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Abstract: -In this paper it is presented a robust adaptive control scheme for mechanical manipulators. The

design basically consists, on the one hand, of an adaptive controller which implements a feedback linearization

control law that compensate the modeled dynamics, and, on the other hand, of an adaptive sliding-mode control

law that overcome the unmodelled dynamics and noise. Also it is proved that the resulting closed-loop system

is stable and that the trajectory-tracking control objective is asymptotically achieved. Finally, some simulations

results are also provided to evaluate the design.
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1 Introduction

Since robotic manipulators are inherently nonlinear

systems with time-varying inertia and gravitational

loads, adaptive controllers have been proposed as a

feasible technique to achieve consistent performance

in the presence of con�guration and payload varia-

tions (Ortega and Spong 1989). However, as it is well

known, the adaptive control systems may have robust-

ness problems under non-ideal conditions such as un-

modelled dynamics and noise.

On the other hand, variable structure control has

been successfully used to design controllers to handle

systems with unmodelled uncertainties and bounded

external disturbances. This robust properties have

done the sliding control particularly successful in

robotic applications (Slotine and Sastry 1983, Spong

1992). However, its main drawback is the existence of

high-frequency chattering owing to system inertia and

delay of switchings, which may result in the excita-

tion of unmodelled high frequency dynamics (Slotine

and Li 1991) which is undesirable for most practical

applications.

The idea of combining adaptive and robust control

methods as a way to improve the performance and

robustness to modeling imprecissions of control sys-

tems has been explored by some researchers (Slotine

and Coetsee 1986). It should also be noted that this

adaptive approach allows to introduce a priori mod-

eling information in the control design because of the

direct relation between the physical and the controller

parameters. This constitutes an advantage over some

recently developed neural designs (Liao 1998) for sim-

ilar problems, since in this case there is not a direct

relation between the plant and the neural controller

parameters.

This paper presents an adaptive control scheme

which consist of a feedback linearization law for the

modeled dynamics of the robot, together with a robust

sliding control with an adaptive sliding gain to avoid

the necessity of the prior knowledge of the unmodelled

dynamics and noise bounds. From this point of view,

the adaptive control is used to estimate the parame-

ters for the modeled dynamics of the robot, and the

sliding control is used to overcome the uncertainties.

As a whole, the scheme is proved to be stable, and it

is shown that the outputs of the closed-loop system

asymptotically track the desired reference trajectories.

2 Problem statement

The vector equations of motion of a n-link robot ma-

nipulator can be written as (Spong and Vidyasagar

1989):

T =M(�)��+C(�; _�) _�+G(�)+F (�; _�)+D(t) (1)

where T is a n � 1 vector of joint torques; �; _� and
�� are the n� 1 vectors of joints positions, speed and

accelerations, respectively;M(�) is the n�nmass ma-

trix of the manipulator; C(�; _�) is an n� n vector of

centrifugal and Coriolis terms which is chosen so that

the matrix _M�2C is skew-symmetric; G(�) is an n�1

vector of gravitational terms, F (�; _�) is an n� 1 vec-

tor of friction terms, and D(t) is an n�1 vector whose

elements represent the dynamic uncertainties caused

by unmodelled dynamics and noise.
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The equation of motion (1) form a set of coupled

nonlinear ordinary di�erential equations which are quite

complex, even for simple manipulators. One of the

most widely used techniques to design a trajectory-

following control system for such a device is the so-

called computed-torque control using feedback lineariza-

tion (Craig 1986). This control technique performs

well if the model of the system is accurately known.

On the other hand, if there are parametric uncer-

tainties in the model of the system, or if the parameters

of the model are time-varying, one may use an adap-

tive algorithm (Craig 1988, Slotine and Li 1992) to es-

timate these parameters, but this control technique is

not robust under unmodelled dynamics or noise which

are present in many practical situations. In these cir-

cumstances, it looks apparent that some sort of change

in the control law should be done, so that the system

becomes robust under these uncertainties.

