
Neural Network – based Digital Receiver for Radio Communications 
 

G. LIODAKIS, D. ARVANITIS, and I.O. VARDIAMBASIS  
Microwave Communications & Electromagnetic Applications Laboratory, 

Department of Electronics, 
Technological Educational Institute (T.E.I.) of Crete - Chania Branch, 

Romanou 3, Chalepa, 73133 Chania, Crete, 
GREECE 

 
 

Abstract: - This paper proposes a novel digital receiver, based on a multilayer perceptron neural network 
architecture, which works in a radio communications environment. Training is carried out by the variable 
learning rate back-propagation algorithm with momentum in a supervised manner and a batch training mode. 
We present computer simulation results comparing the performance of this receiver against the classical 
correlation receiver, for various modulation methods. The results show that the neural network – based receiver 
achieves better performance in terms of bit error rate for various ob N/E  values, especially in the case of a 
Rayleigh multipath channel. 
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1   Introduction 
In a digital communication system, the transmitter 
generates a spectrally efficient signal in space, 
designating the system’s performance. On the other 
end, the challenge for a digital receiver is to obtain 
reliable estimate of the transmitted symbols, taking 
into account the impairments introduced from the 
communication channel. This estimate is the result 
of a signal detection process performed by the 
digital receiver, in order to map the received signal 
onto a prescribed set of symbols (1s and 0s) at its 
output. A corresponding detection process arises in a 
multiuser Code Division Multiple Access (CDMA) 
communication system, where interference from 
other users is present. In both cases, the digital 
receiver is dealt with a binary hypothesis testing 
problem, the solution of which is optimized in some 
statistical sense. 
 The statistical communication theory often 
assumes that the channel is described by a stationary 
model and the signal is corrupted by noise of known 
statistics; actually, an additive white Gaussian noise 
(AWGN) model is assumed for the communication 
channel. However in mobile communications, 
nonstationarity of the received signals arises due to 
variations in environmental conditions, i.e. multipath 
propagation in a rural-hilly terrain or an urban area. 
So it may be feasible to view the received signal in 

such a mobile system as quasi-stationary in the very 
short term and possibly stationary in long-term 
averages. Furthermore, in radio systems it is usually 
a reasonable assumption that the continuum (as 
opposed to impulsive) noise may be approximately 
stationary for milliseconds to seconds [1]-[2]. 
 Classical digital communication receivers’ design 
is centered around the correlation receiver (CR) [3]. 
The CR is composed by a matched filter and a 
detector. The matched filter correlates the received 
modulated noisy waveform in order to minimize the 
effect of the AWGN, while its sampled output is fed 
to the detector which makes the decision about what 
was sent. It can be shown that the CR is the 
optimum receiver for maximizing the signal-to-noise 
(SNR) ratio (i.e. providing the lowest possible bit 
error rate (BER)) for an AWGN communication 
channel. However, it should be mentioned that the 
CR’s design approach is based on the mathematical 
model of the received signal (i.e. how it accounts for 
the communication channel’s behavior) and ends up 
by testing the digital receiver’s performance (i.e. its 
BER) with real data. 
 In this paper an alternate architecture of a digital 
receiver for radio communications over an AWGN 
channel is proposed. This receiver is based on an 
artificial neural network (NN) architecture, in order 
to exploit neural networks’ generalization capability, 



i.e. their actual response is statistically close to the 
desired response (the sequence of the transmitted 1s 
and 0s). The aforementioned generalization 
capability results from training the NN–based 
receiver and its degree of success is dependent upon 
two factors: 
• the extent to which the training data set is 

adequate and representative of the wireless 
environment (in which the NN receiver operates), 

• the degree to which the computational 
complexity of the NN receiver architecture 
matches the underlying dynamics’ complexity of 
the communications environment. 

Thus, the training data impose digital receiver’s 
design and, if real data is used for training, the need 
for mathematical modeling is eliminated. 
 The communication system under simulation is 
presented in Section 2. In Section 3 we describe the 
architecture of the proposed NN digital receiver 
along with its training. Section 4 is devoted to the 
application of the NN receiver to the performance 
analysis of the communication system for various 
modulation schemes and communication channel 
models. Finally, in Section 5 we present some 
conclusions, along with a few directions for further 
research that are mostly related to adaptive NN 
communication receivers. 
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Figure 1. A digital radio communications system. 
 
