
Minimum Delay Adder for Redundant Complex Binary Number
System

JAWAD SALEEM, USMAN ALI, SADAF SAEED, SHAHID A. KHAN

Department of Electrical Engineering
COMSATS Institute of Information Technology, Abbottabad (Pakistan)

Abstract: We find the applications of complex numbers in almost all fields of modern science and engineering.
Due to its much application a lot of research work is underway to reduce the computation requirements for the
Complex binary numbers. Recent research indicates that complex numbers can be represented in single
binary-unit format as in Complex Binary Number System (CBNS) with bases (−1+j) and (−1−j). One-unit
binary representation of complex numbers in CBNS form reduces computational complexity in arithmetic
operations involving such numbers, although the problem of carry appears to be more pronounced in this
system compared to base-2 binary system. This has led to the definition of Redundant Complex Binary
Number System (RCBNS), which permits carry-free addition of complex binary numbers. This paper proposes
an hardware architecture for the carry-free addition of RCBNS. The presented adder is developed directly
from truth table of 3-bit block RCBNS addition.

Key-Words: - Complex Binary Number System (CBNS), Redundant Complex Binary Number System
(RCBNS), Complex Numbers, Arithmetic, Addition, Subtraction

1 Introduction

We find the application of complex numbers
in diverse fields of science and engineering such as
in digital signal processing and image processing.
The complex nature of these numbers poses
complexity in dealing with arithmetic operations. In
this respect the focus of recent work is the search for
efficient approaches to handle situations involving
complex numbers. Presently the divide and conquer
technique to deal with complex arithmetic operations
is in practice. Recently researchers came up with the
latest innovations for reducing the computational
complexities involved in arithmetic operations one is
obtained by defining binary numbers with bases
other than 2, which facilitate one unit representation
of complex numbers, which include work by
knuth[1], penny[2] and stepaneko[3]. Jamil et al[4]
have presented complete analysis of (-1+j)-base
complex binary number system and elaborated how
arithmetical, operations can be accomplished.
Another interesting approach is by Zaini et al[5]
which permits carry free arithmetic operator for
complex numbers. These two techniques have
largely reduced the complexities we encounter in
arithmetic operations. The beauty of these
techniques lies in the simplicity they offer in
arithmetic operations and it is proved that the
arithmetical operations involving complex numbers
by the use of these techniques are no more complex.
RCBNS is getting preference over CBNS due to
carry-free addition, simple multiplication and direct
conversion method between base-2 and base (-1+j),

whereas CBNS does not provide these advantages.

2 (−−−−1+j)-Base Complex Binary
Number System (CBNS)
The value of an n-bit binary number with base
(–1+j) can be written in the form of a power series
as follows: an-1(-1+j)n-1+an-2(-1+j)n-2+...+a1(-1+j)1+
a0(-1+j)0 where the coefficients an-1,an-2,
an-3,…,a2,a1,a0 are binary (either 0 or 1). This is
analogous to the ordinary binary number system
power series of: an-1(2)n-1+an-2(2)n-2+…+a1(2)1

+a0 (2)0 except that the bases are different. Using the
algorithms, given in Ref.[5], we are able to represent
a given complex number as single complex binary
number:

Let’s first begin with the case of positive
integers N. To represent N in the complex binary
number system, we follow these steps:
1) Express N in terms of powers of 4 using division

process.
2) Now convert the base 4 number (..., q5, q4, q3,

q2, q1,q0) to base –4 by replacing each digit in
odd location (q1, q3, q5,...) with its negative to
get (..., –q5, q4,–q3, q2, –q1, q0).

3) Normalize the new number (i.e., get each digit
in the range 0 to 3) by repeatedly adding four to
the negative digits and adding a one to the digit
on its left. If the digit is 4, replace it by a zero
and subtract a one from the digit on its left. To
represent the given number in the base –1+j, we
replace each digit in base –4 representation with

the corresponding four bit sequence (0 �0000;
1�0001 ; 2 �1100 ; 3�1101).

Thus,
2000base10= 0001110000000001000100000000base −1+j

To convert a negative integer into (–1+j)-base
representation, we simply multiply the
representation of the corresponding positive integer
with 11101 (equivalent to –1base –1+j) according to the
multiplication algorithm. Thus
–2000base10 = 1100 0000 0000 1101 0000 0000base −1+j

To represent a positive or negative imaginary
number in (–1+j)-base representation, we multiply
the corresponding complex binary representation of
the positive or negative integer with 11 (equivalent
to jbase10) or 111 (equivalent to –jbase10), as
appropriate.

Conversion algorithms for fractions and
floating-point numbers are described in detail in
Ref. [6], which leads to the conclusion that any type
of number can be represented in CBNS.