3 Sliding adaptive control

To compensate for the above described non-idealities

in the closed loop system, in this section it is proposed

a sliding adaptive control scheme. In the sliding con-

trol theory, the switching gain must be constructed so

as to attain the sliding condition (Slotine and Li 1992).

In order to meet this condition a suitable choice of the

sliding gain vector should be made to compensate for

the non-idealities. For selecting the sliding gain vector,

an upper bound of the unmodelled dynamics and noise

magnitudes should be known, but in practical applica-

tions there are situations in which these bounds are

unknown. A solution could be to choose a su�ciently

high value for the sliding gain, but on the other hand,

a too high value for this could cause undesirable vi-

brations and instabilities in the robot's motion. One

possible way to overcome this di�culty is to estimate

the gain and to update it by some adaptation law, so

that the sliding condition is achieved.

To carry out this idea the following assumption is stated:

(A 1) There exits an unknown �nite non-negative gain

vector � = [�1; : : : ; �n]
T such that

� � Dmax + � � > 0 (2)

where Dmax � jD(t)j 8 t

Note that this condition implies that the unmodelled

dynamics and noise magnitudes are bounded.

Given a proper de�nition of the unknown parame-

ter vector, it is possible to obtain the following linear

dependence (Slotine and Li 1992)

M(�)��+C(�; _�) _�+G(�)+F (�; _�) = Y (�; _�; ��)A

where A is an r-dimensional vector containing the sys-

tem dynamical parameters and Y (�; _�; ��) is an n� q

matrix often refered to as regresor matrix, whose ele-

ments are nonlinear known functions.

Let us now de�ne the control input to be of the form:

T = M̂(�)��r + Ĉ(�; _�) _�r + Ĝ(�) +

+F̂ (�; _�)� P̂ sgn(S)

= Y (�; _�; _�r; ��r)Â� P̂ sgn(S) (3)

where (̂�), denotes the estimates of (�); _�r = _�d �

�E; E = ���d; � > 0; and �d is the desired trajectory

vector; P̂ is a n� n diagonal matrix, P̂ = diag(�̂)); S

is a surface vector de�ned by S = _E + �E = _�� _�r,

and the function sgn(S) is the usual sign function.

The dynamical parameters of the system, and the

elements of the switching gain vector are updated ac-

cording to the following laws respectively:

_̂
A = ��Y T (�; _�; _�r; ��r)S � > 0 (4)

_̂� = jSj �̂(0) = [0; : : : ; 0]T (5)

The control diagram of this sliding adaptive control is

illustrated in Fig.(1)

-�d; _�d;��d

-

-
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@
@@I

Y Â� P̂ sgn(S) -T ROBOT -�; _�

_̂
A = ��Y TS

_̂� = jSj

Figure 1: Proposed robust adaptive control scheme

Under these conditions the following stability result

can be formulated:

Theorem 1 Consider the robotic maniputator given

by (1). Then, if assumption (A1) is veri�ed, the con-

trol law (3) with the adaptation laws (4) and (5) lead

the closed loop outputs � and their derivatives _� to

track asymptotically the desired trajectories �d and

their derivatives _�d. Therefore, the tracking error E =

� � �d and its derivative tends to zero as t tends to

in�nity.

Proof: De�ne the Lyapunov function candidate:

V =
1

2

h
STMS + ~AT��1 ~A+ ~�T ~�

i
(6)

Its time-derivative is calculated as:
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_V = STM _S +
1

2
ST _MS + ~AT��1

_~A+ ~�T _~�

= STM ��� STM ��r +
1

2
ST _MS +

+ ~AT��1
_̂
A+ ~�T _̂�

= ST
h
T � C(S + _�r)�G� F �D

i
�

STM ��r +
1

2
ST _MS + ~AT��1

_̂
A+ ~�T _̂�

= ST
h
T �M ��r � C _�r �G� F �D

i
+

+
1

2
ST

h
_M � 2C

i
S + ~AT��1

_̂
A+ ~�T _̂�

= ST [T � Y A�D] + ~AT��1
_̂
A+ ~�T _̂�

= ST
h
Y Â� P̂ sgn(S)� Y A�D

i
+

+ ~AT��1
_̂
A+ ~�T _̂�

= STY ~A� �̂T jSj �DTS � ~ATY TS +

(�̂T � �T )jSj

= �DTS �DT
maxjSj � �T jSj

� ��T jSj (7)