2   Communications System Simulation 
The communication system’s model, which is 
considered throughout this paper, is depicted in Fig. 
1. The transmitter’s input is assumed to be a 
sequence of sm  independent symbols extracted 
from the alphabet {0, 1}. Four different digital 
modulation methods (Amplitude Shift Keying 
(ASK), Frequency Shift Keying (FSK), Phase Shift 
Keying (PSK) and Quadrature Phase Shift Keying 
(QPSK)) are used, in order to study their 
performance (carrier signal’s amplitude-frequency-
phase change caused by the information symbols). 
The carrier frequency MHz900fc =  is selected, as 
representative in a typical GSM-900 cellular system. 
Furthermore, 4ms =  or 8ms =  during simulation 
corresponding to bm  bits ( sb mm =  in case of 
ASK, FSK, and PSK modulation) or to dm  dibits 
( sd m2m =  in case of QPSK modulation). 
 In terms of the radio channel, line-of-sight (LOS) 
and non-line-of-sight (NLOS) communication 
scenarios are examined. In particular, the case of a 
multipath channel is characterized by a time-varying 
impulse response )t,(h τ : 
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where the random variables )t(iβ  and )t(iϑ  are the 
time-varying amplitude and phase of the i-th path 
arriving with delay )t(iτ . For practical reasons, the 
path number (i) is set to be finite and very small. In 
particular, the modeled radio channel consists either 
of one path [LOS and Rayleigh-1 simulation cases 
of Section 4] or of two paths [Rayleigh-2 and Rice 
simulation cases of Section 4, where: a) the Rice 
case incorporates a LOS path along with a NLOS 
path with Rayleigh statistics, b) the same average 
power avP  is used for Rayleigh statistics during 
simulation, c) a delay of sT003.0  ( sT  being the 
symbol duration) between paths is used in the 
Rayleigh-2 case]. 
 The radio channel output is corrupted by additive 
noise, assumed to be Gaussian with zero mean and 
variance 2

nσ . Thus, for the communication system 
under simulation, the variance for each path 
component of the modulated signal )t(s  is: 
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where sb mNN ⋅=  is the number of instances 
(samples) of the modulated signal for sm  
consecutive symbols and bs N/1T03.0 = . Then, for 
a specific value of ob N/E , the variance 2

nσ  is 
found by the relation: 
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Thus, in all simulation scenarios and for each path 
component, the signal )t(sn  at the input of the 
digital receiver can be formulated as 

)t(s)1,0(N)t(s nn +σ= , 
where N(0,1) is a normal probability distribution. 
 
 
3   Neural Network–based Receiver 
The NN–based implementation of the proposed 
digital receiver is realized in the form of a 
multilayer perception (MLP) [4], which is trained by 
a modification of the classical backpropagation (BP) 
learning algorithm. The MLP generally consists of 
an input layer, one or more layers of hidden neurons 

and an output layer of neurons. This kind of a 
structure is illustrated in Fig. 2, for the case of N 
inputs, one hidden layer with L neurons and M 
output neurons. Thus, the MLP’s topology is 
specified by the notation N-L-M, where: 

sb mNN ⋅=  (as mentioned in Section 2), 
33or23L =  (as in simulation results of section 4), 

smM = , 
in our NN–based communication receiver. 
Moreover the neuron model consists of a linear 
combiner followed by a nonlinear activation 
function, such as the sigmoid function: 

( )nete11)net(f −+= , 
which is employed here for both the hidden and the 
output layer neurons. 

 
Figure 2. NN receiver architecture. 

 
 The BP learning algorithm is a widely used 
technique for training multilayer neural networks in 
a supervised manner and is based on an error-
correction learning rule. It consists of two passes 
through the different layers of the network: a 
forward pass (where an activity pattern is applied to 
the input layer, an actual response at the output layer 
of the network is produced and all the synaptic 
weights w  of Fig. 2 are fixed) and a backward pass 
(where all the synaptic weights w  of Fig. 2 are 
adjusted in accordance with the error-correction 
rule). The aforementioned weight adjustment may 
be made according to various approaches in order to 
minimize the error (i.e. the difference between the 
desired and the actual response). The adopted 
approach takes into account the presence of local 
minima on the error surface of the BP algorithm (as 
it can cause lock-up to non-optimal solutions), as 
well as the need for fast convergence of the BP 

algorithm. Thus, the weight adjustment process 
employed in this paper follows the classical BP with 
gradient descent enhanced with a momentum and a 
variable learning rate [5]. Therefore, the new weight 
vector )1t(w +  for both hidden and output layers is 
defined as: 

