
Advanced Arithmetic

for the Digital Computer

Design of Arithmetic Units

Ulrich W. Kulisch1

Version 2 { March 1999

1Universit�at Karlsruhe, D-76128 Karlsruhe, Germany.
This article was prepared during a stay of the author at the Electrotechnical Laboratory, Agency of
Industrial Science and Technology, MITI, at Tsukuba, Ibaraki 305-8568, Japan in March-May, 1998.
A copy of this document can be obtained by anonymous ftp from

Abstract

Advances in computer technology are now so profound that the arithmetic capability

and repertoire of computers can and should be expanded. Nowadays the elemen-

tary oating-point operations +;�;�; = give computed results that coincide with the

rounded exact result for any operands. Advanced computer arithmetic extends this ac-

curacy requirement to all operations in the usual product spaces of computation: the

real and complex vector spaces as well as their interval correspondents. This enhances

the mathematical power of the digital computer considerably. A new computer oper-

ation, the scalar product, is fundamental to the development of advanced computer

arithmetic.

This paper studies the design of arithmetic units for advanced computer arithmetic.

Scalar product units are developed for di�erent kinds of computers like personal com-

puters, workstations, mainframes, super computers or digital signal processors. The

new expanded computational capability is gained at modest cost. The units put a

methodology into modern computer hardware which was available on old calculators

before the electronic computer entered the scene. In general the new arithmetic units

increase both the speed of computation as well as the accuracy of the computed re-

sult. The circuits developed in this paper show that there is no way to compute an

approximation of a scalar product faster than the correct result.

A collection of constructs in terms of which a source language may accommodate

advanced computer arithmetic is described in the paper. The development of pro-

gramming languages in the context of advanced computer arithmetic is reviewed. The

simulation of the accurate scalar product on existing, conventional processors is dis-

cussed. Finally the theoretical foundation of advanced computer arithmetic is reviewed

and a comparison with other approaches to achieving higher accuracy in computation

is given. Shortcomings of existing processors and standards are discussed.

Key words: oating-point arithmetic, �xed-point arithmetic, semimorphism, ac-

curate scalar product, computer arithmetic, computation with guarantees, design of

arithmetic units, computation with automatic result veri�cation.

Contents

1 Introduction 3

1.1 Background . 3

1.2 Historic Remarks . 7

2 Implementation Principles 11

2.1 Solution A: Long Adder and Long Shift 13

2.2 Solution B: Short Adder with Local Memory on the Arithmetic Unit . 14

2.3 Remarks . 15

2.4 Fast Carry Resolution . 16

3 High-Performance Scalar Product Units (SPU) 19

3.1 SPU for Computers with a 32 Bit Data Bus 19

3.2 SPU for Computers with a 64 Bit Data Bus 23

4 Comments on the Scalar Product Units 27

4.1 Rounding . 27

4.2 How much Local Memory should be Provided on a SPU? 28

4.3 A SPU Instruction Set . 28

4.4 Interaction with High Level Programming Languages 30

5 Scalar Product Units for Top-Performance Computers 33

5.1 Long Adder for 64 Bit Data Word (Solution A) 33

5.2 Long Adder for 32 Bit Data Word (Solution A) 38

5.3 Short Adder with Local Memory on the Arithmetic Unit for 64 Bit Data

Word (Solution B) . 40

5.4 Short Adder with Local Memory on the Arithmetic Unit for 32 Bit Data

Word (Solution B) . 45

6 Hardware Accumulation Window 49

7 Theoretical Foundation of Advanced Computer Arithmetic and Short-

comings of Existing Processors and Standards 53

Bibliography 63

1

Chapter 1

Introduction

1.1 Background

Advances in computer technology are now so profound that the arithmetic capability

and repertoire of computers can and should be expanded. At a time when more than

100 million transistors can be placed on a single chip, computing speed is measured in

giga- and teraops, and memory space in giga-words, there is no longer any need to

perform all computer calculations by the four elementary oating-point operations with

all the shortcomings of this arithmetic (for the shortcomings see the three examples

listed in section 1.2).

Nowadays the elementary oating-point operations +;�;�; = give computed results

that coincide with the rounded exact result of the operation for any operands. See, for

instance, the IEEE-Arithmetic Standards 754 and 854, [IEEE85, IEEE87]. Advanced

computer arithmetic extends this accuracy requirement to all operations in the usual

product spaces of computation: the complex numbers, real and complex vectors, real

and complex matrices, real and complex intervals as well as real and complex interval

vectors and interval matrices. This enhances the mathematical power of the digital

computer considerably. A great many computer operations can then be performed

with but a single rounding error.

If, for instance, the scalar product of two vectors with 1000 components is to be

computed about 2000 roundings are executed in conventional oating-point arithmetic.

Advanced arithmetic reduces this to a single rounding. The computed result is within

a single rounding error of the correct result.

The new operations are distinctly di�erent from the customary ones which are

based on elementary oating-point arithmetic. A careful analysis and a general theory

of computer arithmetic show that the new operations can be built up on the computer

by a modular technique as soon as a new fundamental operation, the scalar product,

is provided with full accuracy on a low level, possibly in hardware.

The computer realization of the scalar product of two oating-point vectors can be

achieved with full accuracy in several ways. A most natural way is to add the prod-

ucts of corresponding vector components into a long �xed-point register (accumulator)

which covers twice the exponent range of the oating-point format in which the vector

components are given. Use of the long accumulator has the advantage of being rather

simple, straightforward and fast. Since �xed-point accumulation of numbers is error

free it always provides the desired accurate answer. The technique was already used

on old mechanical calculators long before the electronic computer.

In a oating-point system the number of mantissa digits and the exponent range

3

are �nite. Therefore, the �xed-point register is �nite as well, and it is relatively small,

consisting of about 1 to 4 thousand bits depending on the data format in use. So we

have the seemingly paradoxing and striking situation that scalar products of oating-

point vectors with even millions of components can be computed to a fully accurate

result using a relatively small �nite local register on the arithmetic unit.

In numerical analysis the scalar or dot product is ubiquitous. It is not merely a

fundamental operation in all the product spaces mentioned above.

The process of residual or defect correction, or of iterative re�nement, is composed

of scalar products. There are well known limitations to these processes in oating-

point arithmetic. The question of how many digits of a defect can be guaranteed with

single, double or extended precision arithmetic has been carefully investigated. With

the optimal scalar product the defect can always be computed to full accuracy. It is

the accurate scalar product which makes residual correction e�ective.

With the accurate scalar product quadruple or multiple precision arithmetic can

easily be provided on the computer. This enables the user to use higher precision

operations in numerically critical parts of his computation. It helps to increase software

reliability. A multiple precision number is represented as an array of oating-point

numbers. The value of this number is the sum of its components. It can be represented

in the long accumulator. Addition and subtraction of multiple precision variables or

numbers can easily be performed in the long accumulator. Multiplication of two such

numbers is simply a sum of products. It can be computed by means of the accurate

scalar product. For instance in case of a fourfold precision the product of two such

numbers a = (a1 + a2 + a3 + a4) and b = (b1 + b2 + b3 + b4) is obtained by

a� b = (a1 + a2 + a3 + a4)� (b1 + b2 + b3 + b4)

= a1b1 + a1b2 + a1b3 + a1b4 + a2b1 + � � �+ a4b3 + a4b4
=

P
4

i=1

P
4

j=1 aibj:

The result is independent of the sequence in which the summands are added.

With increasing speed of computers, problems to be dealt with become larger. In-

stead of two dimensional problems users would like to solve three dimensional problems.

Gauss elimination for a linear system of equations requires the magnitude of O(n3) op-

erations. Large, sparse or structured linear or non linear systems, therefore, can only

be solved iteratively. The basic operation of iterative methods (Jacobi method, Gauss-

Seidel method, overrelaxationmethod, conjugate gradientmethod, Krylow space meth-

ods, multigrid methods and others like the QR method for the computation of eigenval-

ues) is the matrix-vector multiplication which consists of a number of scalar products.

It is well known that �nite precision arithmetic often worsens the convergence of these

methods. An iterative method which converges to the solution in in�nite precision

arithmetic often converges much slower or even diverges in �nite precision arithmetic.

The optimal scalar product is faster than a computation in conventional oating-point

arithmetic. In addition to that it can speed up the rate of convergence of iterative

methods signi�cantly in many cases.

Many other applications require that rigorous mathematics can be done with the

computer using oating-point arithmetic. As an example, this is essential in simulation

runs (fusion reactor, eigenfrequencies of large generators) or mathematical modelling

where the user has to distinguish between computational artifacts and genuine reactions

of the model. The model can only be developed systematically if errors resulting from

the computation can be excluded.

Nowadays computer applications are of immense variety. Any discussion of where

a dot product computed in quadruple or extended precision arithmetic can be used

to substitute for the accurate scalar product is superuous. Since the former can

fail to produce a correct answer an error analysis is needed for all applications. This

can be left to the computer. As the scalar product can always be executed correctly

with moderate technical e�ort it should indeed always be executed correctly. An error

analysis thus becomes irrelevant. Furthermore, the same result is always obtained on

di�erent computer platforms. A fully accurate scalar product eliminatesmany rounding

errors in numerical computations. It stabilizes these computations and speeds them

up as well. It is the necessary complement to oating-point arithmetic.

This paper studies the design of arithmetic units for advanced computer arithmetic.

Scalar product units are developed for di�erent kinds of computers like personal com-

puters, workstations, mainframes, super computers or even digital signal processors.

The di�erences in the circuits for these diverse processors are dictated by the speed

with which the processor delivers the data to the arithmetic or scalar product unit.

The data are the vector components. In all cases the new expanded computational

capability is gained at modest cost. The cost increase is comparable to that from a

simple to a fast multiplier, for instance, by a Wallace tree, accepted years ago. It is a

main result of our study that for all processors mentioned above circuits can be given

for the computation of the accurate scalar product with virtually no computing time

needed for the execution of the arithmetic. In a pipeline, the arithmetic can be executed

within the time the processor needs to read the data into the arithmetic unit. This

means, that no other method to compute a scalar product can be faster, in particular

not a conventional approximate computation of the scalar product in oating-point

arithmetic which can lead to an incorrect result.

In the pipeline a multiplication and the accumulation of a product to the inter-

mediate sum in the long accumulator are performed simultaneously. This doubles the

speed of the optimal scalar product in comparison with a conventional computation

in oating-point arithmetic where these operations are performed sequentially. Fur-

thermore, �xed-point accumulation of the products is simpler than accumulation in

oating-point. Many intermediate steps that are executed in a oating-point accu-

mulation such as normalization and rounding of the products and the intermediate

sum, composition into a oating-point number and decomposition into mantissa and

exponent for the next operation do not occur in the �xed-point accumulation of the

accurate scalar product used in advanced computer arithmetic.

In recent years there has been a signi�cant shift of numerical computation from

general purpose computers towards vector and parallel computers { so-called super

computers. Along with the four elementary oating-point operations these computers

usually o�er compound operations as additional arithmetic operations. A particular

such compound operation, multiply and accumulate, is provided for the computation

of the scalar product of two vectors. These compound operations are heavily pipelined

and make the computation really fast. They are automatically inserted in a user's

program by a vectorizing compiler. However, if these operations are not carefully

implemented the user loses complete control of his computation.

In 1987 GAMM1and IMACS2 published a Resolution on Computer Arithmetic

which criticized the mathematically inadequate execution of matrix and vector op-

erations on all existing vector processors. An amendment was demanded. The user

1GAMM = Gesellschaft f�ur Angewandte Mathematik und Mechanik
2IMACS = International Association for Mathematics and Computers in Simulation

should not be obliged to perform an error analysis every time an elementary compound

operation, prede�ned by the manufacturer, is employed. In 1993 the two organiza-

tions approved and published a Proposal for Accurate Floating-Point Vector Arithmetic

[IMACS93]. It requires a mathematically correct implementation of matrix and vector

operations, in particular, of the accurate scalar product on all computers. In 1995 the

IFIP-Working Group 2.5 on Numerical Software endorsed this proposal. Meanwhile it

became an EU Guideline.

We �nish this introduction with a warning to the reader. This paper does not

consist of independent chapters and sections. The later sections are built upon the

earlier ones. On the other hand material that is presented later can be helpful in

contributing to a full understanding of circuits that are discussed earlier.

Acknowledgement: This text summarizes both an extensive research activity

during the past twenty years and the experience gained through various implementa-

tions of the entire arithmetic package on diverse processors. The text is also based on

lectures held at the Universit�at Karlsruhe during the preceding 25 years. While the

collection of research articles that contribute to this paper is not very large in number,

I refrain from a detailed review of them and refer the reader to the list of references.

This text synthesizes and organizes diverse contributions into a coherent presentation.

In many cases more detailed information can be obtained from original doctoral theses.

I am grateful to all those colleagues and co-workers who have contributed through

their research to the development of advanced computer arithmetic as it is presented in

this paper. In particular I would like to mention and thank Gerd Bohlender, Willard

L. Miranker, Reinhard Kirchner, Siegfried M. Rump, Thomas Teufel, Harald B�ohm,

Andreas Kn�ofel and Christoph Baumhof.

I gratefully acknowledge the help of Neville Holmes who went through a careful

reading of the manuscript, sending back corrections and suggestions which led to many

improvements.

Finally I wish to thank the Electrotechnical Laboratory, Agency of Industrial Sci-

ence and Technology at Tsukuba, Japan for providing me the opportunity to write

this article in a pleasant scienti�c environment without constantly being interrupted

by the usual University business. I especially owe thanks to Satoshi Sekiguchi for being

a wonderful host personally and scienti�cally. I am looking forward to, and eagerly

await, advanced arithmetic on commercial computers.

1.2 Historic Remarks

Floating-point arithmetic has been used since the early forties and �fties (Zuse Z3,

1941) [Bea68]. Technology in those days was poor (electromechanical relays, electron

tubes). It was complex and expensive. The word size of the Z3 consisted of 24 bits.

The storage provided 64 words. The four elementary oating-point operations were all

that could be provided. For more complicated calculations an error analysis was left

to and put on the shoulder of the user.

Before that time, highly sophisticated mechanical computing devices were used.

Several very interesting techniques provided the four elementary operations addition,

subtraction, multiplication and division. Many of these calculatorswere able to perform

an additional �fth operation which was called Auflaufenlassen or the running total.

The input register of such a machine had perhaps 10 or 12 decimal digits. The result

register was much wider and had perhaps 30 digits. It was a �xed-point register

which could be shifted back and forth relative to the input register. This allowed a

continuous accumulation of numbers and of products of numbers into di�erent positions

of the result register. Fixed-point accumulation is thus error free. This �fth arithmetic

operation was the fastest way to use the computer. It was applied as often as possible.

No intermediate results needed to be written down and typed in again for the next

operation. No intermediate roundings or normalizations had to be performed. No error

analysis was necessary. As long as no under- or overow occurred, which would be

obvious and visible, the result was always correct. It was independent of the order in

which the summands were added. If desired, only one �nal rounding was executed at

the very end of the accumulation.

This extremely useful and fast �fth arithmetic operation was not built into the

early oating-point computers. It was too expensive for the technologies of those days.

Later its superior properties had been forgotten.

The early electronic computers in the late forties and early �fties represented their

data as �xed-point numbers. Fixed-point addition and subtraction are error free.

Fixed-point arithmetic with a rather limited word size, however, imposed a scaling

requirement. Problems had to be preprocessed by the user so that they could be

accommodated by this �xed-point number representation. With increasing speed of

computers, the problems that could be solved became larger and larger. The necessary

preprocessing soon became an enormous burden.

Thus oating-point arithmetic became generally accepted. It largely eliminated this

burden. A scaling factor is appended to each number in oating-point representation.

The arithmetic itself takes care of the scaling. An exponent addition (subtraction) is

executed during multiplication (division). It may result in a big change in the value

of the exponent. But multiplication and division are relatively stable operations in

oating-point arithmetic. Addition and subtraction, on the contrary, are troublesome

in oating-point.

The quality of oating-point arithmetic has been improved over the years. The

data format was extended to 64 and even more bits and the IEEE-arithmetic standard

has �nally taken the bugs out of particular realizations. Floating-point arithmetic has

been used very successfully in the past. Very sophisticated and versatile algorithms and

libraries have been developed for particular problems. However, in a general application

the result of a oating-point computation is often hard to judge. It can be satisfactory,

inaccurate or even completely wrong. The computation itself as well as the computed

data do not indicate which one of the three cases has occurred. We illustrate the

typical shortcomings by three very simple examples. For these and other examples see

[Rum83]:

1. Compute the following, theoretically equivalent expressions:

1020 + 17 � 10 + 130 � 1020

1020 � 10 + 130 � 1020 + 17

1020 + 17 � 1020 � 10 + 130

1020 � 10 � 1020 + 130 + 17

1020 � 1020 + 17 � 10 + 130

1020 + 17 + 130 � 1020 � 10

A conventional computer using the data format double-precision of the IEEE oating-

point arithmetic standard returns the values 0, 17, 120, 147, 137, �10. These errors

come about because the oating-point arithmetic is unable to cope with the digit range

required with this calculation. Notice that the data cover less than 4% of the digit range

of the data format double precision!

2. Compute the solution of a system of two linear equations Ax = b, with

A =

64919121 �159018721

41869520:5 �102558961

!
; b =

1

0

!

