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Abstract: We find the applications of complex numbers in almost all fields of modern science and engineering. 
Due to its much application a lot of research work is underway to reduce the computation requirements for the 
Complex binary numbers. Recent research indicates that complex numbers can be represented in single 
binary-unit format as in Complex Binary Number System (CBNS) with bases (−1+j) and (−1−j). One-unit 
binary representation of complex numbers in CBNS form reduces computational complexity in arithmetic 
operations involving such numbers, although the problem of carry appears to be more pronounced in this 
system compared to base-2 binary system. This has led to the definition of Redundant Complex Binary 
Number System (RCBNS), which permits carry-free addition of complex binary numbers. This paper proposes 
an hardware architecture for the carry-free addition of RCBNS. The presented adder is developed directly 
from truth table of 3-bit block RCBNS addition.  
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1   Introduction 

We find the application of complex numbers 
in diverse fields of science and engineering such as 
in digital signal processing and image processing. 
The complex nature of these numbers poses 
complexity in dealing with arithmetic operations. In 
this respect the focus of recent work is the search for 
efficient approaches to handle situations involving 
complex numbers. Presently the divide and conquer 
technique to deal with complex arithmetic operations 
is in practice. Recently researchers came up with the 
latest innovations for reducing the computational 
complexities involved in arithmetic operations one is 
obtained by defining binary numbers with bases 
other than 2, which facilitate one unit representation 
of complex numbers, which include work by 
knuth[1], penny[2] and stepaneko[3]. Jamil et al[4] 
have presented complete analysis of (-1+j)-base 
complex binary number system and elaborated how 
arithmetical, operations can be accomplished. 
Another interesting approach is by Zaini et al[5]  
which permits carry free arithmetic operator for 
complex numbers. These two techniques have 
largely reduced the complexities we encounter in 
arithmetic operations. The beauty of these 
techniques lies in the simplicity they offer in 
arithmetic operations and it is proved that the 
arithmetical operations involving complex numbers 
by the use of these techniques are no more complex. 
RCBNS is getting preference over CBNS due to 
carry-free addition, simple multiplication and direct 
conversion method between base-2 and base (-1+j), 

whereas CBNS does not provide these advantages. 
 
2   (−−−−1+j)-Base Complex Binary 
Number System (CBNS) 
The value of an n-bit binary number with base        
(–1+j) can be written in the form of a power series 
as follows: an-1(-1+j)n-1+an-2(-1+j)n-2+...+a1(-1+j)1+ 
a0(-1+j)0 where the coefficients an-1,an-2,                  
an-3,…,a2,a1,a0 are binary (either 0 or 1). This is 
analogous to the ordinary binary number system 
power series of: an-1(2)n-1+an-2(2)n-2+…+a1(2)1                

+a0 (2)0 except that the bases are different. Using the 
algorithms, given in Ref.[5], we are able to represent 
a given complex number as single complex binary 
number: 

Let’s first begin with the case of positive 
integers N. To represent N in the complex binary 
number system, we follow these steps: 
1) Express N in terms of powers of 4 using division 

process. 
2) Now convert the base 4 number (..., q5, q4, q3, 

q2, q1,q0) to base –4 by replacing each digit in 
odd location (q1, q3, q5,...) with its negative to 
get (..., –q5, q4,–q3, q2, –q1, q0). 

3) Normalize the new number (i.e., get each digit 
in the range 0 to 3) by repeatedly adding four to 
the negative digits and adding a one to the digit 
on its left. If the digit is 4, replace it by a zero 
and subtract a one from the digit on its left. To 
represent the given number in the base –1+j, we 
replace each digit in base –4 representation with 



the corresponding four bit sequence (0 �0000; 
1�0001 ; 2 �1100 ; 3�1101). 

 
Thus,  
2000base10= 0001110000000001000100000000base −1+j  
 

To convert a negative integer into (–1+j)-base 
representation, we simply multiply the 
representation of the corresponding positive integer 
with 11101 (equivalent to –1base –1+j) according to the 
multiplication algorithm. Thus 
–2000base10 = 1100 0000 0000 1101 0000 0000base −1+j 
 

To represent a positive or negative imaginary 
number in (–1+j)-base representation, we multiply 
the corresponding complex binary representation of 
the positive or negative integer with 11 (equivalent 
to jbase10) or 111 (equivalent to –jbase10), as 
appropriate. 
 