Since V is clearly a positive de�nite and decrescent

function, equation (7) implies that the states S, ~A and

~� are bounded, and as the states A and � are also

bounded consequently �, _�, Â and �̂ are bounded.

The closed loop dynamics can be written in the form:

M ��+ C _� +G+ F +D = Y Â� P̂ sgn(S)

M _S + CS +D � Y A = Y ~A� P̂ sgn(S)� Y A

M _S + CS +D = Y ~A� P̂ sgn(S) (8)

Since Y , ~A, D, C, �̂ and S are bounded and as

M�1 exists because of the uniform positive de�nite-

ness of M , from equation (8) it is concluded that _S is

bounded. In eqn.(7) it can be seen that the bound-

edness of _S implies that �V is also bounded and then
_V is a uniformly continuous function. So Barbalat's

lemma let us conclude that _V ! 0 as t ! 1 which

from eqn.(7) implies that S ! 0 as t ! 1, and then

under de�nition of S it is concluded that E; _E ! 0 as

t!1.

4 Modi�cations of the control law

A frequently encountered problem in sliding control is

that the control signal given by eqn.(3) is not smooth

since the sliding control law is discontinuous across

the sliding surfaces, which causes the chattering phe-

nomenon. Chattering is undesirable in practice, since

it involves high control activity and further may ex-

cite high-frequency dynamics. This situation can be

avoided by smoothing out the control chattering within

a thin boundary layer of thickness � > 0. On the other

hand, it is well known that when in an adaptive con-

trol system the signals are not persistently exciting the

parameter drift phenomenon may appear (Slotine and

Li 1992).

In this way, some modi�cations should be done in

the control law (3) and in the adaptations laws (4),(5)

to overcome the above mentioned problems:

To smooth the control law (3), the sign function

included in it is replaced by a saturation function, so

that it becomes:

T = Y Â� P̂ sat

�
S

�

�
(9)

where � = [�1; : : : ; �n]
T �i > 0 i = 1; : : : ; n are

the thicknesses of the boundary layers for each sliding

surface associated with each joint, the saturation vec-

tor is de�ned by sat
�
S
�

�
=
h
sat

�
s1
�1

�
; : : : ; sat

�
sn
�n

�iT
and the saturation function is de�ned in the usual way.

It should be noted that the possible choice of di�er-

ent values �i and �i for each surface si lead to greater


exibility in dealing with the di�erent uncertainty lev-

els appearing for each joint of the manipulator. More-

over, this allows to design the controller using di�erent

precision criteria for each joint.

To avoid the parameter drift phenomenon, the param-

eter adaptation laws are modi�ed to:

_̂
A = ��Y T (�; _�; _�r; ��r)So (10)

_̂� = jSoj �̂(0) = [0; : : : ; 0]T (11)

where So is de�ned by So = S �B sat
�
S
�

�
with

B = diag(�).

It is interesting to point out that soi is a measure of

the distance of the ith component of the surface vector

S to the interval [��i; �i], and that _soi = _si when si
is outside the interval, while _soi = 0 otherwise.

Before presenting the main stability result,the fol-

lowing assumption A 2 which take the place of the pre-

vious assumption A 1 is stated:

(A 2) There exits an unknown �nite non-negative gain

vector � = [�1; : : : ; �n]
T such that

� � Dmax + C�max + � � > 0 (12)

where Dmax � jD(t)j C�max � jC(t) � �j 8 t

Under these conditions, the following theorem holds:

Theorem 2 Consider the robotic maniputator given

by (1). Then, if assumption (A 2) is veri�ed, the con-

trol law (9) with the adaptation laws (10) and (11)

lead the closed loop outputs � and their derivatives _�
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to track asymptotically the desired trajectories �d and

their derivatives _�d. Moreover, the the tracking error

vector E = ���d can be made as small as desired by

choosing adequately small boundary layers �i.