The solution can be expressed by the formulas:

x1 = a22=(a11a22 � a12a21) and x2 = �a21=(a11a22 � a12a21) :

A workstation using IEEE double precision oating-point arithmetic returns the

approximate solution:

~x1 = 102558961 and ~x2 = 41869520:5 ;

while the correct solution is

x1 = 205117922 and x2 = 83739041 :

After only 4 oating-point operations all digits of the computed solution are wrong.

A closer look into the problem reveals that the error happens during the computation

of the denominator. This is just the kind of expression which always can be computed

error free by the missing �fth operation.

3. Compute the scalar product of the two vectors a and b with �ve components

each:

a1 = 2:718281828 � 1010 b1 = 1486:2497 � 109

a2 = �3:141592654� 1010 b2 = 878366:9879 � 109

a3 = 1:414213562 � 1010 b3 = �22:37492� 109

a4 = 0:5772156649� 1010 b4 = 4773714:647 � 109

a5 = 0:3010299957� 1010 b5 = 0:000185049 � 109

The correct value of the scalar product is �1:00657107�108. IEEE-double precision

arithmetic delivers +4:328386285�109 so even the sign is incorrect. Note that no vector

element has more than 10 decimal digits.

Problems that can be solved by computers become larger and larger. Today fast

computers are able to execute several billion oating-point operations in each second.

This number exceeds the imagination of any user. Traditional error analysis of numeri-

cal algorithms is based on estimates of the error of each individual arithmetic operation

and on the propagation of these errors through a complicated algorithm. It is simply

no longer possible to expect that the error of such computations can be controlled by

the user. There remains no alternative to further develop the computer's arithmetic

and to furnish it with the capability of control and validation of the computational

process.

Computer technology is extremely powerful today. It allows solutions which even an

experienced computer user may be totally unaware of. Floating-point arithmetic which

may fail in simple calculations, as illustrated above, is no longer adequate to be used

exclusively in computers of such gigantic speed for huge problems. The reintroduction

of the �fth arithmetic operation, the accurate scalar product, into computers is a step

which is long overdue. A central and fundamental operation of numerical analysis which

can be executed correctly with only modest technical e�ort should indeed always be

executed correctly and no longer only approximately. With the accurate scalar product

all the nice properties which have been listed in connection with the old mechanical

calculators return to the modern digital computer. The accurate scalar product is

the fastest way to use the computer. It should be applied as often as possible. No

intermediate results need to be stored and read in again for the next operation. No

intermediate roundings and normalizations have to be performed. No intermediate

over- or underow can occur. No error analysis is necessary. The result is always

correct. It is independent of the order in which the summands are added. If desired,

only one �nal rounding is executed at the very end of the accumulation.

The accurate scalar product reintegrates the advantages of �xed-point arithmetic

| error free accumulation of numbers and of single products of numbers even for very

long sums | into digital computing and oating-point arithmetic. It is obtained by

putting a methodology into modern computer hardware which was already available

on calculators before the electronic computer entered the scene.

Chapter 2

Implementation Principles

A normalized oating-point number x (in sign-magnitude representation) is a real

number of the form x = �mbe. Here � 2 f+;�g is the sign of the number, b is the base

of the number system in use and e is the exponent. The base b is an integer greater

than unity. The exponent e is an integer between two �xed integer bounds e1 and e2,

and in general e1�0�e2. The mantissa m is of the form

m =
Pl

i=1 d[i] b
�i

The d[i] are the digits of the mantissa. They have the property d[i] 2 f0; 1; : : : ; b�1g

for all i = 1(1)l and d[1] 6= 0. Without this last condition oating-point numbers are

said to be unnormalized. The set of normalized oating-point numbers does not contain

zero. For a unique representation of zero we assume the mantissa and the exponent to

be zero. Thus a oating-point system depends on the four constants b; l; e1 and e2. We

denote it by R = R(b; l; e1; e2). Occasionally we shall use the abbreviations sign(x),

mant(x) and exp(x) to denote the sign, mantissa and exponent of x respectively.

Nowadays the elementary oating-point operations +;�;�; = give computed results

that coincide with the rounded exact result of the operation for any operands. See, for

instance, the IEEE Arithmetic Standards 754 and 854, [IEEE85, IEEE87]. Advanced

computer arithmetic extends this accuracy requirement to all operations in the usual

product spaces of computation: the complex numbers, the real and complex vectors,

real and complex matrices, real and complex intervals as well as the real and complex

interval vectors and interval matrices.

A careful analysis and a general theory of computer arithmetic [Kul76, Kul81] show

that all arithmetic operations in the computer representable subsets of these spaces can

be realized on the computer by a modular technique as soon as �fteen fundamental

operations are made available at a low level, possibly by fast hardware routines. These

�fteen operations are

+ � � = �

5+ 5� 5� 5= 5�

4+ 4� 4� 4= 4�

Here � , � 2 f+;�;�; =g denotes (semimorphic1) operations using some particular

monotone and antisymmetric rounding : IR ! R such as rounding to the nearest

oating-point number or rounding towards zero. Likewise 5� and 4� , � 2 f+;�;�; =g

1For a precise mathematical de�nition see chapter 7.

11

denote the operations using the optimal (monotone1) rounding downwards 5: IR ! R,

and the optimal (monotone1) rounding upwards 4: IR ! R, respectively. � , 5�

and 4� denote scalar products with high accuracy. That is, if a = (ai) and b = (bi) are

vectors with oating-point components, ai; bi 2 R, then a h
� b := h(a1 � b1 + a2 �

b2 + : : :+ an � bn), h2 f , 5, 4g. The multiplication and addition signs on the

right hand side of the assignment denote exact multiplication and summation in the

sense of real numbers.

These 15 operations are su�cient for the computer implementation of all arithmetic

operations that are to be de�ned for all numerical data types listed above in the third

paragraph of this chapter. Of the 15 fundamental operations, traditional numerical

methods use only the four operations + , � , � and = . Interval arithmetic requires the

eight operations 5+ , 5� , 5� , 5= and 4+ , 4� , 4� , 4= . These eight operations are computer

equivalents of the operations for real oating-point intervals, i. e. of interval arithmetic.

Processors which support the IEEE arithmetic standard, for instance, o�er 12 of these

15 operations: � , 5� , 4� , � 2 f+;�;�; =g. The latter 8 operations 5� , 4� , � 2

f+;�;�; =g are not yet provided by the usual high level programming languages. They

are available and can be used in PASCAL-XSC, [Kul87, Kul87a, Kla91, Kla92, Kla93a],

a PASCAL extension for the high accuracy scienti�c computing which was developed

at the author's Institute. Roughly speaking, interval arithmetic brings guarantees into

computation while the three scalar or dot products deliver high accuracy. These two

features should not be confused.

The implementation of the 12 operations � , 5� , 4� , � 2 f+;�;�; =g on com-

puters is routine and standard nowadays. Fast techniques are largely discussed in the

literature. So we now turn to the implementation of the three optimal scalar products
� , 5� and 4� on computers. We shall discuss circuits for the hardware realization

of these operations for di�erent kinds of processors like personal computers, worksta-

tions, mainframes, super computers and digital signal processors. The di�erences in

the circuits for these diverse processors are dictated by the speed with which the pro-

cessor delivers the vector components ai and bi, i = 1; 2::::; n to the arithmetic or scalar

product unit.

After a brief discussion of the implementation of the accurate scalar product on

computers we shall detail two principal solutions to the problem. Solution A uses a

long adder and a long shift. Solution B uses a short adder and some local memory

in the arithmetic unit. At �rst sight both of these principal solutions seem to lead

to relatively slow hardware circuits. However later, more re�ned studies will show

that very fast circuits can be devised for both methods and for the diverse processors

mentioned above. A �rst step in this direction is the provision of the very fast carry

resolution scheme described in section 2.4.

Actually it is a central result of this study that, for all processors under consider-

ation, circuits for the computation of the optimal scalar product are available where

virtually no computing time for the execution of the arithmetic is needed. In a pipeline,

the arithmetic can be done within the time the processor needs to read the data into

the arithmetic unit. This means that no other method to compute the scalar product

can be faster, in particular, not even a conventional computation of scalar products

in oating-point arithmetic which may lead to an incorrect answer. Once more we

emphasize the fact that the methods to be discussed here compute the scalar product

of two oating-point vectors of arbitrary �nite length without loss of information or

with only one �nal rounding at the very end of the computation.

Now we turn to our task. Let a = (ai) and b = (bi); i = 1(1)n, be two vectors with

n components which are oating-point numbers, i. e.

ai; bi 2 R(b; l; e1; e2); for i = 1(1)n

We are going to compute the two results (scalar products):

s :=
nX

i=1

ai � bi = a1 � b1 + a2 � b2 + : : :+ an � bn

and

c := h
nX

i=1

ai � bi = h(a1 � b1 + a2 � b2 + : : :+ an � bn) = hs

where all additions and multiplications are the operations for real numbers and his

a rounding symbol representing, for instance, rounding to nearest, rounding towards

zero, rounding upwards or downwards.

Since ai and bi are oating-point numbers with a mantissa of l digits, the products

ai � bi in the sums for s and c are oating-point numbers with a mantissa of 2l digits.

The exponent range of these numbers doubles also, i. e. ai� bi 2 R(b; 2l; 2e1; 2e2). All

these summands can be expressed in a �xed-point register of length 2e2 + 2l + 2je1j

without loss of information, see Fig. 1: If one of the summands has an exponent 0,

its mantissa can be expressed in a register of length 2l. If another summand has

exponent 1, it can be expressed with exponent 0, if the register provides further digits

on the left and the mantissa is shifted one place to the left. An exponent �1 in one

of the summands requires a corresponding shift to the right. The largest exponents in

magnitude that may occur in the summands are 2e2 and 2je1j. So all summands can

be expressed with exponent 0 in a �xed-point register of length 2e2+2l+2je1jwithout

loss of information.

2.1 Solution A: Long Adder and Long Shift

If the register is built as an accumulator with an adder, all summands could even be

added without loss of information. In order to accommodate possible overows, it is

convenient to provide a few, say k more digits of base b on the left. In such an accumu-

lator, every such sum or scalar product can be added without loss of information. As

many as bk overows may occur and be accommodated for without loss of information.

In the worst case, presuming every sum causes an overow, we can accommodate sums

with n � bk summands.

A gigaops computer would perform about 1017 operations in 10 years. So 17

decimal or about 57 binary digits certainly are a reasonable upper bound for k. Thus,

the long accumulator and the long adder consist of L = k + 2e2 + 2l + 2je1j digits of

base b. The summands are shifted to the proper position and added. See Fig. 1. Fast

carry resolution techniques will be discussed later. The �nal sums s and c are supposed

to be in the single exponent range e1 � e � e2, otherwise c is not representable as a

oating-point number and the problem has to be scaled.

Figure 1: Long accumulator with long shift for accurate scalar product accumulation

2.2 Solution B: Short Adder with Local Memory

on the Arithmetic Unit

In a scalar product computation the summands are all of length 2l. So actually the long

adder and long accumulator may be replaced by a short adder and a local store of size

L on the arithmetic unit. The local store is organized in words of length l or l0, where

l0 is a power of 2 and slightly larger than l. (For instance l = 53 bits and l0 = 64 bits).

Since the summands are of length 2l, they �t into a part of the local store of length 3l0.

This part of the store is determined by the exponent of the summand. We load this

part of the store into an accumulator of length 3l0. The summand mantissa is placed

in a shift register and is shifted to the correct position as determined by the exponent.

Then the shift register contents are added to the contents of the accumulator. Fig. 2.

An addition into the accumulator may produce a carry. As a simple method to

accommodate carries, we enlarge the accumulator on its left end by a few more digit

positions. These positions are �lled with the corresponding digits of the local store. If

not all of these digits equal b�1 in case of addition (or zero in case of subtraction), they

will accommodate a possible carry of the addition (or borrow in case of subtraction).

Of course, it is possible that all these additional digits are b � 1 (or zero). In this

case, a loop can be provided that takes care of the carry and adds it to (subtracts it

from) the next digits of the local store. This loop may need to be traversed several

times. Other carry (borrow) handling processes are possible and will be dealt with

later. This completes our sketch of the second method for an accurate computation of

scalar products using a short adder and some local store on the arithmetic unit. See

Fig. 2.

Figure 2: Short adder and local store on the arithmetic unit for accurate scalar

product accumulation.

2.3 Remarks

The scalar product is a highly frequent operation in scienti�c computing. The two

solutions A and B are both simple, straightforward and mature.

Remark 1: The purpose of the k digits on the left end of the register in Fig. 1 and

Fig. 2 is to accommodate possible overows. The only numbers that are added to this

part of the register are plus or minus unity. So this part of the register just can be

treated as a counter by an incrementer/decrementer.

Remark 2: The �nal result of a scalar product computation is assumed to be a oating-

point number with an exponent in the range e1 � e � e2. During the computation,

however, summands with an exponent outside of this range may very well occur. The

remaining computation then has to cancel all these digits. This shows that normally in

a scalar product computation, the register space outside the range e1 � e � e2 will be

used less frequently. The conclusion should not be drawn from this consideration that

the register size can be restricted to the single exponent range in order to save some

silicon area. This would require the implementation of complicated exception handling

routines which �nally require as much silicon but do not solve the problem in principle.

Remark 3: We emphasize once more that the number of digits, L, needed for the

register to compute scalar products of two vectors to full accuracy only depends on

the oating-point data format. In particular it is independent of the number n of

components of the two vectors to be multiplied.

As samples we calculate the register width L for a few typical and frequently used

oating-point data formats:

a) IEEE-arithmetic single precision:

b = 2; word length: 32 bits; sign: 1 bit; exponent: 8 bits; mantissa: l = 24 bits;

exponent range: e1 = �126, e2 = 127, binary.

L = k + 2e2+ 2l+ 2je1j = k + 554 bits.

With k = 86 bits we obtain L = 640 bits. This register can be represented by 10

words of 64 bits.

b) /370 architecture, long data format:

b = 16; word length: 64 bits; sign: 1 bit; mantissa: l = 14 hex digits; exponent

range: e1 = �64, e2 = 63, hexadecimal.

L = k + 2e2 + 2l+ 2je1j = k + 282 bits.

With k = 88 bits we obtain L = 88 + 4 � 282 = 1216 bits. This register can be

represented by 16 words of 64 bits.

c) IEEE-arithmetic double precision:

b = 2; word length: 64 bits; sign: 1 bit; exponent: 11 bits; mantissa: l = 53 bits;

exponent range: e1 = �1022, e2 = 1023, binary.

L = k + 2e2 + 2l+ 2je1j = k + 4196 bits.

With k = 92 bits we obtain L = 4288 bits. This register can be represented by

67 words of 64 bits.

These samples show that the register size (at a time where memory space is mea-

sured in gigabits and gigabytes) is modest in all cases. It grows with the exponent

range of the data format. If this range should be extremely large, as for instance in

case of an extended precision oating-point format, only an inner part of the regis-

ter would be supported by hardware. The outer parts which then appear very rarely

could be simulated in software. The long data format of the /370 architecture covers

in decimal a range from about 10�75 to 1075 which is very modest. This architecture

dominated the market for more than 20 years and most problems could conveniently

be solved with machines of this architecture within this range of numbers.

Remark 4: Multiplication is often considered to be more complex than addition. In

modern computer technology this is no longer the case. Very fast circuits for mul-

tiplication using carry-save-adders (Wallace tree) are available and common practice.

They nearly equalize the time to compute a sum and a product of two oating-point

numbers. In a scalar product computation usually a large number of products is to be

computed. The multiplier is able to produce these products very quickly. In a balanced

scalar product unit the accumulator should be able to absorb a product in about the

same time the multiplier needs to produce it. Therefore, measures have to be taken

to equalize the speed of both operations. Because of a possible long carry propagation

the accumulation seems to be the more complicated process.

Remark 5: Techniques to implement the optimal scalar product on machines which

do not provide enough register space on the arithmetic logical unit will be discussed in

chapter 6 later in this paper.

2.4 Fast Carry Resolution

Both solutions A and B for our problem which we sketched above seem to be slow at

�rst glance. SolutionA requires a long shift which is necessarily slow. The addition over

perhaps 4000 bits is slow also, in particular if a long carry propagation is necessary.

For solution B, �ve steps have to be carried out: 1. read from the local store, 2.

perform the shift, 3. add the summand, 4. resolve the carry, possibly by loops, and 5.

write the result back into the local store. Again the carry resolution may be very time

consuming.

As a �rst step to speed up solutions A and B, we discuss a technique which allows

a very fast carry resolution. Actually a possible carry can already be accommodated

while the product, the addition of which might produce a carry, is still being computed.

Both solutions A and B require a long register in which the �nal sum in a scalar

product computation is built up. Henceforth we shall call this register the Long Ac-

cumulator and abbreviate it as LA. It consists of L bits. LA is a �xed-point register

wherein any sum of oating-point numbers and of simple products of oating-point

numbers can be represented without error.