Conversion algorithms for fractions and 
floating-point numbers are described in detail in 
Ref. [6], which leads to the conclusion that any type 
of number can be represented in CBNS.  
 

Having known the conversion algorithms, the 
binary representation for any given complex number 
can be easily obtained, as shown by the following 
example: 
 
2004 + j2004  
= 1110100000001110111001100000base(-1+j) 

This can be verified by computing the power series 
(-1+j)27 + (-1+j)26 + (-1+j)25 + (-1+j)23 + (-1+j)15 +     
(-1+j)14 + (-1+j)13 + (-1+j)11 + (-1+j)10 + (-1+j)9 +       
(-1+j)6 + (-1+j)5  =  2004 + j2004 
 
2.1 CBNS Addition 
The binary addition of two complex binary numbers 
follows these rules: 0 + 0 = 0;0 + 1 = 1; 1 + 0 = 1;   
1 + 1 = 1100. If two numbers with 1s in position n 
are added, this will result in 1s in positions n+3 and 
n+2 and 0s in positions n+1 and n in the sum. 
Furthermore, 11 + 111 = 0 [Zero Rule]. Designs and 
implementations of nibble-size minimum-delay and 
ripple-carry adders have been presented in Ref. [7] 
while a size-free adder design has been presented in 
Ref.[8]. 
3   Redundant Complex Binary 
Number System (RCBNS) 
RCBNS is a positional number system that has a 
complex radix and uses a digit set {−α to +α} that 
allows for carry-free additions[9]. α is restricted to 
[(r − 1)/2] ≤ α ≤ (r − 1) where r = 4. Using radix of 

(−1+j) and a digit set {−3, −2, −1, 0, +1, +2, +3}� 
α = 3, yields the value of X = (xn−1,xn−2,…,x1,x0) 
given by the expression: 
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Where xi is in the range {−3 to +3}. 
 
Using Equation (1), the RCBNS representations of 
some complex numbers are given in Table 1. 

Table 1: RCBNS representations for some  
complex numbers 

 
 

No     
 2 + j2 - j2 -1 + j 1 

-3 –j3 -1 1 1 0 
-2 –j3 0 1 -1 -3 
-1-j3 0 1 -1 -2 
0-j3 0 1 -1 -1 
1-j3 0 1 -1 0 
2-j3 0 1 -1 1 
3-j3 0 1 -1 2 

-3 +j3 0 -1 1 -2 
-2 +j3 0 -1 1 -1 
-1+j3 0 -1 1 0 
0+j3 0 -1 1 1 
1+j3 0 -1 1 2 
2+j3 1 -1 -1 -1 
3+j3 1 -1 -1 0 

-3 –j2 0 1 0 -3 
-2 –j2 0 1 0 -2 
-1-j2 0 1 0 -1 
0-j2 0 1 0 0 
1-j2 0 1 0 1 
2-j2 0 1 0 2 
3-j2 0 1 0 3 

 
Conversion of a complex number to the RCBNS 
form is achieved by converting the complex number 
into the binary form for the real and imaginary parts 
and then by using the following steps [9]: 
 
1) Check the sign of both the real and imaginary 
parts. If each is positive or negative, then for the 
positive numbers place a 0 in front of each of 2-bit 
digit (e.g. for   9 =10 01, then 010 and 001), and 
similarly for the negative numbers place 1 in front of 
each of 2-bit digit (e.g. for –9 = -10 01, then 110 and 
101).   
2) Combine the right three bits of the imaginary part 
to the right three bits of the real part. Repeat the 
same for the next three bits to form rows named as 
qi(where i=0,1,2,3….).(see example below) 
3) Find the equivalent value for combined group of 
three bits from real and imaginary part in each row 



qi (where i=0,1,2,3….) from Table 2. There are four 
tables for the combinations of the sign of the real 
part and the sign of the imaginary part (+/+, +/−, 
−/+, −/−). Table 2 shows only the positive sign for 
both the imaginary and real parts. 
4) Label a group of 4 bits in the first row as q0. To 
generate the successive rows, multiply the current 
row by –4 and so on. This results in the change of 
sign and magnitude from one row to the next. 
Therefore, even rows have positive and odd rows 
have negative signs (... +q5, −q 4, +q 3, −q 2, +q1, −q 0). 

Table 2: Table of conversion from Binary form to 
RCBNS form in +/+ case 

 

 
 

The example below illustrates the conversion of a 
complex binary number to the RCBNS form. 
 