Having known the conversion algorithms, the
binary representation for any given complex number
can be easily obtained, as shown by the following
example:

2004 + j2004
= 1110100000001110111001100000base(-1+j)

This can be verified by computing the power series
(-1+j)27 + (-1+j)26 + (-1+j)25 + (-1+j)23 + (-1+j)15 +
(-1+j)14 + (-1+j)13 + (-1+j)11 + (-1+j)10 + (-1+j)9 +
(-1+j)6 + (-1+j)5 = 2004 + j2004

2.1 CBNS Addition
The binary addition of two complex binary numbers
follows these rules: 0 + 0 = 0;0 + 1 = 1; 1 + 0 = 1;
1 + 1 = 1100. If two numbers with 1s in position n
are added, this will result in 1s in positions n+3 and
n+2 and 0s in positions n+1 and n in the sum.
Furthermore, 11 + 111 = 0 [Zero Rule]. Designs and
implementations of nibble-size minimum-delay and
ripple-carry adders have been presented in Ref. [7]
while a size-free adder design has been presented in
Ref.[8].
3 Redundant Complex Binary
Number System (RCBNS)
RCBNS is a positional number system that has a
complex radix and uses a digit set {−α to +α} that
allows for carry-free additions[9]. α is restricted to
[(r − 1)/2] ≤ α ≤ (r − 1) where r = 4. Using radix of

(−1+j) and a digit set {−3, −2, −1, 0, +1, +2, +3}�
α = 3, yields the value of X = (xn−1,xn−2,…,x1,x0)
given by the expression:

�
−

=
+−=

1

0

)1(
n

i

i
i jxX … (1)

Where xi is in the range {−3 to +3}.

Using Equation (1), the RCBNS representations of
some complex numbers are given in Table 1.

Table 1: RCBNS representations for some
complex numbers

No
 2 + j2 - j2 -1 + j 1

-3 –j3 -1 1 1 0
-2 –j3 0 1 -1 -3
-1-j3 0 1 -1 -2
0-j3 0 1 -1 -1
1-j3 0 1 -1 0
2-j3 0 1 -1 1
3-j3 0 1 -1 2

-3 +j3 0 -1 1 -2
-2 +j3 0 -1 1 -1
-1+j3 0 -1 1 0
0+j3 0 -1 1 1
1+j3 0 -1 1 2
2+j3 1 -1 -1 -1
3+j3 1 -1 -1 0

-3 –j2 0 1 0 -3
-2 –j2 0 1 0 -2
-1-j2 0 1 0 -1
0-j2 0 1 0 0
1-j2 0 1 0 1
2-j2 0 1 0 2
3-j2 0 1 0 3

Conversion of a complex number to the RCBNS
form is achieved by converting the complex number
into the binary form for the real and imaginary parts
and then by using the following steps [9]:

1) Check the sign of both the real and imaginary
parts. If each is positive or negative, then for the
positive numbers place a 0 in front of each of 2-bit
digit (e.g. for 9 =10 01, then 010 and 001), and
similarly for the negative numbers place 1 in front of
each of 2-bit digit (e.g. for –9 = -10 01, then 110 and
101).
2) Combine the right three bits of the imaginary part
to the right three bits of the real part. Repeat the
same for the next three bits to form rows named as
qi(where i=0,1,2,3….).(see example below)
3) Find the equivalent value for combined group of
three bits from real and imaginary part in each row

qi (where i=0,1,2,3….) from Table 2. There are four
tables for the combinations of the sign of the real
part and the sign of the imaginary part (+/+, +/−,
−/+, −/−). Table 2 shows only the positive sign for
both the imaginary and real parts.
4) Label a group of 4 bits in the first row as q0. To
generate the successive rows, multiply the current
row by –4 and so on. This results in the change of
sign and magnitude from one row to the next.
Therefore, even rows have positive and odd rows
have negative signs (... +q5, −q 4, +q 3, −q 2, +q1, −q 0).

Table 2: Table of conversion from Binary form to
RCBNS form in +/+ case

The example below illustrates the conversion of a
complex binary number to the RCBNS form.

Example: Convert complex number 6+7j to RCBNS

form
Step 1: Express numbers in the binary form for

imaginary and real parts.
Part 1 (J) � 7 = 01 11 � 7 = 001 011
Part 2 (R) � 6 = 01 10 � 6 = 001 010
Step 2: Get 3 bits of each part and combine them

together starting with LSB as 3 bits of J and put
them together with 3 bits of R to form rows.

q0 � 011 010
q1 � 001 001
Step 3: Find the equivalent values for each group of

R and J from Table 2.
q0 � 011 010 -> 001 101 101 101 � 1 −1−1−1
q1 � 001 001 -> 000 000 001 010 � 0 0 1 2
Step 4: Multiply the positive sign to even rows and

the negative sign to the odd rows.
q0 � 1−1−1−1
q1 � 0 0 –1 -2
Finally combine them again in the following order.