To be more speci�c we now assume that we are using the double precision data

format of the IEEE-arithmetic standard 754. See case c) of remark 3. As soon as the

principles are clear, a transfer of the technique to other data formats is easy. Thus, in

particular, the mantissa consists of l = 53 bits. We assume additionally that the LA

that appears in solutions A and B is subdivided into words of l0 = 64 bits. The mantissa

of the product ai� bi then is 106 bits wide. It touches at most three consecutive 64-bit

words of the LA which are determined by the exponent of the product. A shifter then

aligns the 106 bit product into the correct position for the subsequent addition into the

three consecutive words of the LA. This addition may produce a carry (or a borrow in

case of subtraction). The carry is absorbed by that next more signi�cant 64 bit word

of the LA in which not all digits are 1 (or 0 in case of subtraction). Fig. 3, a). For

a fast detection of this word two information bits or ags are appended to each long

accumulator word. Fig. 3, b). One of these bits, the all bits 1 ag, is set to 1 if all

64 bits of the register word are 1. This means that a carry will propagate through the

entire word. The other bit, the all bits 0 ag, is set to 0, if all 64 bits of the register

word are 0. This means that in case of subtraction a borrow will propagate through

the entire word.

During the addition of a product into the three consecutive words of the LA, a

search is started for the next more signi�cant word of the LA where the all bits 1

ag is not set. This is the word which will absorb a possible carry. If the addition

generates a carry, this word must be incremented by one and all intermediate words

must be changed from all bits 1 to all bits 0. The easiest way to do this is simply to

switch the ag bits from all bits 1 to all bits 0 with the additional semantics that if

a ag bit is set, the appropriate constant (all bits 0 or all bits 1) must be generated

instead of reading the LA word contents when reading a LA word, Fig. 3, b). Borrows

are handled in an analogous way.

Figure 3: Fast carry resolution.

This carry handling scheme allows a very fast carry resolution. The generation of

the carry resolution address is independent of the addition of the product, so it can be

performed in parallel. At the same time, a second set of ags is set up for the case that

a carry is generated. If the latter is the case, the carry is added into the appropriate

word and the second set of ags is copied into the former ag word.

Simultaneously with the multiplication of the mantissa of ai and bi their exponents

are added. This is just an eleven bit addition. The result is available very quickly. It

delivers the exponent of the product and the address for its addition. By looking at the

ags, the carry resolution address can be determined and the carry word can already be

incremented/decremented as soon as the exponent of the product is available. It could

be available before the multiplication of the mantissas is �nished. If the accumulation of

the product then produces a carry, the incremented/decremented carry word is written

back into the LA, otherwise nothing is changed.

This very fast carry resolution technique could be used in particular for the compu-

tation of short scalar products which occur, for instance, in the computation of the real

and imaginary part of a product of two complex oating-point numbers. A long scalar

product, however, is usually performed in a pipeline. Then, during the execution of a

product, the former product is added. It seems to be reasonable, then, to wait with

the carry resolution until the former addition is actually �nished.

Chapter 3

High-Performance Scalar Product

Units (SPU)

After having discussed the two principal Solutions A and B for exact scalar product

computation as well as a very fast carry handling scheme, we now turn to a more

detailed design of scalar product computation units for diverse processors. These units

will be called SPU, which stands for Scalar Product Unit. If not otherwise mentioned

we assume throughout this chapter that the data are stored in the double precision

format of the IEEE-arithmetic standard 754. There the oating-point word has 64 bits

and the mantissa consists of 53 bits. A central building block for the SPU is the long

accumulator LA. It is a �xed-point register wherein any sum of oating-point numbers

and of simple products of oating-point numbers can be represented without error. The

unit allows the computation of scalar products of two vectors with any �nite number

of oating-point components to full accuracy or with one single rounding at the very

end of the computation. As shown in Remark 3c) of section 2.3, the LA consists of

4288 bits. It can be represented by 67 words of 64 bits.

The scalar product is a highly frequent operation in scienti�c computation. So its

execution should be fast. All circuits to be discussed in this chapter perform the scalar

product in a pipeline which simultaneously executes the following steps:

a) read the two factors ai and bi to perform a product,

b) compute the product ai � bi to the full double length and

c) add the product ai � bi to the LA.

Step a) turns out to be the bottleneck of this pipeline. Therefore, we shall develop

di�erent circuits for computers which are able to read the two factors ai and bi into

the SPU in four or two or one portion. The latter case will be discussed in chapter 5.

Step b) produces a product of 106 bits. It maps onto at most three consecutive words

of the LA. The address of these words is determined by the products exponent. In step

c) the 106 bit product is added to the three consecutive words of the LA.

3.1 SPU for Computers with a 32 Bit Data Bus

Here we consider a computer which is able to read the data into the arithmetic log-

ical unit and/or the SPU in portions of 32 bits. The personal computer is a typical

representative of this kind of computer.

19

Solution A with an adder and a shifter for the full LA of 4288 bits would be too

expensive. So the SPU for these computers is built upon solution B (see Fig. 4). For

the computation of the product ai � bi the two factors ai and bi are to be read. Both

consist of 64 bits. Since the data can only be read in 32 bit portions, the unit has to

read 4 times. We assume that with the necessary decoding this can be done in eight

cycles. See Fig. 5. This is rather slow and turns out to be the bottleneck for the whole

pipeline. In a balanced SPU the multiplier should be able to produce a product and

the adder should be able to accumulate the product in about the same time the unit

needs to read the data. Therefore, it su�ces to provide a 27 � 27 bit multiplier. It

computes the 106 bit product of the two 53 bit mantissas of ai and bi by 4 partial

products. The subsequent addition of the product into the three consecutive words of

the LA is performed by an adder of 64 bits. The appropriate three words of the LA are

loaded into the adder one after the other and the appropriate portion of the product

is added. The sum is written back into the same word of the LA where the portion

has been read from. A 64 out of 106 bit shifter must be used to align the product onto

the relevant word boundaries. See Fig. 4. The addition of the three portions of the

product into the LA may cause a carry. The carry is absorbed by incrementing (or

decrementing in case of subtraction) a more signi�cant word of the LA as determined

by the carry handling scheme.

Figure 4: Accumulation of a product to the LA by a 64 bit adder.

A brief sketch of the pipeline is shown in Fig. 5. There, we assume that a dual

port RAM is available on the SPU to store the LA. This is usual for register memory.

It allows simultaneous reading from the LA and writing into the LA . Eight machine

cycles are needed to read the two 64 bit factors ai and bi for a product, including the

necessary decoding of the data. This is also about the time in which the multiplication

and the shift can be performed in the second step of the pipeline. The three successive

additions and the carry resolution in the third step of the pipeline again can be done

in about the same time. See Fig. 5. Fig. 6 shows a block diagram for a SPU with 32

bit data bus.

cycle read mult/shift accumulate

read a1
i�1

read a2
i�1

read b1
i�1

read b2
i�1

read a1i

read a2
i

ci�1 := ai�1 � bi�1

read b1
i

ci�1 := shift (ci�1)

read b2
i

load1
read a1

i+1 add/sub load2

store1 add/sub load3
read a2

i+1
ci := ai � bi

store2 add/sub load carry

store3 inc/dec
read b1i+1 ci := shift (ci) store carry

store ags
read b2

i+1

load1
read a1

i+2 add/sub load2

store1 add/sub load3
read a2

i+2
ci+1 := ai+1 � bi+1

store2 add/sub load carry

store3 inc/dec
read b1

i+2
ci+1 := shift (ci+1)

store carry

store ags
read b2

i+2

load1
read a1

i+3 add/sub load2

store1 add/sub load3
read a2

i+3
ci+2 := ai+2 � bi+2

store2 add/sub load carry

store3 inc/dec
read b1

i+3
ci+2 := shift (ci+2)

store carry

store ags
read b2

i+3

Figure 5: Pipeline for the accumulation of scalar products on computers with 32 bit

data bus.

The sum of the exponents of ai and bi delivers the exponent of the product ai� bi.

It consists of 12 bits. The 6 low order (less signi�cant) bits of this sum are used to

perform the shift. The more signi�cant bits of the sum deliver the LA address to which

the product ai � bi has to be added. So the originally very long shift is split into a

short shift and an addressing operation. The shifter performs a relatively short shift

operation. The adressing selects the three words of the LA for the addition of the

product.

Figure 6: Block diagram for a SPU with 32 bit data supply and sequential addition

into SPU.

The LA RAM needs only one address decoder to �nd the start address for an

addition. The two more signi�cant parts of the product are added to the contents of

the two LA words with the two subsequent addresses. The carry logic determines the

word which absorbs the carry. All these address decodings can be hard wired. The

result of each one of the four additions is written back into the same LA word to which

the addition has been executed. The two carry ags appended to each accumulator

word are indicated in Fig. 6. In practice the ags are kept in separate registers.

We stress the fact that in the circuit just discussed virtually no speci�c computing

time is needed for the execution of the arithmetic. In the pipeline the arithmetic is

performed in the time which is needed to read the data into the SPU. Here, we assumed

that this requires 8 cycles. This allows both the multiplication and the accumulation

to be performed very economically and sequentially by a 27� 27 bit multiplier and a

64 bit adder. Both the multiplication and the addition are themselves performed in a

pipeline. The arithmetic overlaps with the laoding of the data into the SPU.

There are processors on the market, where the data supply to the arithmetic unit

or the SPU is much faster. We discuss the design of a SPU for such processors in the

next section and in chapter 5.

3.2 SPU for Computers with a 64 Bit Data Bus

Now we consider a computer which is able to read the data into the arithmetic logical

unit and/or the SPU in portions of 64 bits. Fast workstations or mainframes are typical

for this kind of computer.

Now the time to perform the multiplication and the accumulation overlapped in

pipelines as before is no longer available. In order to keep the execution time for the

arithmetic within the time the SPU needs to read the data, we have to invest in more

hardware. For the multiplication a 53�53 bit multiplier must now be used. The result

is still 106 bits wide. It could touch three 64 bit words of the LA. But the addition of

the product and the carry resolution now have to be performed in parallel.

The 106 bit summand may �t into two instead of three consecutive 64 bit words

of the LA. A closer look at the details shows that the 22 least signi�cant bits of the

three consecutive LA words are never changed by an addition of the 106 bit product.

Thus the adder needs to be 170 bits wide only. Fig. 7 shows a sketch for the parallel

accumulation of a product.

In the circuit a 106 to 170 bit shifter is used. The four additions are to be per-

formed in parallel. So four read/write ports are to be provided for the LA RAM. A

sophisticated logic must be used for the generation of the carry resolution address,

since this address must be generated very quickly. Again the LA RAM needs only one

address decoder to �nd the start address for an addition. The more signi�cant parts

of the product are added to the contents of the two LA words with the two subsequent

addresses. A tree structured carry logic now determines the LA word which absorbs

the carry. A very fast hardwired multi-port driver can be designed which allows all 4

LA words to be read into the adder in one cycle.

Figure 7: Parallel accumulation of a product into the LA.

Fig. 8 shows the pipeline for this kind of addition. In the �gure we assume that 2

machine cycles are needed to decode and read one 64 bit word into the SPU.

cycle read mult/shift accumulate

read ai�1

read bi�1

read ai ci�1 := ai�1 � bi�1

read bi ci�1 := shift (ci�1)

address decoding
read ai+1 ci := ai � bi

load

add/sub ci�1read bi+1 ci := shift (ci)
store & store ags

address decoding
read ai+2 ci+1 := ai+1 � bi+1

load

add/sub ciread bi+2 ci+1 := shift (ci+1)
store & store ags

address decoding
read ai+3 ci+2 := ai+2 � bi+2

load

add/sub ci+1read bi+3 ci+2 := shift (ci+2)
store & store ags

Figure 8: Pipeline for the accumulation of scalar products.

Fig. 9 shows a block diagram for a SPU with a 64 bit data bus and parallel addition.

We emphasize again that virtually no computing time is needed for the execution

of the arithmetic. In a pipeline the arithmetic is performed in the time which is needed

to read the data into the SPU. Here, we assume that with the necessary decoding, this

requires 4 cycles for the two 64 bit factors ai and bi for a product. To match the shorter

time required to read the data, more hardware has to be invested for the multiplier

and the adder.

If the technology is fast enough it may be reasonable to provide a 256 bit adder

instead of the 170 bit adder. An adder width of a power of 2 may simplify the shift

operation as well as the address decoding. The lower bits of the exponent of the product

control the shift operation while the higher bits are directly used as the start address

for the accumulation of the product into the LA.

The two ag registers appended to each accumulator word are indicated in Fig. 9

again. In practice the ags are kept in separate registers.

Figure 9: Block diagram for a SPU with 64 bit data bus and parallel addition into

the SPU.

Chapter 4

Comments on the Scalar Product

Units

4.1 Rounding

If the result of an exact scalar product is needed later in a program, the contents of

the LA must be put into the user memory. How this can be done will be discussed

later in this chapter.

If not processed any further the correct result of a scalar product computation

usually has to be rounded into a oating-point number or a oating-point interval. The

ag bits that are used for the fast carry resolution can be used for the rounding of the

LA contents also. By looking at the ag bits, the leading result word in the accumulator

can easily be identi�ed. This and the next LA word are needed to compose the mantissa

of the result. This 128 bit quantity must then be shifted to form a normalized mantissa

of an IEEE-arithmetic double precision number. The shift length can be extracted by

looking at the leading result word in the accumulator with the same procedure which

identi�ed it by looking at the ag bit word.

For the correct execution of the rounding downwards (or upwards) it is necessary

to check whether any one of the discarded bits is di�erent from zero. This is done by

testing the remaining bits of the 128 bit quantity in the shifter and by looking at the

all bits 0 ags of the following LA words. This information then is used to control the

rounding.

Only one rounding at the very end of a scalar product computation is needed. If

a large number of products has been accumulated the contribution of the rounding to

the computing time is not substantial. However, if a short scalar products or a single

oating-point operation addition or subtraction has to be carried out by the SPU, a

very fast rounding procedure is essential for the speed of the overall operation.

The rounding depends heavily on the speed with which the leading non zero digit

of the LA can be detected. A pointer to this digit, carried along with the computation,

would immediately identify this digit. The pointer logic requires additional hardware

and its usefulness decreases for lengthy scalar products to be computed.

For short scalar products or single oating-point operations leading zero anticipa-

tion (LZA) would be more useful. The �nal result of a scalar product computation

is supposed to lie in the exponent range between e1 and e2 of the LA. Otherwise the

problem has to be scaled. So hardware support for the LZA is only needed for this

part of the LA. A comparison of the exponents of the summands identi�es the LA word

for which the LZA should be activated. The LZA consists of a fast computation of a

27

provisional sum which di�ers from the correct sum by at most one leading zero. With

this information the leading zeros and the shift width for the two LA words in question

can be detected easily and fast. [Suz96].

4.2 How much Local Memory should be Provided

on a SPU?

There are applications which make it desirable to provide more than one long accu-

mulator on the SPU. If, for instance, the components of the two vectors a = (ai) and

b = (bi) are complex oating-point numbers, the scalar product a � b is also a complex

oating-point number. It is obtained by accumulating the real and imaginary parts of

the product of two complex oating-point numbers. The formula for the product of

two complex oating-point numbers

(x = x1 + ix2; y = y1 + iy2)

x� y = (x1 � y1 � x2 � y2) + i (x1 � y2 + x2 � y1))

shows that the real and imaginary part of ai and bi are needed for the computation of

both the real part of the product ai � bi as well as the imaginary part.

Access to user memory is usually slower than access to register memory. To obtain

high computing speed it is desirable, therefore, to read the real and imaginary parts of

the vector components only once and to compute the real and imaginary parts of the

products simultaneously in two long accumulators on the SPU instead of reading the

data twice and performing the two accumulations sequentially.

Very similar considerations show that a high speed computation of the scalar prod-

uct of two vectors with interval components makes two long accumulators desirable as

well.

There might be other reasons to provide local memory space for more than one LA

on the SPU. A program with higher priority may interrupt the computation of a scalar

product and require a LA. The easiest way to solve this problem is to open a new LA

for the program with higher priority. Of course, this can happen several times which

raises the question how much local memory for how many long accumulators should be

provided on a SPU. Three might be a good number to solve this problem. If a further

interrupt requires another LA, the LA with the lowest priority could be mapped into

the main memory by some kind of stack mechanism and so on. This technique would

not limit the number of interrupts that may occur during a scalar product computation.

These problems and questions must be solved in connection with the operating system.

For a time sharing environment memory space for more than one LA on the SPU

may also be useful.

However the contents of the last two paragraphs are of a more hypothetical na-

ture. The author is of the opinion that the scalar product is a fundamental and basic

operation which should not and never needs to be interrupted.

4.3 A SPU Instruction Set

For the SPU the following 10 instructions for the LA are recommended:

1. clear the LA,

2. add a product to the LA,

3. add a oating-point number to the LA,

4. subtract a product from the LA,

5. subtract a oating-point number from the LA,

6. read LA and round to the destination format,

7. store LA contents in memory,

8. load LA contents from memory,

9. add LA to LA,

10. Subtract LA from LA.

The clear instruction can be performed by setting all all bits 0 ags to 0. The

load and store instructions are performed by using the load/store instructions of the

processor. For the add, subtract and round instructions the following denotations could

be used. There the pre�x sp identi�es SPU instructions. ln denotes the oating-point

format that is used and will be db for IEEE double. In all SPU instructions, the LA

is an implicit source and destination operand. The number of the operation above is

repeated at the end in parenthesis.

� spadd ln src1, src2

multiply the numbers in the given registers and add the product to the LA, (2.).

� spadd ln src

add the number in the given register to the LA, (3.).

� spsub ln src1, src2

multiply the numbers in the given registers and subtract the product from the

LA, (4.).