Example: Convert complex number 6+7j to RCBNS 

form  
Step 1: Express numbers in the binary form for 

imaginary and real parts. 
Part 1 (J)  � 7  = 01 11 � 7 = 001 011  
Part 2 (R) � 6 = 01 10 � 6 = 001 010 
Step 2: Get 3 bits of each part and combine them 

together starting with LSB as 3 bits of J and put 
them together with 3 bits of R to form rows. 

q0 �   011 010 
q1 �   001 001 
Step 3: Find the equivalent values for each group of 

R and J from Table 2.  
q0  � 011 010 -> 001  101  101  101 �  1 −1−1−1  
q1  � 001 001 -> 000  000  001  010 �  0  0  1  2 
Step 4: Multiply the positive sign to even rows and 

the negative sign to the odd rows.  
q0 �  1−1−1−1 
q1  � 0 0 –1 -2   
Finally combine them again in the following order. 

(…q5 , q 4, q 3, q 2, q 1, q 0). 

So complex number 6+7j is represented in RCBNS 
as  (0  0  -1  –2  1  -1  -1   -1). 
 
3.1 RCBNS Addition 

Complex numbers expressed in the RCBNS 
form can be used as operands to perform arithmetic 
operations. The results of the operation will be in the 
RCBNS form. An example of the addition of two 
complex numbers, (4+j9) and (18+j25) expressed in 
the RCBNS form is illustrated below. 
First, the two complex numbers (4+j9) and (18+j25) 
are converted into the RCBNS form. Then the 
addition operation is performed. The complex 
number (4+j9) is equivalent to  (0 1 0 –1 0 0 1 1) in 
the RCBNS form, and similarly the complex number 
(18+j25) is equivalent to (0 0 1 2 0 1 0 0 1 0 –1 –1 ).  
 
X    0  0  1  2  0  1  0  0  1  0  -1  -1  
Y    0  0  0  0  0  1  0 -1  0  0   1   1 
=============================== 
S1        0  0  1  2  0   2  0  -1 1  0   0   0  
 
The addition above is carry-free. 
  

In some cases the result may have numbers 
ranging from −6 to 6; in such cases normalization is 
necessary. The process of normalization is as 
follows:  
• Normalize the intermediate result to be in the set of 
{−3, −2, −1, 0, 1, 2, 3}.  
• Get the final result S = Normalization + Carry, or 
S=S1, if S1 in the range of   –3 to 3. 
4 Minimum Delay Adder 
Let us suppose that we have to add A and B RCBNs. 
Let A is represented by as 

A=A0 A1 A2 A3…An 
And B be represented as 

B=B0 B1 B2 B3….Bn 
Each An and Bn is 3-bit number. For example in the 
example presented in the previous section  
X=1   0   −1   −1    0    1   0    0    1   0   −1    0   
Here X is arranged in the following order 
X=X0 X1   X2     X3   X4   X5  X6   X7   X8  X9   X10 X11  
Here each Xi (where i=0,1,2….12) is each 3-bit. 
Our design would add each Bn and An separately 
using the minimum delay adder and would utilize 
serial architecture to add all other An and Bn.  
The design of a 3-bit minimum-delay CBNS adder 
involves the following steps: 
(i) Generation of a truth table with two 3-bit 
operands --- operand A with a0a1a2 bits and Operand 
B with b0b1b2 bits --- addition of these two operands 
produces three outputs which are labeled as c0c1c2. 



The truth table has a total of 26 = 64 minterms as 
shown in Table 3. 
(ii) We’ll use a 6x64 decoder to implement this 
truth table. For this purpose, we express each 
output in sum-of-minterms form as shown in Table 
4. 
(iii) Finally, these expressions are implemented 
using the decoder and OR gates as shown in Figure 
2. 