Proof De�ne the following Lyapunov function can-

didate:

V =
1

2

h
STo MSo + ~AT��1 ~A+ ~�T ~�

i
(13)

whose time-derivative is:

_V = STo M
_So +

1

2
STo

_MSo + ~AT��1
_~A+ ~�T _~�

= STo M
_S +

1

2
STo

_MSo + ~AT��1
_~A+ ~�T _~�

= STo M( ��� ��r) +
1

2
STo

_MSo + ~AT��1
_̂
A+ ~�T _̂�

= STo

�
T � Y A�D � CB sat

�
S

�

��
+

= + ~AT��1
_̂
A+ ~�T _̂�

= STo Y
~A� �̂T jSoj �DTSo � STo CB sat

�
S

�

�
�

= � ~ATY TSo + (�̂T � �T )jSoj

� �DTSo � STo C� � [Dmax + C�max + �]
T
jSoj

� ��T jSoj (14)

Since V is clearly a positive de�nite and decrescent

function, equations (14),(13) imply that the states So,
~A and ~� are bounded, and as the states A and � are also

bounded, consequently �, _�, Â and � are all bounded.

Using an analogous reasoning as it was utilized

in the previous section, one can conclude that _S is

bounded and then as _So = _S if So � �, or _So = 0

otherwise, it is deduced that _So is also bounded. Thus

from eqn.(14) �V is bounded and then _V is a uniformly

continuous function, so Barbalat's lemma let us con-

clude that _V ! 0 as t ! 1 which from eqn.(14) im-

plies that So ! 0 as t!1 or equivalently S converges

to the interval [��; �] asymptotically, so under the def-

inition of S, the tracking error of each joint (ei = ���d)

converge to a small size depending on the thickness �i
for each joint.

5 Simulation examples

In this section we will consider the control of the simple

planar manipulator with two revolute joints shown in

Figure 2. Let us �x the notation as follows: For each

link i (i=1,2) �i denotes the joint angle; mi denotes the

mass; li denotes the length; lci denotes the distance

from the previous joint (i � 1) to the center of mass

of link i; and Ii denotes the moment of inertia of link

i about an axis perpendicular to the plane, passing

through the center mass of link i.

�
�
�
�
�
�
�
�

�

�

�

��

r

r

lc1

lc2

l1

l2

�1

�2

Figure 2: The simple planar manipulator with two rev-

olute joints.

Using the well-known Lagrangian equations in clas-

sical dynamics, one can show that the dynamic equa-

tions of the robot are:�
�1
�2

�
=

�
d11 d12
d21 d22

� �
��1
��2

�
+

�
g1
g2

�
+

�
f1
f2

�

+

�
c _�2 c _�1 + c _�2
�c _�1 0

� �
_�1
_�2

�
(15)

where the coe�cients dij ; c; gi; fi are:

d11 = m1l
2
c1
+ I1 +m2[l

2
1 + l2c2 + 2l1lc2 cos �2] + I2

d22 = m2l
2
c2
+ I2

d12 = d21 = m2l1lc2 cos �2 +m2l
2
c2
+ I2

c = �m2l1lc2 sin �2

g1 = m1lc1g cos �1 +m2g[lc2 cos(�1 + �2) + l1 cos �1]

g2 = m2lc2g cos(�1 + �2)

f1 = v1 _�1 + k1 sgn(�1)

f2 = v2 _�2 + k2 sgn(�2)

where g is the gravity acceleration, and vi and ki are

the viscous and Coulomb friction coe�cients, respec-

tively.