� spsub ln src

subtract the number in the given register from the LA, (5.).

� spstore ln.rd dest

get LA contents and put the rounded value into the destination register, (6.).

In the instruction rd controls the rounding mode that is used when the LA con-

tents is stored in a oating-point register. It is one of the following:

rn round to nearest

rz round towards zero

rp round upwards, i. e. towards plus in�nity

rm round downwards, i. e. towards minus in�nity

� spstore dest

get LA contents and put its value into the destination memory operand, (7.).

� spload src

load accumulator contents from the given memory operand into the LA, (8.).

� spadd src

the contents of the accumulator at the location src are added to the contents of

the accumulator in the processor, (9.).

� spsub src

the contents of the accumulator at the location src are subtracted from the con-

tents of the accumulator in the processor, (10.).

4.4 Interaction with High Level Programming Lan-

guages

This paper is motivated by the tremendous advances in computer technology that

have been made in recent years. 100 million transistors can be placed on a single

chip. This allows the quality and high accuracy of the basic oating-point operations

of addition, subtraction, multiplication and division to be extended to the arithmetic

operations in the linear spaces and their interval extensions which are most commonly

used in computation. A new fundamental operation, the scalar product, is needed to

provide this advanced computer arithmetic. The scalar product can be produced by

an instruction multiply and accumulate and placed in the LA which has enough digit

positions to contain the exact sum without rounding. Only a single rounding error of

at most one unit in the last place is introduced when the completed scalar product

(often also called dot product) is returned to one of the oating-point registers.

By operator overloading in modern programming languages matrix and vector op-

erations can be provided with highest accuracy and in a simple notation, if the optimal

scalar product is available. However, many scalar products that occur in a computation

do not appear as vector or matrix operations in the program. A vectorizing compiler is

certainly a good tool detecting such additional scalar products in a program. Since the

hardware supported optimal scalar product is faster than a conventional computation

in oating-point arithmetic this would increase both the accuracy and the speed of the

computation.

In the computer, the scalar product is produced by several, more elementary com-

puter instructions as shown in the last section. Programming and the detection of

scalar products in a program can be simpli�ed a great deal if several of these com-

puter instructions are put into the hands of the user and incorporated into high level

programming languages. This has been done with great success in the so-called XSC-

languages (eXtended Scienti�c Computation) that have been developed at the author's

institute [Kla91, Kla92, Kla93, Kla93a, Kul87, Kul87a, IAM90, IBM90]. We mention

a few of these constructs and demonstrate their usefulness. Central to this is the idea

of allowing variables of the size of the LA to be de�ned in a user's program. For this

purpose a new data type called dotprecision is introduced. A variable of the type dot-

precision is a �xed-point variable with L = k+2e2+2l+2je1j digits of base b. See Fig.

1. As has been shown earlier, every �nite sum of oating-point products
Pn

i=1 ai � bi
can be represented as a variable of type dotprecision. Moreover, every such sum can be

computed in a local store of length L on the SPU without loss of information. Along

with the type dotprecision the following constructs serve as primitives for developing

expressions in a program which can easily be evaluated with the SPU instruction set:

dotprecision new data type

:= assignment from dotprecision

to dotprecision or

to real with rounding to nearest or

to interval with roundings downwards and upwards

depending on the type on the left hand side of the

:= operator.

For variables of type dotprecision so-called dotprecision expressions are permitted

which are de�ned as sums of simple expressions. A simple expression is either a signed

or unsigned constant or a variable of type real or a single product of two such objects

or another dotprecision variable. All operations (multiplications and accumulations)

are to be executed to full accuracy.

For instance, let x be a variable of type dotprecision and y and z variables of type

real. Then in the assignment

x := x + y � z

the double length product of y and z is added to the variable x of type dotprecision

and its new value is assigned to x.

The scalar product of two vectors a = (ai) and b = (bi) is now easily implemented

with a variable x of type dotprecision as follows:

x := 0;

for i := 1 to n do x := x + a[i] � b[i];

y := x;

The last statement y := x rounds the value of the variable x of type dotprecision into

the variable y of type real by applying the standard rounding of the computer. y then

has the value of the scalar product a � b which is within a single rounding error of the

exact scalar product a � b.

For example, the method of defect correction or iterative re�nement requires highly

accurate computation of expressions of the form

a � b � c � d

with vectors a, b, c, and d. Employing a variable x of type dotprecision, this expression

can now be programmed as follows:

x := 0;

for i := 1 to n do x := x + a[i] � b[i];

for i := 1 to n do x := x � c[i] � d[i];

y := x;

The result, involving 2n multiplications and 2n� 1 additions, is produced with but a

single rounding operation.

In the last two examples y could have been de�ned to be of type interval. Then the

last statement y := x would produce an interval with a lower bound which is obtained

by rounding the dotprecision value of x downwards and an upper bound by rounding it

upwards. Thus, the bounds of y will be either the same or two adjacent oating-point

numbers.

In the XSC-languages the functionality of the dotprecision type and expression is

available also for complex data as well as for interval and complex interval data.

Chapter 5

Scalar Product Units for

Top-Performance Computers

By de�nition a top-performance computer is able to read two data x and y to perform

a product x� y into the arithmetic logical unit and/or the SPU simultaneously in one

portion. Supercomputers and vector processors are typical representatives of this kind

of computers. Usually the oating-point word consists of 64 bits and the data bus is

128 or even more bits wide. However, digital signal processors with a word size of 32

bits can also belong in this class if two 32 bit words are read into the ALU and/or

SPU in one portion. For these kind of computers both solutions A and B which have

been sketched in sections 2.1 and 2.2 make sense and will be discussed. The higher the

speed of the system the more hardware has to be employed. The most involved and

expensive solution seems to be best suited to reveal the basic ideas. So we begin with

solution A using a long adder for the double precision data format.

5.1 Long Adder for 64 Bit Data Word (Solution A)

In [Kir87] the basic ideas have been developed for a general data format. However, to

be very speci�c we discuss here a circuit for the double precision format of the IEEE-

arithmetic standard 754. The word size is 64 bits. The mantissa has 53 bits and the

exponent 11 bits. The exponent covers a range from �1022 to +1023. The LA has

4288 bits. We assume again that the scalar product computation can be subdivided

into a number of independent steps like

a) read ai and bi
b) compute the product ai � bi
c) add the product to the LA.

Now by assumption the SPU can read the two factors ai and bi simultaneously in

one portion. We call the time that is needed for this a cycle. Then, in a balanced

design, steps b) and c) should both be performed in about the same time. Using

well known fast multiplication techniques like Booth-Recoding and Wallace-tree this

certainly is possible for step b). Here, the two 53 bit mantissas are multiplied. The

product has 106 bits. The main di�culty seems to appear in step c). There, we have

to add a summand of 106 bits to the LA in every cycle.

With solution A the addition is performed by a long adder and a long shift, both

of L = 4288 bits. An adder and a shift of this size are necessarily slow, certainly too

33

slow to process one summand of 106 bits in a single cycle. Therefore, measures have

to be taken to speed up the addition as well as the shift. As a �rst step we subdivide

the long adder into shorter segments. Without loss of generality we assume that the

segments consist of 64 bits.1 A 64 bit adder certainly is faster than a 4288 bit adder.

Now each one of the 64 bit adders may produce a carry. We write these carries into

carry registers between two adjacent adders. See Fig. 10.

Figure 10: Parallel and segmented parallel adder.

If a single addition has to be performed these carries still have to be propagated. In

a scalar product computation, however, this is not necessary. We assume that a large

number of summands has to be added. We simply add the carry with the next summand

to the next more signi�cant adder. Only at the very end of the accumulation, when

no more summands are coming, carries may have to be eliminated. However, every

summand is relatively short. It consists of 106 bits only. So during the addition of a

summand, carries are only produced in a small part of the 4288 bit adder. The carry

elimination, on the other hand, takes place during each step of the addition wherever

a carry is left. So in an average case there will only be very few carries left at the end

of the accumulation and a few additional cycles will su�ce to absorb the remaining

carries. Thus, segmenting the adder enables it to keep up in speed with steps a) and

b) and to read and process a summand in each cycle.

The long shift of the 106 bit summand is slow also. It is speeded up by a matrix

shaped arrangement of the adders. Only a few, let us assume here four of the partial

adders, are placed in a row. We begin with the four least signi�cant adders. The four

next more signi�cant adders are placed directly beneath of them and so on. The most

signi�cant adders form the last row. The rows are connected as shown in Fig. 11.

1other segments are possible, see [Kir87, Kir88].

Figure 11: Block diagram of a SPU with long adder for a 64 bit data word and 128

bit data bus.

In our example, where we have 67 adders of 64 bits, 17 rows su�ce to arrange the

entire summing matrix. Now the long shift is performed as follows: The summand

of 106 bits carries an exponent. In a fast shifter of 106 to 256 bits it is shifted into

a position where its most signi�cant digit is placed directly above the position in the

long adder which carries the same exponent identi�cation E. The remaining digits

of the summand are placed immediately to its right. Now the summing matrix reads

this summand into the S-registers (summand registers) of every row. The addition

is executed in that row where the exponent identi�cation coincides with that of the

summand.

It may happen that the most signi�cant digit of the summand has to be shifted

so far to the right that the remaining digits would hang over at the right end of the

shifter. These digits then are reinserted at the left end of the shifter by a ring shift.

If now the more signi�cant part of the summand is added in row r, its less signi�cant

part will be added in row r � 1.

By this matrix shaped arrangement of the adders, the unit can perform both a shift

and an addition in a single cycle. The long shift is reduced to a short shift of 106 to

256 bits which is fast. The remaining shift happens automatically by the row selection

for the addition in the summing matrix.

Every summand carries an exponent which in our example consists of 12 bits. The

lower part of the exponent, i. e. the 8 least signi�cant digits, determine the shift width

and with it the selection of the columns in the summing matrix. The row selection is

obtained by the 4 most signi�cant bits of the exponent. This complies roughly with

the selection of the adding position in two steps by the process of Fig. 2. The shift

width and the row selection for the addition of a product ai � bi to the LA are known

as soon as the exponent of the product has been computed. Since the exponents of ai
and bi consist of 11 bits only, the result of their addition is available very quickly. So

while the multiplication of the mantissas is still being executed the shifter can already

be switched and the addresses of the LA words for the accumulation of the product

ai � bi can be selected.

The 106 bit summand touches at most three consecutive words of the LA. The

addition of the summand is executed by these three partial adders. Each of these

adders can produce a carry. The carry of the leftmost of these partial adders can with

high probability be absorbed, if the addition always is executed over four adders and

the fourth adder then is the next more signi�cant one. This can reduce the number

of carries that have to be resolved during future steps of the accumulation and in

particular at the end.

In each step of the accumulation an addition only has to be activated in the selected

row of adders and in those adders where a non zero carry is waiting to be absorbed.

This adder selection can reduce the power consumption for the accumulation step

signi�cantly.

The carry resolution method that has been discussed so far is quite natural. It is

simple and does not require particular hardware support. If long scalar products are

being computed it works very well. Only at the end of the accumulation, if no more

summands are coming, a few additional cyclesmay be required to absorb the remaining

carries. Then a rounding can be executed. However, this number of additional cycles

for the carry resolution at the end of the accumulation, although it is small in general,

depends on the data and is unpredictable. In case of short scalar products the time

needed for these additional cycles may be disproportionately high and indeed exceed

the addition time.

With the fast carry resolution mechanism that has been discussed in section 2.4

these di�culties can be overcome. At the cost of some additional hardware all carries

can be absorbed immediately at each step of the accumulation. The method is shown

in Fig. 11 also. Two ag registers for the all bits 0 and the all bits 1 ags are shown

at the left end of each partial accumulator word in the �gure. The addition of the

106 bit products is executed by three consecutive partial adders. Each one of these

adders can produce a carry. The carries between two of these adjacent adders can

be avoided, if all partial adders are built as Carry Select Adders. This increases the

hardware costs only moderately. The carry registers between two adjacent adders then

are no longer necessary.2 The ags indicate which one of the more signi�cant LA

words will absorb the left most carry. During an addition of a product only these 4

LA words are changed and only these 4 adders need to be activated. The addresses

of these 4 words are available as soon as the exponent of the summand ai � bi has

been computed. During the addition step now simultaneously with the addition of the

product the carry word can be incremented (decremented). If the addition produces

a carry the incremented word will be written back into the local accumulator. If the

addition does not produce a carry, the local accumulator word remains unchanged.

Since we have assumed that all partial adders are built as Carry Select Adders this

�nal carry resolution scheme requires no additional hardware. Simultaneously with

the incrementation/decrementation of the carry word a second set of ags is set up for

the case that a carry is generated. In this case the second set of ags is copied into the

former word.

The accumulators that belong to partial adders in Fig. 11 are denoted by AC.

Beneath them a small memory is indicated in the �gure. It can be used to save the

LA contents very quickly in case that a program with higher priority interrupts the

computation of a scalar product and requires the unit for itself. However, the author is

of the opinion that the scalar product is a fundamental and basic arithmetic operation

which should never be interrupted. The local memory on the SPU can be used for fast

execution of scalar products in the case of complex and of interval arithmetic.

In section 4.2 we have discussed applications like complex arithmetic or interval

arithmetic which make it desirable to provide more than one LA on the SPU. The

local memory on the SPU shown in Fig. 11 serves this purpose.

In Fig. 11 the registers for the summands carry an exponent identi�cation denoted

by E. This is very useful for the �nal rounding. The usefulness of the ags for the

�nal rounding has already been discussed. They also serve for fast clearing of the

accumulator.

The SPU which has been discussed in this section seems to be costly. However,

it consists of a large number of identical parts and it is very regular. This allows a

highly compact design. Furthermore the entire unit is simple. No particular exception

handling techniques are to be dealt with by the hardware. Vector computers are the

most expensive. A compact and simple solution, though expensive, is justi�ed for these

systems.

2This is the case in Fig. 12 where a similar situation is discussed. There all adders are supposed
to be carry select adders.

5.2 Long Adder for 32 Bit Data Word (Solution A)

In this section as well as in section 5.4 we consider a computer which uses a 32 bit

oating-point word and which is able to read two such words into the ALU and/or

SPU simultaneously in one portion. Digital signal processors are representatives of

this kind of computer. Real time computing requires very high computing speed and

high accuracy in the result. As in the last section we call the time that is needed to

read the two 32 bit oating-point words a cycle.

We �rst develop circuitry which realizes Solution A using a long adder and a long

shift. To be very speci�c we assume that the data are given as single precision oating-

point numbers conforming to the IEEE-arithmetic standards 754. There the mantissa

consists of 24 bits and the exponent has 8 bits. The exponent covers a range from

�126 to +127 (in binary). As discussed in Remark 3a) of section 2.2, 640 bits are a

reasonable choice for the LA. It can be represented by 10 words of 64 bits.

Again the scalar product is computed by a number of independent steps like

a) read ai and bi,

b) compute the product ai � bi,

c) add the product to the LA.

Each of the mantissas of ai and bi has 24 bits. Their product has 48 bits. It

can be computed very fast by a 24� 24 bit multiplier using standard techniques like

Booth-Recoding and Wallace tree. The addition of the two 8 bit exponents of ai and

bi delivers the exponent of the product consisting of 9 bits.

The LA consists of 10 words of 64 bits. The 48 bit mantissa of the product touches at

most two of these words. The addition of the product is executed by the corresponding

two consecutive partial adders. Each of these two adders can produce a carry. The

carry between the two adjacent adders can immediately be absorbed if all partial adders

are built as Carry Select Adders again. The carry of the more signi�cant of the two

adders will be absorbed by one of the more signi�cant 64 bit words of the LA. The ag

mechanism (see section 2.4) indicates which one of the LA words will absorb a possible

carry. So during an addition of a summand the contents of at most 3 LA words are

changed and only these three partial adders need to be activated. The addresses of

these words are available as soon as the exponent of the summand ai � bi has been

computed. During the addition step, simultaneously with the addition of the product,

the carry word can be incremented (decremented). If the addition produces a carry the

incremented word will be written back into the local accumulator. If the addition does

not produce a carry, the local accumulator word remains unchanged. Since all partial

adders are built as Carry Select Adders no additional hardware is needed for the carry

resolution. Simultaneously with the incrementation/decrementation of the carry word

a second set of ags is set up for the case that a carry is generated. If the latter is the

case the second set of ags is copied into the former ag word.

Details of the circuitry just discussed are summarized in Fig. 12. The �gure is

highly similar to Fig. 11 of the previous section. In order to avoid the long shift, the

long adder is designed as a summing matrix consisting of 2 adders of 64 bits in each

row. For simplicity in the �gure only 3 rows (of the 5 needed to represent the full LA)

are shown.

In a fast shifter of 48 to 128 bits the 48 bit product is shifted into a position where

its most signi�cant digit is placed directly above the position in the long adder which

carries the same exponent identi�cation E. The remaining digits of the summand are

placed immediately to its right. If they hang over at the right end of the shifter, they

are reinserted at the left end by a ring shift. Above the summing matrix in Fig. 12 two

possible positions of summands after the shift are indicated.

Figure 12: Block diagram of a SPU with long adder for a 32 bit data word and 64

bit data bus.