Table 3: Truth Table e Minimum-
Delay RCBN Adder 

 a0 a1 a2 b0 b1 b2 c0 c1 c2 
0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 1 0 0 1 
2 0 0 0 0 1 0 0 1 0 
3 0 0 0 0 1 1 0 1 1 
4 0 0 0 1 0 0 0 0 0 
5 0 0 0 1 0 1 1 0 1 
6 0 0 0 1 1 0 1 1 0 
7 0 0 0 1 1 1 1 1 1 
8 0 0 1 0 0 0 0 0 1 
9 0 0 1 0 0 1 0 1 0 

10 0 0 1 0 1 0 0 1 1 
11 0 0 1 0 1 1 N O R 
12 0 0 1 1 0 0 0 0 1 
13 0 0 1 1 0 1 0 0 0 
14 0 0 1 1 1 0 1 0 1 
15 0 0 1 1 1 1 1 1 0 
16 0 1 0 0 0 0 0 1 0 
17 0 1 0 0 0 1 0 1 1 
18 0 1 0 0 1 0 N O R 
19 0 1 0 0 1 1 N O R 
20 0 1 0 1 0 0 0 1 0 
21 0 1 0 1 0 1 0 0 1 
22 0 1 0 1 1 0 0 0 0 
23 0 1 0 1 1 1 1 0 1 
24 0 1 1 0 0 0 0 1 1 
25 0 1 1 0 0 1 N O R 
26 0 1 1 0 1 0 N O R 
27 0 1 1 0 1 1 N O R 
28 0 1 1 1 0 0 0 1 1 
29 0 1 1 1 0 1 0 1 0 
30 0 1 1 1 1 0 0 0 1 
31 0 1 1 1 1 1 0 0 0 
32 1 0 0 0 0 0 0 0 0 
33 1 0 0 0 0 1 0 0 1 
34 1 0 0 0 1 0 0 1 0 
35 1 0 0 0 1 1 0 1 1 
36 1 0 0 1 0 0 0 0 0 
37 1 0 0 1 0 1 1 0 1 
38 1 0 0 1 1 0 1 1 0 

39 1 0 0 1 1 1 1 1 1 
40 1 0 1 0 0 0 1 0 1 
41 1 0 1 0 0 1 0 0 0 
42 1 0 1 0 1 0 0 0 1 
43 1 0 1 0 1 1 0 1 0 
44 1 0 1 1 0 0 1 0 1 
45 1 0 1 1 0 1 1 1 0 
46 1 0 1 1 1 0 1 1 1 
47 1 0 1 1 1 1 N O R 
48 1 1 0 0 0 0 1 1 0 
49 1 1 0 0 0 1 1 0 1 
50 1 1 0 0 1 0 0 0 0 
51 1 1 0 0 1 1 0 0 1 
52 1 1 0 1 0 0 1 1 0 
53 1 1 0 1 0 1 1 1 1 
54 1 1 0 1 1 0 N O R 
55 1 1 0 1 1 1 N O R 
56 1 1 1 0 0 0 1 1 1 
57 1 1 1 0 0 1 1 1 0 
58 1 1 1 0 1 0 1 0 1 
59 1 1 1 0 1 1 0 0 0 
60 1 1 1 1 0 0 1 1 1 
61 1 1 1 1 0 1 N O R 
62 1 1 1 1 1 0 N O R 
63 1 1 1 1 1 1 N O R 

 
 
5 Functional design of Adder  
 

 

Figure 1: Function Diagram of RCBNS Adder 

Functional diagram for RCBNS adder is 
shown in figure 1. Our design would take input 3 bit 
numbers An and Bn from memory A and memory B 
respectively into 3-bit shift register and pass these 
numbers to 3-bit minimum delay RCBNS adder. The 
final results after addition are passed on to the 3-bit 
register and then finally stored in memory C. 

 
 



6 Conclusion & Future Work 
Both CBNS and RCBNS hold promising 

future because of their ease in representing complex 
numbers as one unit and thus simplifying arithmetic 
operations involving such numbers. We have 
reviewed RCBNS and their addition and proposed 
hardware architecture for RCBNs adder. We have 
designed a minimum delay adder for RCBNs, which 
is implemented directly from the truth table and use 
only arrays of OR and AND gates. Future of RCBN 
adder is very prominent, efficient adder if developed 
would make RCBNS very important in the field of 
computations 
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Table 4: Sum-of-Minterms expressions for Outputs of a 3-bit Minimum-Delay Adder 

c0=� (5,6,7,14,15,23,37,38,39,40,44,45,46,48,49,52,53,56,57,58,60) 

c1=� (2,3,6,7,9,10,15,16,17,20,24,28,29,34,35,38,39,43,45,46,48,52,53,56,57,60) 

c 2=� (1,3,5,7,8,10,12,14,17,21,23,24,28,30,33,35,37,39,40,42,44,46,49,51,53,56,58,60) 
 

 
Figure 2: Block Diagram of a 3-bit Minimum-Delay RCBN  Adder using Decoder 