Using a proper parametrization, the dynamic equa-

tions of the robot can be put in linear dependence

(T = Y A), where the elements of Y are:

y11 = ��r1 y12 = ��r2

y13 = (2��r1 + ��r2) cos �2 � [ _�2 _�r1 + ( _�1 + _�2) _�r2] sin �2

y14 = g cos �1 y15 = g cos(�1 + �2)

y21 = 0 y22 = ��r1 + ��r2

y23 = cos �2��r1 + sin �2 _�1 _�r1 y24 = 0

y25 = g cos(�1 + �2)

and the unknown dynamical parameters are :

a1 = I1 +m1l
2
c1
+m2l

2
1 + I2 +m2l

2
c2

a2 = m2l
2
c2
+ I2 a3 = m2l1lc2

a4 = m1lc1 +m2l1 a5 = m2lc2

(16)
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It should be noted here that the friction terms have

not been modeled. Therefore in this example, the fric-

tion terms are the unmodelled dynamics of the system.

This is a realistic assumption since the dynamic fric-

tion terms are unknown in real applications, and they

are di�cult to model.

In all the subsequent examples the following values

for the robot's parameters will be assumed (SI units):

m1 = 2 m2 = 1:2 I1 = 0:25 I2 = 0:1

l1 = 1 lc1 = 0:4 l2 = 0:7 lc2 = 0:3

v1 = 0:5 v2 = 0:4 k1 = 0:3 k2 = 0:2

(17)

Using the values presented in eqn.(17), the real dy-

namical parameters ai are:

A = [1:98 0:21 0:36 2:00 0:36]
T

(18)

In the following examples a square wave trajectory,

whose steps have been replaced by cubic trajectories to

smooth the control signal will be used. This trajectory

has been chosen because it is frequently used in real

manipulation tasks.

In these examples it is used the modi�ed sliding

adaptive control scheme for mechanical manipulators

presented in section 4. The controller parameters have

been chosen as:

� = diag(10 10) � = [0:1 0:15]T � = diag(1 1 1 1 1)

In the �rst example, shown in Fig.(3), it is assumed

that there is not any knowledge of the dynamical pa-

rameters, that is, all the parameters are initialized as

0. Figures 3 (c) and (d) show that, after a small time,

both links track the desired references with a small er-

ror, which maximum value is chosen by means of the

� parameter.

In the second example illustrated in Fig.(4), it is

assumed that some a priori information of the dynam-

ical parameters is available, and therefore these are

incorrectly initialized with an error around 50 %:

Â(0) = [1:5 0:1 0:2 1:5 0:2]
T

(19)

Comparing Figures (3) and (4), it can be seen that

in the latter, the control e�orts are smaller, due to

the prior knowledge of the system which is taken into

account by the dynamical parameter initialization.

6 Conclusions

In this paper a robust adaptive control scheme for

robotic manipulators has been presented. It is used an

adaptive feedback linearization control strategy which

can adaptively compensate the non-linear assumed dy-

namics of the model, together with an also adaptive

robust sliding control which overcomes the problems

that are likely to appear because of the unmodelled

dynamics and noise. Moreover the adaptation of the

sliding gain avoids having to know a bound for the

unmodelled dynamics and noise. The design has been

proved to guarantee the closed loop stability and the

asymptotic elimination of the tracking errors. Finally,

by means of simulation examples, it has been shown

that the proposed control scheme performs reasonably

well in practice, and that the tracking control objective

is achieved. It is shown also that if prior knowledge of

system is introduced in the design, the control is im-

proved as expected. From this point of view the pre-

sented sliding adaptive approach has advantages over

similar neural control schemes that have been appear-

ing lately in the literature, because in this adaptive de-

sign there is a direct relation between the physical and

the controller parameters, while in the neural approach

this relation does not exist in general, and cannot be

exploited in the control design.
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Figure 3: Simulation results for example 1: (a):Control

signals for both joints ; (b):Output and reference signal

for the �rst joint; (c):Output and reference signal for

the second joint.
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Figure 4: Simulation results for example 2: (a):Control

signals for both joints ; (b):Output and reference signal

for the �rst joint; (c):Output and reference signal for

the second joint.
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