The summing matrix now reads the summand into its S-registers. The addition is

executed by those adders where the exponent identi�cation coincides with the one of

the summand. The exponent of the summand consists of 9 bits. The lower part, i. e.

the 7 least signi�cant digits, determine the shift width. The selection of the two adders

which perform the addition is determined by the most signi�cant bits of the exponent.

In Fig. 12 again some memory is indicated for each part of the LA. It can be used

to save the LA contents very quickly in case a program with higher priority interrupts

the computation of a scalar product and requires the unit for itself. The local memory

on the SPU also can be used for fast execution of scalar products in the case of complex

arithmetic and of interval arithmetic.

In comparison with Fig. 11, Fig. 12 shows an additional 32 bit data path directly

from the input register �le to the fast shifter. This data path is supposed to allow a

very fast execution of the operation multiply and add fused, rnd(a � b + c), which is

provided by some conventional oating-point processors. While the product a � b is

computed by the multiplier, the summand c is added to the LA.

The SPU which has been discussed in this section seems to be costly at �rst glance.

While a single oating-point addition conveniently can be done with one 64 bit adder,

here 640 full adders (10 64-bit adders) have been used in carry select adder mode.

However, the advantages of this design are tremendous. While a conventional oating-

point addition can produce a completely wrong result with only two or three additions,

the new unit never delivers a wrong answer, even if millions of oating-point numbers

or single products of such numbers are added. An error analysis is never necessary

for these operations. The unit consists of a large number of identical parts and it is

very regular. This allows a very compact design. No particular hardware has to be

included to deal with rare exceptions. Although an increase in adder equipment by

a factor of 10, compared with a conventional oating-point adder, might seem to be

high, the number of full adders used for the circuitry is not extraordinary. We stress

the fact that for a Wallace tree in case of a standard 53� 53 bit multiplier about the

same number of full adders is used. For fast conventional computers this has been the

state of the art multiplication for many years and nobody complains about high cost.

5.3 Short Adder with Local Memory on the Arith-

metic Unit for 64 Bit Data Word (Solution B)

In the circuits discussed in sections 5.1 and 5.2 adder equipment was provided for the

full width of the LA. The long adder was segmented into partial adders of 64 bits. In

section 5.1 67, and in section 5.2 10, such units were used. During an addition of a

summand, however, in section 5.1 only 4, and in section 5.2 only 3, of these units are

activated. This raises the question whether adder equipment is really needed for the

full width of the LA and whether the accumulation can be done with only 4 or 3 adders

in accordance with Solution B of section 2.2. There the LA is kept as local memory on

the arithmetic unit.

In this section we develop such a solution for the double precision data format. An

in-principle solution using a short adder and local memory on the arithmetic unit was

discussed in section 3.2. There the data ai and bi to perform a product ai� bi are read

into the SPU successively in two portions of 64 bits. This leaves 4 machine cycles to

perform the accumulation in the pipeline.

Figure 13: Block diagram of a SPU with short adder and local store for a 64 bit data

word and 128 bit data bus.

Now we assume that the two data ai and bi for a product ai � bi are read into the

SPU simultaneously in one portion of 128 bits. Again we call the time that is needed

for this a cycle. In accordance with the solution shown in Fig. 11 and section 5.1 we

assume again that the multiplication and the shift also can be done in one such read

cycle. In a balanced pipeline, then, the circuit for the accumulation must be able to

read and process one summand in each (read) cycle also. The circuit in Fig. 13 displays

a solution. Closely following the summing matrix in Fig. 11 we assume there that the

local memory LA is organized in 17 rows of four 64 bit words.

In each cycle the multiplier supplies a product (summand) to be added in the

accumulation unit. Every such summand carries an exponent which in our example

consists of 12 bits. The 8 lower (least signi�cant) bits of the exponent determine the

shift width. The row selection of the LA is obtained by the 4 most signi�cant bits of

the exponent. This roughly corresponds to the selection of the adding position in two

steps by the process described in the context of Fig. 2. The shift width and the row

selection for the addition of the product to the LA are known as soon as the exponent

of the product has been computed. Since the exponents of ai and bi consist of 11 bits

only, the result of their addition is available very quickly. So while the multiplication

of the mantissa is still being executed the shifter can already be switched and the

addresses for the LA words for the accumulation of the product ai� bi can be selected.

After being shifted the summand reaches the accumulation unit. It is read into the

input register IR of this unit. The shifted summand now consists of an exponent e, a

sign s, and a mantissa m. The mantissa touches three consecutive words of the LA,

while the exponent is reduced to the four most signi�cant bits of the original exponent

of the product.

Now the addition of the summand is performed in the accumulation unit by the

following three steps:

1. The local memory is addressed by the exponent e. The contents of the addressed

part of the LA including the word which resolves the carry are transferred to the

register before summation RBS. This transfer moves four words of 64 bits. The

summand is also transferred from IR to the corresponding section of RBS. In Fig.

13 this part of the RBS is denoted by e0, s0 and m0 respectively.

2. In the next cycle the addition or subtraction is executed in the add/subtract unit

according to the sign. The result is transferred to the register after summation

RAS. The adder/subtracter consists of 4 parallel adders of 64 bits which are

working in carry select mode. The summand touches three of these adders. Each

one of these three adders can produce a carry. The carries between two of these

adjacent adders are absorbed by the carry select addition. The fourth word is the

carry word. It is selected by the ag mechanism. During the addition step a 1 is

added to or subtracted from this word in carry select mode. If the addition pro-

duces a carry the incremented/ decremented word will be selected. If the addition

does not produce a carry this word remains unchanged. Simultaneously with the

incrementation/decrementation of the carry word a second set of ags is set up

which is copied into the ag word in the case that a carry is generated. In Fig.

13 two possible locations of the summand after the shift are indicated. The carry

word is always the most signi�cant word. An incrementation/decrementation of

this word never produces a carry. Thus the adder/subtracter in Fig. 13 simply

can be built as a parallel carry select adder.

3. In the next cycle the computed sum is written back into the same four memory

cells of the LA to which the addition has been executed. Thus only one address

decoding is necessary for the read and write step. A di�erent bus called write

data in Fig. 13 is used for this purpose.

In summary the addition consists of the typical three steps: 1. read the summand,

2. perform the addition, and 3. write the sum back into the (local) memory. Since a

summand is delivered from the multiplier in each cycle, all three phases must be active

simultaneously, i. e. the addition itself must be performed in a pipeline. This means

that it must be possible to read from the memory and to write into the memory in each

cycle simultaneously. So two di�erent data paths have to be provided. This, however,

is usual for register memory.

The pipeline for the addition consists of three steps. Pipeline conicts are quite

possible. A pipeline conict occurs if an incoming summand needs to be added to a

partner from the LA which is still being computed and not yet available in the local

memory. These situations can be detected by comparing the exponents e; e0 and e00 of

three successively incoming summands. In principle all pipeline conicts can be solved

by the hardware. Here we discuss the solution of two pipeline conicts which with high

probability are the most frequent occurrences.

One conict situation occurs if two consecutive products carry the same exponent

e. In this case the two summands touch the same three words of the LA. Then the

second summand is unable to read its partner for the addition from the local memory

because it is not yet available. This situation is checked by the hardware where the

exponents e and e0 of two consecutive summands are compared. If they are identical,

the multiplexer blocks o� the process of reading from the local memory. Instead the

sum which is just being computed is directly written back into the register before

summation RBS via the multiplexer so that the second summand can immediately be

added without memory involvement.

Another possibility of a pipeline conict occurs if from three successively incoming

summands the �rst one and the third one carry the same exponent. Since the pipeline

consists of three steps, the partner for the addition of the third one then is not yet

in the local memory but still in the register after summation RAS. This situation is

checked by the hardware also, see Fig. 13. There the two exponents e and e00 of the

two summands are compared. In case of coincidence the multiplier again suppresses

the reading from the local memory. Instead now, the sum of the former addition, the

result of which is still in RAS, is directly written back into the register RBS before

summation via the multiplexer. So also this pipeline conict can be solved by the

hardware without memory involvement.

The case e = e0 = e00 is also possible. It would cause a reading conict in the

multiplexer. The situation can be avoided by writing a dummy exponent into e00 or by

reading from the add/subtract unit with higher priority.

The product that arrives at the accumulation unit touches three consecutive words

of the LA. A more signi�cant fourth word absorbs the possible carry. The solution

for the two pipeline conicts just described works well, if this fourth word is the next

more signi�cant word. A carry is not absorbed by the fourth word if all its bits are

one, or are all zero. The probability that this is the case is 1 : 264 < 10�18. In the vast

majority of instances this will not be the case.

If it is the case the word which absorbs the carry is selected by the ag mechanism

and read into the most signi�cant word of the RBS. The addition step then again

works well including the carry resolution. But di�culties occur in both cases of a

pipeline conict. Fig. 14 displays a certain part of the LA. The three words to which

the addition is executed are denoted by 1, 2 and 3. The next more signi�cant word is

denoted by 4 and the word which absorbs the carry by 5.

Figure 14: Carry propagation in case of a pipeline conict.

In case of a pipeline conict with e = e0 or e = e00 the following addition again

touches the words 1, 2 and 3. Now the carry is absorbed either by word 4 or by word

5. Word 4 absorbs the carry if an addition is followed by an addition or a subtraction

followed by a subtraction. Word 5 absorbs the carry if an addition is followed by a

subtraction or vice versa. So the hardware has to take care that either word 4 or 5 is

read into the most signi�cant word of RBS depending on the operation which follows.

The case that word 5 is the carry word again needs no particular care. Word 5 is

already in the most signi�cant position of the RBS. It is simply treated the same way

as the words 1, 2 and 3. In the other case word 4 has to be read from the LA into RBS,

simultaneously with the words 1, 2 and 3 from the add/subtract unit or from RAS into

RBS. In this case word 5 is written into the local memory via the normal write path.

So far certain solutions for the possible pipeline conicts e = e0 and e = e00 have

been discussed. These are the most frequent but not the only conicts that may occur.

Similar di�culties appear if two or three successive incoming summands overlap only

partially. In this case the exponents e and e0 and/or e00 di�er by 1 or 2 so that also

these situations can be detected by comparison of the exponents. Another pipeline

conict appears if one of the two following summands overlaps with a carry word.

In these cases summands have to be built up in parts from the adder/subtracter or

RAS and the LA. Thus hardware solutions for these situations are more complicated

and costly. We leave a detailed study of these situations to the reader/designer and

o�er the following alternative: The accumulation pipeline consists of three steps only.

Instead of investing in a lot of hardware logic for rare situations of a pipeline conict it

may be simpler and less expensive to stall the pipeline and delay the accumulation by

one or two cycles as needed. It should be mentioned that other details as for instance

the width of the adder that is used also can heavily change the design aspects. A 128

instead of a 64 bit adder width which was assumed here could simplify several details.

It was already mentioned that the probability for the carry to run further than the

fourth word is less than 10�18. A particular situation where this happens occurs if the

sum changes its sign from a positive to a negative value or vice versa. This can happen

frequently. To avoid a complicated carry handling procedure in this case a small carry

counter of perhaps three bits could be appended to each 64 bit word of the LA. If these

counters are not zero at the end of the accumulation their contents have to be added

to the LA. For further details see [Kul86], [Kir88].

As was pointed out in connection with the unit discussed in section 3.2, the addition

of the summand actually can be carried out over 170 bits only. Thus the shifter that is

shown in Fig. 13 can be reduced to a 106 to 170 bits shifter and the data path from the

shifter to the input register IR as well as the one to RBS also need to be 170 bits wide

only. If this possible hardware reduction is applied, the summand has to be expanded

to the full 256 bits when it is transferred to the adder/subtracter.

5.4 Short Adder with Local Memory on the Arith-

metic Unit for 32 Bit Data Word (Solution B)

Now we consider again a 32 bit data word. We assume that two of these are read

simultaneously into the SPU in one read cycle. The LA is kept as local memory in the

SPU. We assume that the addition of a summand, which now is a 48 bit product, can

be done by three adders of 64 bits including the carry resolution. Multiplication of the

mantissas and addition of the exponents are done in full accordance with the upper

part of the circuits shown in Fig. 12. The shift is executed similarly to the one in Fig.

12. We shall comment on it later. The appropriately shifted product then reaches the

accumulation unit. A block diagram of this unit is shown in Fig. 15.

We assume that the multiplication and the shift can be performed in one read cycle.

Then, a shifted product reaches the input register IR of the accumulation unit in each

(read) cycle. The accumulation unit must add and process one summand in each such

cycle. The addition itself is performed by the following three steps, see Fig. 15.

1. The product which is already in IR touches at most two successive 64 bit words

of the LA. These words are addressed by the exponent e of the product. The

contents of these two words of the LA and the word which absorbs the carry are

transferred from the LA to the register part r0 of RBS. This transfer moves three

64 bit words. The summand in IR is also transferred to the corresponding section

of RBS. This part is denoted by e0; s0 and m0 in Fig. 15.

2. In the next step the addition or subtraction is executed in the add/subtract

unit according to the sign. The result is transferred to the register RAS. The

adder/subtracter consists of three 64 bit adders which are working in carry se-

lect mode. So the carries between the lower two of these adders are absorbed

by the carry select addition. The carry word is the most signi�cant one. An

incrementation/decrementation of this word never produces a carry. Thus the

adder/subtracter in Fig. 15 can be built simply as a parallel adder.

3. In the next cycle the computed sum is written back into the same three memory

cells of the LA to which the addition has been executed. The write bus is used

for this purpose. Thus only one address decoding is necessary for the read and

write step.

Since a summand is delivered from the multiplier in each cycle, all three of these

phases must be active simultaneously, i. e. the addition must be performed in a pipeline.

This means, in particular, that it must be possible to read from the LA and to write

into the LA simultaneously in each cycle. Therefore, two di�erent data paths have to

be provided, as shown in Fig. 15.

The pipeline for the addition consists of three steps. Pipeline conicts again are

quite possible. A pipeline conict occurs if an incoming summand needs to be added

to a partner from the LA which is still being computed and not yet available in the

local memory. These situations can be detected by comparing the exponents e; e0 and

e00 of three successively incoming summands. In principle all pipeline conicts can be

solved by the hardware. We discuss here the solution of two pipeline conicts which

with high probability are the most frequent occurrences.

Figure 15: Block diagram for a SPU with short adder and local store for a 32 bit data

word and 64 bit data bus.

One conict situation occurs if two consecutive products carry the same exponent e.

In this case the two summands touch the same two words of the LA. Then the second

summand is unable to read its partner for the addition from the LA because it is not

yet available. This situation is checked by the hardware where the exponent e and e0 of

two consecutive summands are compared. In case of coincidence the process of reading

from the LA is blocked o�. Instead the sum which is just being computed is directly

written back into the register RBS so that the second summand can immediately be

added without memory involvement.

Another possibility of a pipeline conict occurs if from three successive incoming

summands the �rst one and the third one carry the same exponent. Since the pipeline

consists of three phases the partner for the addition of the third one then is not yet in

the LA but still in the register RAS. This situation is checked by the hardware as well,

see Fig. 15. There the two exponents e and e00 are compared. In case of coincidence

again the process of reading from the LA is blocked o�. Instead now, the result of

the former addition, which is still in RAS, is directly written back into RBS. Then the

addition can be executed without LA involvement.

The case e = e0 = e00 is also possible. It would cause a conict in the selection unit

which in Fig. 15 is shown directly beneath of the LA. The situation can be avoided

by writing a dummy exponent into e00 or by reading from the add/subtract unit with

higher priority. This solution is not shown in Fig. 15.

The product that arrives at the accumulation unit touches two consecutive words

of the LA. A more signi�cant third word absorbs the possible carry. The solution for

the two pipeline conicts work well, if this third word is the next more signi�cant word

of the LA. The probability that this is not the case is less than 10�18. In the vast

majority of instances this will be the case.

If it is not the case the word which absorbs the carry is selected by the ag mecha-

nism and read into the most signi�cant word of the RBS. The addition step then works

well again including the carry resolution. But di�culties can occur in both cases of

a pipeline conict. Fig. 16 shows a certain part of the LA. The two words to which

the addition is executed are denoted by 1 and 2. The next more signi�cant word is

denoted by 3 and the word which absorbs the carry by 4.

Figure 16: Carry propagation in case of a pipeline conict.

In case of a pipeline conict with e = e0 or e = e00 the following addition again

touches the words 1 and 2. Now the carry is absorbed either by the word 3 or by

the word 4. Word 3 absorbs the carry if an addition is followed by an addition or a

subtraction is followed by a subtraction. Word 4 absorbs the carry if an addition is

followed by a subtraction or vice versa. So the hardware has to take care that either

word 3 or word 4 is read into the most signi�cant word of RBS depending on the

operation which follows. The case that the word 4 is the carry word again needs no

particular care. Word 4 is already in the most signi�cant position of the RBS. It is

simply treated the same way as the words 1 and 2. In the other case word 3 has

to be read from the LA into RBS simultaneously with the words 1 and 2 from the

add/subtract unit or from RAS into RBS. In this case word 4 is written into the local

memory via the normal write path.

So far solutions for the two pipeline conicts e = e0 and e = e00 have been discussed.