(…q5 , q 4, q 3, q 2, q 1, q 0).

So complex number 6+7j is represented in RCBNS
as (0 0 -1 –2 1 -1 -1 -1).

3.1 RCBNS Addition

Complex numbers expressed in the RCBNS
form can be used as operands to perform arithmetic
operations. The results of the operation will be in the
RCBNS form. An example of the addition of two
complex numbers, (4+j9) and (18+j25) expressed in
the RCBNS form is illustrated below.
First, the two complex numbers (4+j9) and (18+j25)
are converted into the RCBNS form. Then the
addition operation is performed. The complex
number (4+j9) is equivalent to (0 1 0 –1 0 0 1 1) in
the RCBNS form, and similarly the complex number
(18+j25) is equivalent to (0 0 1 2 0 1 0 0 1 0 –1 –1).

X 0 0 1 2 0 1 0 0 1 0 -1 -1
Y 0 0 0 0 0 1 0 -1 0 0 1 1
===============================
S1 0 0 1 2 0 2 0 -1 1 0 0 0

The addition above is carry-free.

In some cases the result may have numbers
ranging from −6 to 6; in such cases normalization is
necessary. The process of normalization is as
follows:
• Normalize the intermediate result to be in the set of
{−3, −2, −1, 0, 1, 2, 3}.
• Get the final result S = Normalization + Carry, or
S=S1, if S1 in the range of –3 to 3.
4 Minimum Delay Adder
Let us suppose that we have to add A and B RCBNs.
Let A is represented by as

A=A0 A1 A2 A3…An
And B be represented as

B=B0 B1 B2 B3….Bn
Each An and Bn is 3-bit number. For example in the
example presented in the previous section
X=1 0 −1 −1 0 1 0 0 1 0 −1 0
Here X is arranged in the following order
X=X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
Here each Xi (where i=0,1,2….12) is each 3-bit.
Our design would add each Bn and An separately
using the minimum delay adder and would utilize
serial architecture to add all other An and Bn.
The design of a 3-bit minimum-delay CBNS adder
involves the following steps:
(i) Generation of a truth table with two 3-bit
operands --- operand A with a0a1a2 bits and Operand
B with b0b1b2 bits --- addition of these two operands
produces three outputs which are labeled as c0c1c2.

The truth table has a total of 26 = 64 minterms as
shown in Table 3.
(ii) We’ll use a 6x64 decoder to implement this
truth table. For this purpose, we express each
output in sum-of-minterms form as shown in Table
4.
(iii) Finally, these expressions are implemented
using the decoder and OR gates as shown in Figure
2.

Table 3: Truth Table e Minimum-
Delay RCBN Adder

 a0 a1 a2 b0 b1 b2 c0 c1 c2
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 1
2 0 0 0 0 1 0 0 1 0
3 0 0 0 0 1 1 0 1 1
4 0 0 0 1 0 0 0 0 0
5 0 0 0 1 0 1 1 0 1
6 0 0 0 1 1 0 1 1 0
7 0 0 0 1 1 1 1 1 1
8 0 0 1 0 0 0 0 0 1
9 0 0 1 0 0 1 0 1 0

10 0 0 1 0 1 0 0 1 1
11 0 0 1 0 1 1 N O R
12 0 0 1 1 0 0 0 0 1
13 0 0 1 1 0 1 0 0 0
14 0 0 1 1 1 0 1 0 1
15 0 0 1 1 1 1 1 1 0
16 0 1 0 0 0 0 0 1 0
17 0 1 0 0 0 1 0 1 1
18 0 1 0 0 1 0 N O R
19 0 1 0 0 1 1 N O R
20 0 1 0 1 0 0 0 1 0
21 0 1 0 1 0 1 0 0 1
22 0 1 0 1 1 0 0 0 0
23 0 1 0 1 1 1 1 0 1
24 0 1 1 0 0 0 0 1 1
25 0 1 1 0 0 1 N O R
26 0 1 1 0 1 0 N O R
27 0 1 1 0 1 1 N O R
28 0 1 1 1 0 0 0 1 1
29 0 1 1 1 0 1 0 1 0
30 0 1 1 1 1 0 0 0 1
31 0 1 1 1 1 1 0 0 0
32 1 0 0 0 0 0 0 0 0
33 1 0 0 0 0 1 0 0 1
34 1 0 0 0 1 0 0 1 0
35 1 0 0 0 1 1 0 1 1
36 1 0 0 1 0 0 0 0 0
37 1 0 0 1 0 1 1 0 1
38 1 0 0 1 1 0 1 1 0

