological theories and the thermodynamics of
disequilibrium of Prigogin were formulated [Prigogine,
1988]. The selfsame development of science, which is
conceived as an accumulative process, was ‘adjusted’ to
the evolution paradigm by Khun [1962]. In the
psychological field the work of Piaget introduces the
concepts of accommodation and assimilation which are
very fruitful in modeling the conception of software
systems [Torres&Parets, 1996].

 In Computer Science the notion of software evolution is
recent, has very different meanings and the models applied
are quite ‘endogamic’. A brief review of the main trends in
this field can be found in [Parets&Torres, 1996B]. We
believe that practical research on software evolution needs
a continuous interaction with epistemological and
theoretical research without loosing applicability. This
implies that we need to adopt a transdiciplinary view of
evolution and adapt models of other disciplines.

The practical approach presented in the previous
paragraph is included in a more global vision of the
problem of evolution, which implies different levels of
research continuously interacting between them.

The table below shows these levels:
epistemological, methodological, practical and
instrumental and the topics/disciplines which we are
interested in: General System Theory, Biological models
and Classification models.

1) EPISTEMOLOGICAL LEVEL:
The study of System Theory was conducted in

Parets-Llorca [1995] and allowed us to adopt the
previous conception of systems and developments.
Some topics need further research:

- Self-organization and self-evolution of
systems.

- Alternative models of evolution in biology
and cognitive psychology.

- A theoretical model of dynamic
classification.

2) METHODOLOGICAL LEVEL
The conclusions obtained in 1) should be

included in MEDES.

3) PRACTICAL AND INSTRUMENTAL LEVEL
We need representations which could be treated

using formal tools (temporal logic, Petri Nets, OASIS
Model ...) and could be implemented in Smalltalk. As
stated in the previous paragraph, we are using
representations of processors, history and functionality,
which can be implemented. We will need to find these
representations for the new concepts developed in the
future at the epistemological and methodological levels.

6 Conclusions
We have presented in this paper a brief summary of our
research work in modeling the evolution of Information
Systems through Evolutionary Software Systems. Our

approach derives from the Theory of the General
System and tries to model the activity of the
Development System in constructing a Software
System.

The main provisional conclusions of our work
are:

1) Models of evolution from other disciplines are
needed

2) The changes in a software system and the
activity which produce these changes can be
represented in an isomorphic way using some
conceptual and formal tools.

3) The conception and modeling of the software
development process should be improved
including the metaprocess [Conradi et al., 1993].

7 Bibliography

[1] A. Anaya, M.J. Rodríguez, P. Paderewski, J.
Parets: Time in the evolution and functionality of
information systems. Jornadas de trabajo en
Ingeniería del Software. Sevilla 14/15 Noviembre,
1996.
[2]A. Anaya, M.J. Rodríguez, J. Parets: Representation
and mangement of memory and decision in evolving
software systems. In: F.Pichler, R. Moreno Díaz (eds.):
Computer Aided Systems Theory- EUROCAST'97
Lecture notes in Computer Science No.1333 Berlin:
Springer-Verlag 1997.
[3] R. Conradi; C. Fernström; A. Fuggetta (1993). A
Conceptual Framework for Evolving Software
Processes. ACM SIGSOFT SEN. Vol. 18 No.4 pp.26-
34
[4] C.R. Darwin: Of the origin of species by means of
natural selection: Or the Preservation of Favoured
Races in the Struggle for Life. London, 1859.
[5] D.M. Gabbay M. Reynolds:Towards a
computational treatment of time. In: D.M.Gabbay,
C.J.Hogger: Handbook of logic in Artificial
Intelligence and Logic Programming. Vol. 4:
Epistemic and Temporal Reasoning. Oxford Science
Publications. Oxford: Clarendon press 1995, pp.351-
431
[6] T. Khun: The Structure of Scientific Revolutions.
University Chicago Press, 1962 (Spanish translation:
La estructura de las revoluciones científicas. FCE,
México, 1978)
[7] J. L. Le Moigne: La Théorie du systéme général.
Thórie de la modelisation. Paris: Presses
Universitaires de France 1977-1983-1990.
[8] P. Letelier, I. Ramos, P. Sánchez, O. Pastor. OASIS

versión 3.0: Un enfoque formal para el modelado
conceptual orientado al objeto. Servicio de
publicaciones Universidad Politécnica de Valencia.
1998.
[9] J. Parets, A. Anaya, M. J. Rodríguez, P.Parewski:
A Representation of Software Systems Evolution Based
on the Theory of the General System. In: F.Pichler, R.
Moreno Díaz (eds.): Computer Aided Systems Theory-
EUROCAST'93. Lecture notes in Computer Science
No. 763. Berlin: Springer-Verlag 1994, pp.96-109.
[10] J. Parets-LLorca: Reflexiones sobre el proceso de
concepción de sistemas complejos: MEDES: un
método de especificación, desarrollo y evolución de
sistemas software. Doctoral Thesis. Universidad de
Granada 1995.
[11] J. Parets, J.C. Torres: A Language for Describing
Complex-Evolutive Software System. In: F.Pichler, R.
Moreno Díaz (eds.): Computer Aided Systems Theory-
EUROCAST'95. Lecture notes in Computer Science
No. 1030. Berlin: Springer-Verlag 1996A, pp.181-199.
[12] J. Parets, J.C. Torres: Software Maintenance
versus Software Evolution: An Approach to Software
System Evolution. IEEE Conference and Workshop an
Computer Based Systems. Friedrichafen. March
1996B, pp.134-141.
[13] J. Parets-LLorca: The evolution of Software
System: a framework for modelling organizational
evolution. Computational Engineering in Systems
Applications. Lille, July, 1996.
[14] I. Prigogine: La nascita del tempo. Edizioni
Theoria. Roma, 1988.
[15] J.J. Torres; J. Parets: Biological Evolutive Models
Applied to the Evolution of Software Systems. Third
European Congress on Systems Science. Rome.
October. 1996, pp. 705-710.