These are not the only conicts that may occur. Similar di�culties appear if two or

three successively incoming summands overlap only partially. In this case the exponents

e and e0 and/or e00 di�er by 1 so that these situations can be detected by comparison

of the exponents also. Another pipeline conict appears if one of the following two

summands overlaps with a carry word. In these cases summands have to be built up

in parts from the adder/subtracter or RAS and the LA. Thus hardware solutions for

these situations are more complicated and costly. We leave a detailed study of these

situations to the reader/designer and o�er the following alternative. The accumulation

pipeline consists of three steps only. Instead of investing in a lot of hardware logic for

very rare situations of a pipeline conict it may be simpler and less expensive to stall

the pipeline and delay the accumulation by one or two cycles as needed.

The product consists of 48 bits. So the summand never touches the 16 least signi�-

cant bits of word 1. The most signi�cant third 64 bit word of the adder is supposed to

absorb the carry. It can be built as an incrementer/decrementer by halfadders. Thus,

in comparison with Fig. 12, the shifter can be reduced to a 48 to 112 bit shifter and

the data path from the shifter to the input register IR as well as the one to RBS also

needs to be 112 bits wide only. If this possibility is chosen, the summand has to be

expanded to the full 192 bits when it is read into the adder/subtracter.

The circuits that have been discussed so far are based on the assumption that the

LA is organized in words of 64 bits and that the partial adder that is used is also

64 bits wide. It should be mentioned that these assumptions, although realistic, are

nevertheless somewhat arbitrary and that other choices are quite possible and may

lead to simpler or better solutions. The LA could as well be organized in words of 128

or only 32 bits. The width of the partial adder could also be 128 or 32 bits. All these

possibilities allow interesting solutions for the di�erent cases that have been discussed

in this paper. We leave it to the reader to play with these combinations and select the

one which �ts best to a given hardware environment. With increasing word size the

probability for a pipeline conict which has not been discussed so far decreases.

Chapter 6

Hardware Accumulation Window

So far it has been assumed in this paper that the SPU is incorporated as an integral

part of the arithmetic unit of the processor. Now we discuss the question of what can

be done if not enough register space for the LA is available on the processor.

The �nal result of a scalar product computation is assumed to be a oating-point

number with an exponent in the range e1 � e � e2. If this is not the case, the problem

has to be scaled. During the computation of the scalar product, however, summands

with an exponent outside of this rangemay occur. The remaining computation then has

to cancel all the digits outside of the range e1 � e � e2. So in a normal scalar product

computation, the register space outside this range will be used less frequently. It was

already mentioned earlier in this paper that the conclusion should not be drawn from

this consideration that the register size can be restricted to the single exponent range

in order to save some silicon area. This would require the instalment of complicated

exception handling routines in software or in hardware. The latter may �nally require as

much silicon. A software solution certainly is much slower. The hardware requirement

for the LA in case of standard arithmetics is modest and the necessary register space

really should be invested.

However, the memory space for the LA on the arithmetic unit grows with the

exponent range of the data format. If this range is extremely large, as for instance in

case of an extended precision oating-point format, then only an inner part of the LA

can be supported by hardware. We call this part of the LA a Hardware Accumulation

Window (HAW). See Fig. 17. The outer parts of this window must then be handled in

software. They are probably needed less often.

Figure 17: Hardware Accumulation Window (HAW).

There are still other reasons that suppose the development of techniques for the

computation of the accurate scalar product using a HAW. Many conventional comput-

ers on the market do not provide enough register space to represent the full LA on the

CPU. Then a HAW is one choice which allows a fast and correct computation of the

scalar product in many cases.

49

Another possibility is to place the LA in the user memory, i. e. in the data cache. In

this case only the start address of the LA and the ag bits are put into (�xed) registers

of the general purpose register set of the computer. This solution has the advantage

that only a few registers are needed and that a longer accumulator window or even the

full LA can be provided. This reduces the need to handle exceptions. The disadvantage

of this solution is that for each accumulation step, four memory words must be read

and written in addition to the two operand loads. So the scalar product computation

speed is limited by the data cache to processor transfer bandwidth and speed. If the

full long accumulator is provided this is a very natural solution. It has been realized

on several IBM, SIEMENS and HITACHI computers of the /370 architecture in the

1980s [IBM84, IBM86, IBM90, SIE86].

A faster solution certainly is obtained for many applications with a HAW in the

general purpose register set of the processor. Here only a part of the LA is present in

hardware. Overows and underows of this window have to be handled by software.

A full LA for the data format double precision of the IEEE-arithmetic standard 754

requires 4288 bits or 67 words of 64 bits. We assume here that only 10 of these words

are located in the general purpose register set.

Such a window covers the full LA that is needed for a scalar product computation

in case of the data format single precision of the IEEE-arithmetic standard 754. It also

allows a correct computation of scalar products in the case of the long data format of the

/370 architecture as long as no under- or overows occur. In this case 64+28+63 = 155

hexadecimal digits or 620 bits are required. With a HAW of 640 bits all scalar products

that do not cause an under- or overow could have been correctly computed on these

machines. This architecture was successfully used and even dominated the market

for more than 20 years. This example shows that even if a HAW of only 640 bits is

available, the vast majority of scalar products will execute on fast hardware.

Of course, even if only a HAW is available, all scalar products should be computed

correctly. Any operation that over- or underows the HAW must be completed in

software. This requires a complete software implementation of the LA, i. e. a variable

of type dotprecision. All additions that do not �t into the HAW must be executed in

software into this dotprecision variable.

There are three situations where the HAW can not correctly accumulate the prod-

uct:

� the exponent of the product is so high that the product does not (completely)

�t into the HAW. Then the product is added in software to the dotprecision

variable.

� the exponent of the product is so low that the product does not (completely) �t

into the HAW. Then the product is added in software to the dotprecision variable.

� the product �ts into the HAW, but its accumulation causes a carry to be propa-

gated outside the range of the HAW. In this case the product is added into the

HAW. The carry must be added in software to the dotprecision variable.

If at the end of the accumulation the contents of the software accumulator are non

zero, the contents of the HAW must be added to the software accumulator to obtain

the correct value of the scalar product. Then a rounding can be performed if required.

If at the end of the accumulation the contents of the software accumulator are zero,

the HAW contains the correct value of the scalar product and a rounded value can be

obtained from it.

Thus, in general, a software controlled full LA supplements a HAW. The software

routines must be able to perform the following functions:

� clear the software LA. This routine must be called during the initialization of the

HAW. Ideally, this routine only sets a ag. The actual clearing is only done if

the software LA is needed.

� add or subtract a product to/from the software LA.

� add or subtract a carry or borrow to/from the software LA at the appropriate

digit position.

� add the HAW to the software LA. This is required to produce the �nal result

when both the HAW and the software LA were used. Then a rounding can be

performed.

� round the software LA to a oating-point number.

With this software support scalar products can be computed correctly using a HAW

at the cost of a substantial software overhead and a considerable time penalty for

products that fall outside the range of the HAW.

An alternative to the HAW-software environment just described is to discard the

products that underow the HAW. A counter variable is used to count the number of

discarded products. If a number of products were discarded, the last bits of the HAW

must be considered invalid. A valid rounded result can be generated by hardware if

these bits are not needed. If this procedure fails to produce a useful answer the whole

accumulation is repeated in software using a full LA.

A 640 bit HAW seems to be the shortest satisfactory hardware window. If this

much register space is not available, a software implementation probably is the best

solution.

If a shorter HAW must be implemented, then it should be a movable window. This

can be represented by an exponent register associated with the hardware window. At

the beginning of an accumulation, the exponent register is set so that the window covers

the least signi�cant portion of the LA. Whenever a product would cause the window

to overow, its exponent tag is adjusted, i. e. the window moves to the left, so that the

product �ts into the window. Products that would cause an underow are counted and

otherwise ignored. The rounding instruction checks whether enough signi�cant digits

are left to produce a correctly rounded result or whether too much cancellation did

occur. In the latter case it is up to the user to accept the inexact result or to repeat

the whole accumulation in software using a full LA.

Using this technique a HAW as short as 256 bits could be used to perform rounded

scalar product computation and quadruple precision arithmetic. However, it would not

be possible to perform many other nice and useful applications of the optimal scalar

product with this type of scalar product hardware as for instance a long real arithmetic.

The software overhead caused by the reduction of the full width of the LA to a

HAW represents a trade o� between hardware expenditure and runtime.

With the accurate scalar product operators for multiple precision arithmetic in-

cluding multiple precision interval arithmetic can easily be provided. This enables the

user to use higher precision operations in numerically critical parts of a computation.

Experience shows that if one runs out of precision in a certain problem class one often

runs out of double or extended precision very soon as well. It is preferable and simpler,

therefore, to provide the principles for enlarging the precision than simply providing

any �xed higher precision. To allow fast execution of a number of multiple precision

arithmetics the HAW should not be too small.

Chapter 7

Theoretical Foundation of

Advanced Computer Arithmetic

and Shortcomings of Existing

Processors and Standards

Arithmetic is the basis of mathematics. Advanced computer arithmetic expands the

arithmetic andmathematical capability of the digital computer in the most natural way.

Instead of reducing all calculations to the four elementary operations for oating-point

numbers, advanced computer arithmetic provides twelve fundamental data types or

mathematical spaces with operations of highest accuracy in a computing environment.

Besides the real numbers, the complex numbers form the basis of analysis. For com-

putations with guarantees one needs the intervals over the real and complex numbers

as well. The intervals bring the continuum onto the computer. An interval between

two oating-point bounds represents the continuous set of real numbers between these

two bounds.

The twelve fundamental data types or mathematical spaces consist of the four

basic data types real, complex, interval and complex interval as well as the vectors

and matrices over these types. Arithmetic operations in the computer representable

subsets of these spaces are de�ned by a general mapping principle which is called a

semimorphism. These arithmetic operations are distinctly di�erent from the customary

ones in these spaces which are based on elementary oating-point arithmetic.

If M is any one of these twelve data types (or mathematical spaces) and N is its

computer representable subset, then for every arithmetic operation � in M , a corre-

sponding computer operation � in N is de�ned by

(RG) a � b := (a � b) for all a; b 2 N and all operations � in M;

where : M ! N is a mapping from M onto N which is called a rounding if it has

the following properties:

(R1) a = a for all a 2 N (projection)

(R2) a � b) a � b for a; b 2M (monotonicity)

The concept of semimorphism requires additionally that the rounding is antisym-

metric, i. e. that it has the property

53

(R3) (�a) = � (a) for all a 2M (antisymmetry)

For the interval spaces among the twelve basic data types | the intervals over the

real and complex numbers as well as the intervals over the real and complex vectors

and matrices | the order relation in (R2) is the subset relation �. A rounding from

any interval set M onto its computer representable subset N is de�ned by properties

(R1), (R2) (with � replaced by �), plus the additional property

(R4) a � a for all a 2M (inclusion)

These interval roundings are also antisymmetric, that is, they satisfy property (R3)

[Kul76, Kul81].

Additional important roundings from the real numbers onto the oating-point num-

bers are the montone downwardly and upwardly directed roundings with the property

(R4) 5a � a resp. a �4a for all a 2M (directed)

These directed roundings are uniquely de�ned by (R1), (R2) and (R4), see [Kul76,

Kul81]. Arithmetic operations are also de�ned by (RG) with the roundings5 and 4.

With the �ve rules (RG) and (R1, 2, 3, 4), a large number of arithmetic operations is

de�ned in the computer representable subsets of the twelve fundamental data types or

mathematical spaces. (RG) means that every computer operation should be performed

in such a way that it produces the same result as if the mathematically correct operation

were �rst performed in the basic space M and the exact result then rounded into the

computer representable subset N . In contrast to the traditional approximation of the

arithmetic operations in the product spaces by oating-point arithmetic, all operations

with the properties (RG), (R1) and (R2) are optimal in the sense that there is no

better computer representable approximation to the true result (with respect to the

prescribed rounding). In other words, between the correct and the computed result

of an operation there is no other element of the corresponding computer representable

subset. This can easily be seen: Let a; b 2 N , and � 2 N the greatest lower and � 2 N

the least upper bound of the correct result a � b in M , i. e.

� � a � b � �;

then

� =

(R1)

� �

(R2)

(a � b) =

(RG)

a � b �

(R2)

� =

(R1)

� (#)

Thus, all semimorphic computer operations are of 1 ulp (unit in the last place)

accuracy. 1/2 ulp accuracy is achieved in the case of rounding to nearest. In the

product spaces the order relation is de�ned componentwise. So in the product spaces

property (#) holds for every component.

Fig. 18 shows a table of the twelve basic arithmetic data types and corresponding

operators as they are provided by the programming language PASCAL-XSC [Kla91,

Kla93]. All data types and operators are prede�ned available in the language. The

operations can be called by the operator symbols shown in the table. An arithmetic

operator followed by a less or greater symbol denotes an operation with rounding

downwards or upwards, respectively. The operator +� takes the interval hull of two

elements, �� means intersection. Also all outer operations that occur in Fig. 18 (scalar

times vector, matrix times vector, etc.) are de�ned by the �ve properties (RG), (R1,

2, 3, 4), whatever applies. A count of all inner and outer prede�ned operations in the

�gure leads to a number of about 600 arithmetic operations.

Q
Q
Q
Q
Q
QQ

left
operand

right
op.

integer
real

complex

interval
cinterval

rvector
cvector

ivector
civector

rmatrix
cmatrix

imatrix
cimatrix

monadic +; � +; � +; � +; � +; � +; �

integer
real

complex

+; +<; +>

�; �<; �>

�; �<; �>

=; =<; =>

+�

+; �; �; =
+�

�; �<; �> � �; �<; �> �

interval
cinterval

+; �; �; =
+�

+; �; �; =
+�; ��

� � � �

rvector
cvector

�; �<; �>

=; =<; =>
�; =

+; +<; +>

�; �<; �>

�; �<; �>

+�

+; �; �
+�

ivector
civector

�; = �; = +; �; �
+�

+; �; �
+�; ��

rmatrix
cmatrix

�; �<; �>

=; =<; =>
�; = �; �<; �> �

+; +<; +>

�; �<; �>

�; �<; �>

+�

+; �; �
+�

imatrix
cimatrix

�; = �; = � �

+; �; �
+�

+; �; �
+�; ��

Figure 18: Prede�ned arithmetic data types and operators of PASCAL-XSC.

Fig. 19 lists the same data types in their usual mathematical notation. There IR

denotes the real and C the complex numbers. A heading letter V , M and I denotes

vectors, matrices and intervals, respectively. R stands for the set of oating-point

numbers and D for any set of higher precision oating-point numbers. If M is any set,

IPM denotes the power set, which is the set of all subsets of M . For any operation �

in M a corresponding operation � in IPM is de�ned by A�B := fa�b j a 2 A^b 2 Bg

for all A;B 2 IPM .

For each set-subset pair in Fig. 19, arithmetic in the subset is de�ned by semi-

morphism. These operations are di�erent in general from those which are performed

in the product spaces if only elementary oating-point arithmetic is furnished on the

computer. Semimorphism de�nes operations in a subset N of a set M directly by

making use of the operations in M . It makes a direct link between an operation in M

and its approximation in the subset N . For instance, the operations in MCR (see Fig.

19) are directly de�ned by the operations in MC , and not in a roundabout way viaC ,

IR, R, CR, and MCR as it would have to be done by using elementary oating-point

arithmetic only.

IR � D � R

V IR � V D � V R

MIR � MD � MR

IPIR � IIR � ID � IR

IPV IR � IV IR � IV D � IV R

IPMIR � IMIR � IMD � IMR

C � CD � CR

VC � V CD � V CR

MC � MCD � MCR

IPC � IC � ICD � ICR

IPVC � IVC � IVCD � IV CR

IPMC � IMC � IMCD � IMCR

Figure 19: Table of the spaces occurring in numerical computations.

The properties of a semimorphism can be derived as necessary conditions for an

homorphism between ordered algebraic structures [Kul76, Kul81]. It is easy to see

that repetition of semimorphism is again a semimorphism. A careful analysis of the

requirements of semimorphism is given in [Kul76, Kul81]. The resulting algebraic and

order structure are studied there under the mapping properties (RG) and (R1, 2, 3, 4).

Many properties of both the order structure and the algebraic structure are invariant

under a semimorphism. Because of (R2) with respect to � or � the order structure is

not changed if we move from a set into a subset in any row of Fig. 19, while the algebraic

structure is considerably weakened. The concept of semimorphism and its explicit �ve

rules (RG), (R1, 2, 3, 4) are used as an axiomatic de�nition of computer arithmetic in

the XSC-languages [Kla91, Kla92, Kla93, Kla93a, Kul87, Kul87a, IAM90, IBM90].

In the theory of computer arithmetic it is ultimately shown, that all arithmetic

operations of the twelve fundamental numerical data types of Fig. 18 or spaces of

Fig. 19 can be provided in a higher programming language by a modular technique,

if on a low level, preferably in hardware, 15 fundamental operations are available:

the �ve operations +;�;�; =; �, each one with the three roundings ;5;4. Here �

means the scalar product of two vectors, is a monotone, antisymmetric rounding,

e. g. rounding to nearest, and 5 and 4 are the monotone downwardly and upwardly

directed roundings from the real numbers into the oating-point numbers. All 15

operations � ;5� ;4� , with � 2 f+;�;�; =; �g, Fig. 20, are de�ned by (RG). In case of

the scalar product, a and b are vectors a = (ai), b = (bi) with any �nite number of

components.