39 1 0 0 1 1 1 1 1 1
40 1 0 1 0 0 0 1 0 1
41 1 0 1 0 0 1 0 0 0
42 1 0 1 0 1 0 0 0 1
43 1 0 1 0 1 1 0 1 0
44 1 0 1 1 0 0 1 0 1
45 1 0 1 1 0 1 1 1 0
46 1 0 1 1 1 0 1 1 1
47 1 0 1 1 1 1 N O R
48 1 1 0 0 0 0 1 1 0
49 1 1 0 0 0 1 1 0 1
50 1 1 0 0 1 0 0 0 0
51 1 1 0 0 1 1 0 0 1
52 1 1 0 1 0 0 1 1 0
53 1 1 0 1 0 1 1 1 1
54 1 1 0 1 1 0 N O R
55 1 1 0 1 1 1 N O R
56 1 1 1 0 0 0 1 1 1
57 1 1 1 0 0 1 1 1 0
58 1 1 1 0 1 0 1 0 1
59 1 1 1 0 1 1 0 0 0
60 1 1 1 1 0 0 1 1 1
61 1 1 1 1 0 1 N O R
62 1 1 1 1 1 0 N O R
63 1 1 1 1 1 1 N O R

5 Functional design of Adder

Figure 1: Function Diagram of RCBNS Adder

Functional diagram for RCBNS adder is
shown in figure 1. Our design would take input 3 bit
numbers An and Bn from memory A and memory B
respectively into 3-bit shift register and pass these
numbers to 3-bit minimum delay RCBNS adder. The
final results after addition are passed on to the 3-bit
register and then finally stored in memory C.

6 Conclusion & Future Work
Both CBNS and RCBNS hold promising

future because of their ease in representing complex
numbers as one unit and thus simplifying arithmetic
operations involving such numbers. We have
reviewed RCBNS and their addition and proposed
hardware architecture for RCBNs adder. We have
designed a minimum delay adder for RCBNs, which
is implemented directly from the truth table and use
only arrays of OR and AND gates. Future of RCBN
adder is very prominent, efficient adder if developed
would make RCBNS very important in the field of
computations
References:
[1] D. Knuth: “An Imaginary Number System”,

Communications of the ACM, pp. 245-
247,1960.

[2] W. Penney:, “A Binary System for Complex
Numbers”, Journal of the ACM, pp. 247-248,
April 1965.

[3] V. Stepanenko: “Computer Arithmetic of
Complex Numbers”, Cybernetics and System
Analysis, Vol. 32, No. 4, pp. 585-591, 1996.

[4] T. Jamil, N. Holmes, and D. Blest: “Towards
Implementation of a Binary Number System for
Complex Numbers”, Proceedings of the IEEE
SoutheastCon 2000, Nashville, Tennessee
(USA), pp. 268-274, April 2000.

[5] H. Zaini and R. G. Deshmukh “Complex
Number Representation in RCBNS Form for
Arithmetic Operations and Conversion of the
Result into Standard Binary Form” Journal of
Systemics, Cybernetics and Informatics, Vol.2,
No.1, 2003.

[6] T. Jamil: “The Complex Binary Number System
– Basic Arithmetic Made Simple”, IEEE
Potentials, Vol. 20, No. 5, pp. 39-41,
December/January 2002.

 [7] T. Jamil, B. Arafeh, and A. Al Habsi:
“Hardware Implementation and Performance
Evaluation of Complex Binary Adder Designs”,
Proceedings of the 7th World Multiconference
on Systemics Cybernetics, and Informatics (SCI
2003), Orlando, Florida (USA), Vol. II, pp. 68-
73, July 2003.

[8] J. Goode, T. Jamil, and D. Callahan: “A Simple
Circuit for Adding Complex Numbers,” WSEAS
Transactions on Information Science and
Applications, Vol. 1, No. 1, pp. 61-66, July
2004.

[9] T. Jamil , A. A. Abdulghani, and A. Al-Maashari
“Design of a Nibble-Size Subtractor for (-1+j)-
Base Complex Binary Numbers”, WSEAS
Transactions on Circuits and Systems, Vol. 3,
No. 5, pp. 1067-1072, July 2004.

Table 4: Sum-of-Minterms expressions for Outputs of a 3-bit Minimum-Delay Adder

c0=� (5,6,7,14,15,23,37,38,39,40,44,45,46,48,49,52,53,56,57,58,60)

c1=� (2,3,6,7,9,10,15,16,17,20,24,28,29,34,35,38,39,43,45,46,48,52,53,56,57,60)

c 2=� (1,3,5,7,8,10,12,14,17,21,23,24,28,30,33,35,37,39,40,42,44,46,49,51,53,56,58,60)

Figure 2: Block Diagram of a 3-bit Minimum-Delay RCBN Adder using Decoder