+ � � = � a � b =
Pn

i=1 ai � bi
5+ 5� 5� 5= 5� a5� b = 5

Pn
i=1 ai � bi

4+ 4� 4� 4= 4� a4� b = 4
Pn

i=1 ai � bi

Figure 20: The �fteen fundamental operations for advanced computer arithmetic.

The IEEE arithmetic standards 754 and 854 o�er 12 of these operations: � ;5� ;4� ,

with � 2 f+;�;�; =g. These standards also prescribe speci�c data formats. A general

theory of computer arithmetic is not bound to these data formats. By adding just

three more operations, the optimal scalar products � ;5� ;4� , all operations in the usual

product spaces of numerical mathematics can be performed with 1 or 1/2 ulp accuracy

in each component.

Remark 1: With this information it seems to be relatively easy to provide advanced

computer arithmetic on processors which o�er the IEEE arithmetic standard 754. The

standard seems to be a step in the right direction. All that is additionally needed

are the three optimal scalar products � , 5� and 4� . If they are not supported by

the computer hardware they could be simulated. One possibility to simulate these

operations certainly would be to place the LA into the user memory, i. e. in the data

cache. This possibility was discussed in chapter 6.

However, a closer look into the subject reveals severe di�culties and disadvantages

which result in unnecessary performance penalties. So that at a place where an increase

in speed is to be expected, a severe loss of speed results instead.

A �rst severe drawback comes from the fact that IEEE arithmetic separates the

rounding from the operation. First the rounding mode has to be set. Then an arith-

metic operation can be performed. In a conventional oating-point computation this

does not cause any di�culties. The rounding mode is set only once. Then a large

number of arithmetic operations is performed with this rounding mode. However,

when interval arithmetic is performed, the rounding mode has to be switched very fre-

quently. In the computer the lower bound of the result of every interval operation has

to be rounded downwards and the upper bound rounded upwards. Thus the rounding

mode has to be set for every arithmetic operation. If setting the rounding mode and

the arithmetic operation are equally fast, this slows down interval arithmetic unnec-

essarily by a factor of two in comparison to a conventional oating-point arithmetic.

On the Pentium processor setting the rounding mode takes three cycles, the following

operation only one!! Thus an interval operation is 8 times slower than the correspond-

ing oating-point operation. On workstations the situation is even worse in general.

The rounding should be part of the arithmetic operation as required by the postulate

(RG) of the axiomatic de�nition of (advanced) computer arithmetic. Every one of the

rounded operations � ;5� ;4� , � 2 f+;�;�; =g should be executed in a single cycle! The

rounding must be an integral part of the operation.

A second severe drawback comes from the fact that all the commercial processors

that perform IEEE-arithmetic in case of multiplication only deliver a rounded product

to the outside world. Computation of an accurate scalar product requires products

of the full double length. These products have to be simulated from outside on the

processor. This slows down the multiplication by a factor of 10 in comparison to

a rounded hardware multiplication. In a software simulation of the accurate scalar

product the products of double length then have to be accumulated into the LA.

This process is again slower by a factor of 5 in comparison to a (possibly wrong)

hardware accumulation of products in oating-point arithmetic. Thus in summary a

factor of at least 50 for the runtime is the trade-o� for an accurate computation of

the scalar product on existing processors. This is too much to be easily accepted by

the user. Again at a place where an increase in speed by a factor of at least two is to

be expected if the scalar product is supported by hardware, a severe loss of speed is

obtained by processors which have not been designed for accurate computation of the

scalar product.

A third severe drawback is the fact that no reasonable interface to the program-

ming languages is required by existing computer arithmetic standards. The majority

of operations shown in Fig. 18 can be provided in a programming language which al-

lows operator overloading. Operator overloading, however, is not enough to call the

twelve operations � ;5� ;4� , � 2 f+;�;�; =g which are provided by all IEEE-arithmetic

processors in a higher programming language. A general operator concept is necessary

for ease of programming (three real operations for +;�;�; =). This solution has been

chosen in PASCAL-XSC. In C-XSC which has been developed as a C++ class library,

the 8 operators 5� and 4� , � 2 f+;�;�; =g are hidden in the interval operations and

not openly available. This is necessary because C++ does not allow three di�erent

operators for addition, subtraction, multiplication and division for the data type real.

Computer arithmetic is an integral part of all programming languages. The quality

of the arithmetic operations should be an integral part of the de�nition of all program-

ming languages. This can easily be done. All operations that are shown in Fig. 18

can be de�ned by the �ve simple rules (RG) and (R1, 2, 3, 4). In particular the eight

operations5� and4� , with � 2 f+;�;�; =g are de�ned by (RG), (R1), (R2) and (R4).

All interval operations are de�ned by (RG), (R1), (R2), (R3) and (R4). All other

operations that appear in Fig. 18 can be de�ned by (RG), (R1), (R2) and (R3) with

the additional information whether rounding to nearest, towards in�nity or towards

zero is required. A precise de�nition of advanced computer arithmetic thus turns out

to be short and simple.

IEEE-arithmetic has been developed as a standard for microprocessors in the early

eighties at a time when the microprocessor was the 8086. Since that time the speed

of microprocessors has been increased by several magnitudes. IEEE-arithmetic is now

even provided and used by super computers, the speed of which is faster again by

several magnitudes. All this is no longer in balance. With respect to arithmetic many

manufacturers believe that realization of the IEEE-arithmetic standard is all that is

necessary to do. In this way the existing standards prove to be a great hindrance

to further progress. Advances in computer technology are now so profound that the

arithmetic capability and repertoire of computers should be expanded to prepare the

digital computer for the computations of the next century. The provision of Advanced

Computer Arithmetic is the most natural way to do this.

Remark 2: A vector arithmetic coprocessor chip for the PC has been developed in a

CMOS VLSI gate array technology at the author's Institute in 1993/94. It is connected

with the PC via the PCI-bus. The PCI- and EMC-interface are integrated on chip.

In its time the chip computed the accurate scalar product between two and four times

faster than the PC an approximation in oating-point arithmetic. With increasing

clock rate of the PC the PCI-bus turned out to be a severe bottle neck. To keep up

with the increased speed the SPU must be integrated into the arithmetic logical unit

of the processor and interconnected by an internal bus system.

The chip, see Fig. 21, realizes the SPU that has been discussed in section 3.1,

207,000 transistors are needed. About 30% of the transistors and the silicon area are

used for the local memory and the ag registers with the carry resolution logic. The

remaining 70% of the silicon area is needed for the PCI/EMC-interface and the chip's

own multiplier, shifter, adder and rounding unit. All these units would be superuous if

the SPU were integrated into the arithmetic unit of the processor. A multiplier, shifter,

adder and rounding unit are already there. Everything just needs to be arranged a

little di�erently. Thus �nally the SPU requires fewer transistors and less silicon area

than is needed for the exception handling of the IEEE-arithmetic standard. Logically

the SPU is much more regular and simpler. With it a large number of exceptions that

can occur in a conventional oating-point computation are avoided.

Modern computer technology can provide millions of transistors on a single chip.

This allows solutions to put into the computer hardware which even an experienced

computer user is totally unaware of. Due to the insu�cient knowledge and familiarity

with the technology, the design tools and implementation techniques, obvious and easy

solutions are not demanded by mathematicians. The engineer on the other hand, who

is familiar with these techniques, is not aware of the consequences for mathematics.

Remark 3: In addition to the numerical data types and operators displayed in Fig. 18,

the XSC-languages provide an array type staggered (staggered precision) [Ste84, Ste89]

for multiple precision data. A variable of type staggered consists of an array of variables

of the type of its components. Components of the staggered type can be of type real or

of type interval. The value of a variable of type staggered is the sum of its components.

Addition and subtraction of such multiple precision data can easily be performed in

the LA. Multiplication of two variables of this type can be computed easily and fast by

the accurate scalar product. Division is performed iteratively. The multiple precision

data type staggered is controlled by a global variable called stagprec. If stagprec is 1,

the staggered type is identical to its component type. If, for instance, stagprec is 4 each

variable of this type consists of an array of four variables of its component type. Again

its value is the sum of its components. The global variable stagprec can be increased or

decreased at any place in a program. This enables the user to use higher precision data

and operations in numerically critical parts of his computation. It helps to increase

software reliability. The elementary functions for the type staggered are also available

in the XSC-languages for the component types real and interval [Bra87, Kra87]. In

the case that stagprec is 2, a data type is encountered which occasionally is denoted as

double-double or quadruple precision.

Figure 21: Functional units, chip and board of the vector arithmetic coprocessor

XPA 3233.

Bibliography

[Ada93] Adams, E.; Kulisch, U.(eds.): Scienti�c Computing with Automatic

Result Veri�cation. I. Language and Programming Support for Veri�ed

Scienti�c Computation, II. Enclosure Methods and Algorithms with Au-

tomatic Result Veri�cation, III. Applications in the Engineering Sciences.

Academic Press, San Diego, 1993 (ISBN 0-12-044210-8).

[Alb77] Albrecht, R.; Kulisch, U. (Eds.): Grundlagen der Computerarith-

metik. Computing Supplementum 1. Springer-Verlag, Wien / New York,

1977.

[Alb93] Albrecht, R.; Alefeld, G.; Stetter, H.J. (Eds.): Validation Numerics

{ Theory and Applications. Computing Supplementum 9, Springer-

Verlag, Wien / New York, 1993.

[Ale74] Alefeld, G.; Herzberger, J.: Einf�uhrung in die Intervallrechnung. Bib-

liographisches Institut (Reihe Informatik, Nr. 12), Mannheim / Wien /

Z�urich, 1974 (ISBN 3-411-01466-0).

[Ale83] Alefeld, G.; Herzberger, J.: An Introduction to Interval Computa-

tions. Academic Press, New York, 1983 (ISBN 0-12-049820-0).

[Apo68] Apostolatos, N.; Kulisch, U.; Krawczyk, R.; Lortz, B.; Nickel, K.; Wipper-

mann, H.-W.: The Algorithmic Language Triplex-ALGOL 60. Numerische

Mathematik 11, pp. 175-180, 1968.

[Bau92] Baumhof, Ch.: Behavioural Description of A Scalar Product Unit. Univer-

sit�at Karlsruhe, ESPRIT Project OMI/HORN, Deliverable Report D1.2/2,

Dec. 1992.

[Bau95] Baumhof, Ch.: A New VLSI Vector Arithmetic Coprocessor for the PC. In

[ARITH, Vol. 12, pp. 210-215], 1995.

[Bau96] Baumhof, Ch.: Ein Vektorarithmetik-Koprozessor in VLSI-Technik zur Un-

terst�utzung des Wissenschaftlichen Rechnens. Dissertation, Universit�at

Karlsruhe, 1996.

[Bau96a] Baumhof, Ch.; Bohlender, G.: A VLSI Vector Arithmetic Coprocessor for

the PC. Proceedings of WAI'96 in Recife/Brasil, RITA (Revista de In-

form�atica Te�orica e Aplicada), Extra Edition, October 1996.

[Bea68] De Beauclair, W.: Rechnen mit Maschinen. Vieweg, Braunschweig,

1968.

63

[Ble87] Bleher, J. H.; Kulisch, U.; Metzger, M.; Rump, S. M.; Ullrich, Ch.; Wal-

ter, W.: FORTRAN{SC: A Study of a FORTRAN Extension for Engi-

neering/Scienti�c Computation with Access to ACRITH. Computing 39,

pp. 93-110, Nov. 1987.

[Boh77] Bohlender, G.: Floating-Point Computation of Functions with Maximum

Accuracy. IEEE Transactions on Computers, Vol. C-26, no. 7, July 1977.

[Boh78] Bohlender, G.: Genaue Berechnung mehrfacher Summen, Produkte und

Wurzeln von Gleitkommazahlen und allgemeine Arithmetik in h�oheren Pro-

grammiersprachen. Dissertation, Universit�at Karlsruhe, 1978.

[Boh81] Bohlender, G.; Gr�uner, K.; Kaucher, E.; Klatte, R.; Kr�amer, W.; Kulisch,

U.; Miranker, W. L.; Rump, S. M.; Ullrich, Ch.; Wol� v. Gudenberg, J.:

PASCAL{SC: A PASCAL for Contemporary Scienti�c Computation. IBM

Research Report RC 9009 (#39456) 8/25/81, 79 pages, 1981.

[Boh81a] Bohlender, G.; Kaucher, E.; Klatte, R.; Kulisch, U.; Miranker, W. L.; Ull-

rich, Ch.; Wol� v. Gudenberg, J.: FORTRAN for Contemporary Numerical

Computation. IBM Research Report RC 8348. Computing 26, pp. 277-314,

1981.

[Boh90] Bohlender, G.: What Do We Need Beyond IEEE Arithmetic? In [Ull90,

pp. 1-32], 1990.

[Boh98] Bohlender, G.: Literature List on Enclosure Methods and Related Topics

Institut f�ur Angewandte Mathematik, Universit�at Karlsruhe, Report, 1998.

[Boe83] B�ohm, H.: Berechnung von Polynomnullstellen und Auswertung arithmetis-

cher Ausdr�ucke mit garantierter maximaler Genauigkeit. Dissertation, Uni-

versit�at Karlsruhe, 1983.

[Bra87] Braune, K: Hochgenaue Standardfunktionen f�ur reelle und komplexe Punkte

und Intervalle in beliebigen Gleitpunktrastern. Dissertation, Universit�at

Karlsruhe, 1987.

[Cap88] Cappello, P. R.; Miranker, W. L.: Systolic Super Summation. IEEE Trans-

actions on Computers 37 (6), pp. 657-677, June 1988.

[Cap88a] Cappello, P. R.; Miranker, W. L.: Systolic Super Summation with Reduced

Hardware. IBM Research Report RC 14259 (#63831), IBM Research Di-

vision, Yorktown Heights, New York, Nov. 30, 1988.

[Erb92] Erb, H.: Ein Gleitpunkt-Arithmetikprozessor mit mehrfacher Pr�azision zur

veri�zierten L�osung linearer Gleichungssysteme. Dissertation, Fakult�at f�ur

Informatik, Universit�at Karlsruhe, 1992.

[Ham87] Hamada, H.: A New Real Number Representation and its Operation. In

[ARITH, Vol. 8, pp. 153-157], 1987.

[Ham92] Hammer, R.: Maximal genaue Berechnung von Skalarproduktausdr�ucken

und hochgenaue Auswertung von Programmteilen. Dissertation, Univer-

sit�at Karlsruhe, 1992.

[Ham93] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D.: Numerical Toolbox

for Veri�ed Computing I: Basic Numerical Problems. (Vol. II see

[Kra98], version in C++ see [Ham95]) Springer{Verlag, Berlin / Heidelberg

/ New York, 1993.

[Ham95] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D.: C++ Toolbox for Veri-

�ed Computing: Basic Numerical Problems. Springer{Verlag,Berlin

/ Heidelberg / New York, 1995.

[Her94] Hergenhan, A.: Spezi�kation und Entwurf einer hochleistungsf�ahigen

Gleitkomma{Architektur. Diplomarbeit, Technische Universit�at Dresden,

1994.

[Hoe95] Hoe�inger, B.: Next-Generation Floating-Point Arithmetic for Top-

Performance PCs. The 1995 Silicon Valley Personal Computer Design

Conference and Exposition, Conference Proceedings, pp. 319-325, 1995.

[Hof93] Ho�, T.: How Children Accumulate Numbers or Why We Need a Fifth

Floating-Point Operation. In: Jahrbuch �Uberblicke Mathematik, S. 219-

222, Vieweg Verlag, 1993.

[Ker94] Kernhof, J.; Baumhof, Ch.; H�o�inger, B.; Kulisch, U.; Kwee, S.; Schramm,

P.; Selzer, M.; Teufel, Th.: A CMOS Floating-Point Processing Chip for

Veri�ed Exact Vector Arithmetic. European Solid State Circuits Confer-

ence 94 ESSCIRC, Ulm, Sept. 1994.

[Kir87] Kirchner, R.; Kulisch, U.: Arithmetic for Vector Processors. In [ARITH,

Vol. 8, pp. 256-269], 1987.

[Kir88] Kirchner, R.; Kulisch, U.: Accurate Arithmetic for Vector Processing. Jour-

nal of Parallel and Distributed Computing 5, special issue on \High Speed

Computer Arithmetic", pp. 250-270, 1988.

[Kla91] Klatte, R.; Kulisch, U.; Neaga, M.; Ratz, D.; Ullrich, Ch.: PASCAL{

XSC | Sprachbeschreibung mit Beispielen. Springer-Verlag,

Berlin/Heidelberg/New York, 1991 (ISBN 3-540-53714-7, 0-387-53714-7).

[Kla92] Klatte, R.; Kulisch, U.; Neaga, M.; Ratz, D.; Ullrich, Ch.: PASCAL{

XSC | Language Reference with Examples. Springer-Verlag,

Berlin/Heidelberg/New York, 1992.

[Kla93] Klatte, R.; Kulisch, U.; Lawo, C.; Rauch, M.; Wietho�, A.: C{XSC, A

C++ Class Library for Extended Scienti�c Computing. Springer-

Verlag, Berlin/Heidelberg/New York, 1993.

[Kla93a] Klatte, R.; Kulisch, U.; Neaga, M.; Ratz, D.; Ullrich, Ch.: PASCAL{

XSC| Language Reference with Examples (In Russian). Moscow,

1994.

[Kno91] Kn�ofel, A.: Hardwareentwurf eines Rechenwerks f�ur semimorphe Skalar-

und Vektoroperationen unter Ber�ucksichtigung der Anforderungen veri-

�zierender Algorithmen. Dissertation, Universit�at Karlsruhe, 1991.

[Kno91a] Kn�ofel, A.: Fast Hardware Units for the Computation of Accurate Dot

Products. In [ARITH, Vol. 10, pp. 70-74], 1991.

[Kra87] Kr�amer, W.: Inverse Standardfunktionen f�ur reelle und komplexe Interval-

largumente mit a priori Fehlerabsch�atzungen f�ur beliebige Datenformate.

Dissertation, Universit�at Karlsruhe, 1987.

[Kra89] Kr�amer, W.; Walter, W.: FORTRAN{SC: A FORTRAN Extension for

Engineering/Scienti�c Computation with Access to ACRITH, General In-

formation Notes and Sample Programs. pp 1{51, IBMDeutschland GmbH,

Stuttgart, 1989.

[Kra98] Kr�amer, W.; Kulisch, U.; Lohner, R.: Numerical Toolbox for Veri�ed

Computing II: Theory, Algorithms and Pascal-XSC Programs.

(Vol. I see [Ham93, Ham95]) Springer{Verlag, Berlin / Heidelberg / New

York, to appear 1998.

[Kul71] Kulisch, U.: An axiomatic approach to rounded computations. TS Report

No. 1020, Mathematics Research Center, University of Wisconsin, Madison,

Wisconsin, 1969, and Numerische Mathematik 19, pp. 1-17, 1971.

[Kul75] Kulisch, U.: Formalization and Implementation of Floating-Point Arith-

metic. Computing 14, pp. 323-348, 1975.

[Kul76] Kulisch, U.: Grundlagen des Numerischen Rechnens | Mathema-

tische Begr�undung der Rechnerarithmetik. Reihe Informatik, Band

19, Bibliographisches Institut, Mannheim/Wien/Z�urich, 1976 (ISBN 3-411-

01517-9).

[Kul81] Kulisch, U.; Miranker, W. L.: Computer Arithmetic in Theory and

Practice. Academic Press, New York, 1981 (ISBN 0-12-428650-x).

[Kul81a] Kulisch, U.: Schaltungsanordnung und Verfahren zur Bildung von

Skalarprodukten und Summen von Gleitkommazahlen mit maximaler

Genauigkeit. Patentschrift DE 3144015 A1, 1981.

[Kul82] Kulisch, U.; Ullrich, Ch. (Eds.): Wissenschaftliches Rechnen und Pro-

grammiersprachen. Proceedings of Seminar held in Karlsruhe, April 2{3,

1982. Berichte des German Chapter of the ACM, Band 10, B. G. Teubner

Verlag, Stuttgart, 1982 (ISBN 3-519-02429-2).

[Kul83] Kulisch, U.; Miranker, W. L. (Eds.): A New Approach to Scienti�c

Computation. Proceedings of Symposium held at IBM Research Center,

Yorktown Heights, N. Y., 1982. Academic Press, New York, 1983 (ISBN

0-12-428660-7).

[Kul84] Kulisch, U.; Miranker, W. L.: The Arithmetic of the Digital Computer: A

New Approach. IBM Research Center RC 10580, pp. 1-62, 1984. SIAM

Review, Vol. 28, No. 1, pp. 1-40, March 1986.

[Kul86] Kulisch, U.; Kirchner, R.: Schaltungsanordnung zur Bildung von

Produktsummen in Gleitkommadarstellung, insbes. von Skalarprodukten.

Patentschrift DE 3703440 C2, 1986.

[Kul87] Kulisch, U. (Ed.): PASCAL{SC: A PASCAL extension for scien-

ti�c computation, Information Manual and Floppy Disks, Version IBM

PC/AT; Operating System DOS. B. G. Teubner Verlag (Wiley-Teubner

series in computer science), Stuttgart, 1987 (ISBN 3-519-02106-4 / 0-471-

91514-9).

[Kul87a] Kulisch, U. (Ed.): PASCAL{SC: A PASCAL extension for scienti�c

computation, InformationManual and Floppy Disks, Version ATARI ST.

B. G. Teubner Verlag, Stuttgart, 1987 (ISBN 3-519-02108-0).

[Kul89] Kulisch, U. (Ed.): Wissenschaftliches Rechnen mit Ergebnisveri�ka-

tion | Eine Einf�uhrung. Ausgearbeitet von S. Ge�org, R. Hammer und

D. Ratz. Vol. 58. Akademie Verlag, Berlin, und Vieweg Verlagsgesellschaft,

Wiesbaden, 1989.

[Kul94] Kulisch, U.; Teufel, T.; Hoe�inger, B.: Genauer und trotzdem schneller,

Ein neuer Coprozessor f�ur hochgenaue Matrix- und Vektoroperationen.

Titelgeschichte, Elektronik 26, 1994.

[Lic88] Lichter, P.: Realisierung eines VLSI-Chips f�ur das Gleitkomma-Skalarpro-

dukt der Kulisch-Arithmetik. Diplomarbeit, Fachbereich 10, Angewandte

Mathematik und Informatik, Universit�at des Saarlandes, 1988.

[Mei87] Meis, T.: Brauchen wir eine Hochgenauigkeitsarithmetik? Elektronische

Rechenanlagen, Carl Hanser Verlag, pp. 19-23, 1987.

[Mue91] M�uller, M.; R�ub, Ch.; R�ulling, W.: Exact Accumulation of Floating-Point

Numbers. In [ARITH, Vol. 10, pp. 64-69], 1991.

[Mue93] M�uller, M.: Entwicklung eines Chips f�ur ausl�oschungsfreie Summation von

Gleitkommazahlen. Dissertation, Universit�at des Saarlandes, Saarbr�ucken,

1993.

[Pic72] Pichat, M.: Correction d'une somme en arithm�etique �a virgule ottante.

Numerische Mathematik 19, pp. 400-406, 1972.

[Pri91] Priest, D. M.: Algorithms for Arbitrary Precision Floating Point Arith-

metic. In [ARITH, Vol. 10, pp. 132-143], 1991.

[Rum80] Rump, S. M.: Kleine Fehlerschranken bei Matrixproblemen. Dissertation,

Universit�at Karlsruhe, 1980.

[Rum83] Rump, S. M.: How Reliable are Results of Computers? / Wie zuverl�assig

sind die Ergebnisse unserer Rechenanlagen? In: Jahrbuch �Uberblicke Math-

ematik, Bibliographisches Institut, Mannheim, 1983.

[Rum83a] Rump, S. M.; B�ohm, H.: Least Signi�cant Bit Evaluation of Arithmetic

Expressions in Single-Precision. Computing 30, pp. 189-199, 1983.

[Sch92] Schmidt, L.: Semimorphe Arithmetik zur automatischen Ergebnisveri�ka-

tion auf Vektorrechnern. Dissertation, Universit�at Karlsruhe, 1992.

[Ste84] Stetter, H. J.: Sequential Defect Correction for High-Accuracy Floating-

Point Algorithms. Lecture Notes in Mathematics, Vol. 1006, pp. 186-202,

Springer-Verlag, 1984.

[Ste89] Stetter, H. J.: Staggered Correction Representation, a Feasible Approach

to Dynamic Precision. In: Proceedings of the Symposium on Scienti�c

Software, edited by Cai, Fosdick, Huang, China University of Science and

Technology Press, Beijing, China, 1989.

[Suz96] Suzuki, H.; Morinaka, H.; Makino, H.; Nakase, Y.; Mashiko, K.; Sumi, T,:

Leading-Zero Anticipatory Logic for High-Speed Floating-Point Addition.

IEEE Journal of Solid-State Circuits, Vol. 31, No. 8, August 1996.

[Tan92] Tangelder, R.J.W.T: The Design of Chip Architectures for Accurate Inner

Product Computation. Dissertation, Technical University Eindhoven, 1992.

ISBN 90-9005204-6.

[Teu84] Teufel, T.: Ein optimaler Gleitkommaprozessor. Dissertation, Universit�at

Karlsruhe, 1984.

[Ull90] Ullrich, Ch. (Ed.): Computer Arithmetic and Self-Validating Nu-

merical Methods. (Proceedings of SCAN 89, held in Basel, Oct. 2-6,

1989, invited papers). Academic Press, San Diego, 1990.

[Wal90] Wallis, P. J. L. (Ed.): Improving Floating-Point Programming.

J. Wiley, Chichester, 1990 (ISBN 0 471 92437 7).

[Wal89] Walter, W.: FORTRAN{SC: A FORTRAN Extension for Engineering /

Scienti�c Computation with Access to ACRITH, Language Reference and

User's Guide. 2nd ed., pp. 1-396, IBMDeutschland GmbH, Stuttgart, Jan.

1989.

[Wil63] Wilkinson, J.: Rounding Errors in Algebraic Processes. Prentice-

Hall, Englewood Cli�s, New Jersey, 1963.

[Win85] Winter, Th.: Ein VLSI-Chip f�ur Gleitkomma-Skalarprodukt mit maximaler

Genauigkeit. Diplomarbeit, Fachbereich 10, Angewandte Mathematik und

Informatik, Universit�at des Saarlandes, 1985.

[Win90] Winter, D. T.: Automatic Identi�cation of Scalar Products. In [Wal90],

1990.

[Yil89] Yilmaz, T.; Theeuwen, J.F.M.; Tangelder, R.J.W.T.; Jess, J.A.G.: The De-

sign of a Chip for Scienti�c Computation. Eindhoven University of Tech-

nology, 1989 and pp. 335-346 of Proceedings of the Euro-Asic Symposium,

Grenoble, Jan.25-27, 1989.

[Yoh73] Yohe, J.M.: Roundings in Floating-Point Arithmetic. IEEE Trans. on

Computers, Vol. C-22, No. 6, June 1973, pp. 577-586.

[ARITH] Institute of Electrical and Electronics Engineers: Proceedings of x-th

Symposium on Computer Arithmetic ARITH. IEEE Computer So-

ciety Press. IEEE Service Center, 445 Hoes Lane, P.O.Box 1331, Piscat-

away, NJ 08855-1331, USA.

Editors of proceedings; place of conference; date of conference.

1. Shively, R.R.; Minneapolis; June 16, 1969.

2. Garner, H.L.; Atkins, D.E.; Univ Maryland, College Park; May 15 {

16, 1972.

3. Rao, T.R.N.; Matula, D.W.; SMU, Dallas; Nov. 19 { 20, 1975.

4. Avizienis, A.; Ercegovac, M.D.; UCLA, Los Angeles; Oct. 25 { 27,

1978.

5. Trivedi, K.S.; Atkins, D.E.; Univ Michigan, Ann Arbor; May 18 { 19,

1981.

6. Rao, T.R.N.; Kornerup, P.; Univ Aarhus, Denmark; June 20 { 22,

1983.

7. Hwang, K.; Univ Illinois, Urbana; June 4 { 6, 1985.

8. Irwin, M.J.; Stefanelli, R.; Como, Italy; May 19 { 21, 1987.

9. Ercegovac, M.; Swartzlander, E.; Santa Monica; Sept. 6 { 8, 1989.

10. Kornerup, P.; Matula, D.; Grenoble, France; June 26 { 28, 1991.

11. Swartzlander Jr., E.; Irwin, M. J.; Jullien, G.; Windsor, Ontario; June

29 { July 2, 1993.

12. Knowles, S.; Mc Allister, W. H.; Bath, England; July 19 { 21, 1995;

13. Lang, Th.; Muller, J.-M.; Takagi, N.; Asilomar, California; July 6 { 9,

1997;

[IAM80] IAM: PASCAL-XR: PASCAL for eXtended Real arithmetic. Joint research

project with Nixdorf Computer AG. Institute of AppliedMathematics, Uni-

versity of Karlsruhe, Postfach 6980, D-76128 Karlsruhe, Germany, 1980.

[IAM88] IAM: FORTRAN{SC: A FORTRAN Extension for Engineering / Scienti�c

Computation with Access to ACRITH. Institute of Applied Mathemat-

ics, University of Karlsruhe, Postfach 6980, D-76128 Karlsruhe, Germany,

Jan. 1989.

1. Language Reference and User's Guide, 2nd edition.

2. General Information Notes and Sample Programs.

[IAM90] IAM: ACRITH{XSC, A Programming Language for Scienti�c Computa-

tion. Syntax Diagrams. Institute of Applied Mathematics, University of

Karlsruhe, Postfach 6980, D-76128 Karlsruhe, Germany, 1990.

[IBM84] IBM: IBM System/370 RPQ. High Accuracy Arithmetic. SA 22-7093-0,

IBM Deutschland GmbH (Department 3282, Sch�onaicher Strasse 220, D-

71032 B�oblingen), 1984.

[IBM86] IBM: IBM High-Accuracy Arithmetic Subroutine Library

(ACRITH). IBM Deutschland GmbH (Department 3282, Sch�onaicher

Strasse 220, D-71032 B�oblingen), 3rd edition, 1986.

1. General Information Manual. GC 33-6163-02.

2. Program Description and User's Guide. SC 33-6164-02.

3. Reference Summary. GX 33-9009-02.

[IBM86a] IBM Verfahren und Schaltungsanordnung zur Addition von Gleitkom-

mazahlen. Europ�aische Patentanmeldung, EP 0 265 555 A1, 1986.

[IBM90] IBM: ACRITH{XSC: IBM High Accuracy Arithmetic | Ex-

tended Scienti�c Computation. Version 1, Release 1. IBMDeutsch-

land GmbH (Sch�onaicher Strasse 220, D-71032 B�oblingen), 1990.

1. General Information, GC33-6461-01.

2. Reference, SC33-6462-00.

3. Sample Programs, SC33-6463-00.

4. How To Use, SC33-6464-00.

5. Syntax Diagrams, SC33-6466-00.

[IEEE81] IEEE: A Proposed Standard for Binary Floating-Point Arithmetic. IEEE

Computer, March 1981.

[IEEE85] American National Standards Institute / Institute of Electrical and Elec-

tronics Engineers: A Standard for Binary Floating-Point Arithmetic.

ANSI/IEEE Std. 754-1985, New York, 1985 (reprinted in SIGPLAN 22,

2, pp. 9-25, 1987). Also taken over as IEC Standard 559:1989.

[IEEE87] American National Standards Institute / Institute of Electrical and Elec-

tronics Engineers: A Standard for Radix-Independent Floating-Point Arith-

metic. ANSI/IEEE Std. 854-1987, New York, 1987.

[IMACS89] IMACS; GAMM: IMACS-GAMM Resolution on Computer Arithmetic.

In Mathematics and Computers in Simulation 31, pp. 297-298, 1989. In

Zeitschrift f�ur Angewandte Mathematik und Mechanik 70, no. 4, p. T5,

1990.

[IMACS93] IMACS; GAMM: GAMM-IMACS Proposal for Accurate Floating-Point

Vector Arithmetic. GAMM, Rundbrief 2, pp. 9-16, 1993. Mathematics and

Computers in Simulation, Vol. 35, IMACS, North Holland, 1993. News of

IMACS, Vol. 35, No. 4, pp. 375-382, Oct. 1993.

[NUM91] Numerik Software GmbH: PASCAL{XSC: A PASCAL Extension for

Scienti�c Computation. User's Guide. Numerik Software GmbH,

Haid-und-Neu-Stra�e 7, D-76131 Karlsruhe, Germany / Postfach 2232, D-

76492 Baden-Baden, Germany, 1991.

[SIE86] SIEMENS: ARITHMOS (BS 2000) Unterprogrammbibliothek f�ur

Hochpr�azisionsarithmetik. Kurzbeschreibung, Tabellenheft, Be-

nutzerhandbuch. SIEMENS AG, Bereich Datentechnik, Postfach 83 09

51, D-8000 M�unchen 83. Bestellnummer U2900-J-Z87-1, Sept. 1986.

List of Figures

1 Long accumulator with long shift for accurate scalar product accumulation 14

2 Short adder and local store on the arithmetic unit for accurate scalar

product accumulation. 15

3 Fast carry resolution. 18

4 Accumulation of a product to the LA by a 64 bit adder. 20

5 Pipeline for the accumulation of scalar products on computers with 32

bit data bus. 21

6 Block diagram for a SPU with 32 bit data supply and sequential addition

into SPU. 22

7 Parallel accumulation of a product into the LA. 24

8 Pipeline for the accumulation of scalar products. 25

9 Block diagram for a SPU with 64 bit data bus and parallel addition into

the SPU. 26

10 Parallel and segmented parallel adder. 34

11 Block diagram of a SPU with long adder for a 64 bit data word and 128

bit data bus. 35

12 Block diagram of a SPU with long adder for a 32 bit data word and 64

bit data bus. 39

13 Block diagram of a SPU with short adder and local store for a 64 bit

data word and 128 bit data bus. 41

14 Carry propagation in case of a pipeline conict. 44

15 Block diagram for a SPU with short adder and local store for a 32 bit

data word and 64 bit data bus. 46

16 Carry propagation in case of a pipeline conict. 47

17 Hardware Accumulation Window (HAW). 49

18 Prede�ned arithmetic data types and operators of PASCAL-XSC. . . . 55

19 Table of the spaces occurring in numerical computations. 56

20 The �fteen fundamental operations for advanced computer arithmetic. . 56

21 Functional units, chip and board of the vector arithmetic coprocessor

XPA 3233. 61

71