)1t(w)1t(g)1t(lr)t(w)1t(w −⋅µ++⋅+−=+ , 
where lr  denotes the learning rate parameter, g  the 
gradient of the error with respect to the weight 
vector and µ  the momentum constant. Furthermore: 
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 In general, the learning rate parameter lr  is used 
to determine how fast the BP learning algorithm 
converges to the optimum solution. The larger the 
learning rate, the bigger the step and the faster the 
convergence. However, if the learning rate is made 



too large the algorithm will become unstable. On the 
other hand, if the learning rate is set to be too small, 
the algorithm will take a long time to converge. 
Thus, our approach is to utilize a larger learning rate 
when the error is far from being minimized and a 
smaller learning rate when the error is near from 
being minimized, in order to speed up the 
convergence time. Furthermore, the introduction of 
the momentum constant µ  allows the neural 
network to ignore small features in the error surface. 
 As for the error itself, we strive for the 
minimization of the mean square error (MSE). In 
particular, for each activity pattern κP  during the 
training of the NN–based receiver, MSE is given by 
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where 
κPd  and 

κPa  are the desired and actual 

responces for the pattern κP  under consideration. 
Therefore, if pN  is the total number of activity 

patterns, the overall MSE to be minimized is given 
by 
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 The whole training process described in this 
section as well as the MLP architecture of Fig. 2, 
lead to the following set of equations for the hidden 
layer’s neurons of the NN receiver: 
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where ijw  is the weight strength between the j-th 
hidden layer’s neuron and the i-th input ip , and jb  

is the bias of the j-th hidden layer’s neuron. In a 
similar way, the output κa  of each neuron of the 
output layer, is given by the equations: 
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where κjw  is the weight strength between the κ-th 
output and the j-th hidden layer’s neuron, and κb  is 
the bias of the κ-th output layer neuron. Thus, the 
decision of which symbol was transmitted (for a 
sequence of Mms =  symbols) is based upon the 
output κa . It should, also, be mentioned that the 
training of our NN–based receiver is carried out 
with initial weight values following a uniform 

probability distribution of zero mean in range [-0.5, 
0.5], while the initial bias and learning rate values 
are set to 1 and 0.2, respectively. 
 
 
4   Simulation Results 
The training of a given neural network and the 
simulation determining its performance are 
computationally intensive and time-consuming. 
 
Table 1. Training process details of the NN-receiver 

Modulation Method Parameter 
ASK FSK PSK QPSK 

NN-receiver 
topology 132-23-4 132-23-4 132-23-4 132-33-4

sm  4,000 4,000 4,000 4,000 

vm  1,000 1,000 1,000 1,000 

ob N/E (dB) 
for training 

0, 4, 8, 
12, 16 

0, 4, 8, 
12, 16 

0, 4, 8, 
12, 16 

0, 4, 8, 
12, 16 

Training 
patterns 25,000 25,000 25,000 25,000 

Simulation 
time (sec) 85 71 76 163 

tMSE  0.0455 0.0401 0.0157 0.0375 

vMSE  0.0611 0.0474 0.0226 0.0537 
Epochs’ 
number 59 53 53 63 

 
 Therefore, in order to study the performance of 
the proposed NN receiver and to get a reliable BER 
calculation for each modulation method under 
examination, we consider the following: 
• Batch training mode: Due to the fact that our NN 

receiver’s task is to minimize the MSE over the 
entire training set of pN  patterns, a single MSE is 

calculated and the network is updated once, 
according to that MSE after the completion of one 
epoch. Thus, batch mode is consequently faster 
requiring less weight updates, and also provides a 
more accurate measurement of the required 
weight changes. Actually, batch training mode 
refers only to the weight adjustments, as the errors 
must be back-propagated for every training 
pattern of a total of sp m5N =  (to account for 
five different values of ob N/E  and the number 

sm  of modulated signals used for training). 
• Concurrent training and validation: An additional 

smaller set of vm  patterns is used for validation 



purposes and serves as an online measure 
indicating that the training of our receiver should 
stop. Thus, the training process stops when the 
MSE corresponding to the validation set (MSEv) 
begins to increase, in order to avoid overtraining. 

• Testing of the NN and CR receivers is 
accomplished by averaging the BER values after 
four simulation runs. During each simulation run, 
a set of 400 testing patterns for various ob N/E  
values for each modulation method is used. 

 

 
Figure 3. Performance comparison for ASK 
modulation (two-path Rayleigh simulation case). 
 

 
Figure 4. Performance comparison for FSK 
modulation (two-path Rayleigh simulation case). 
 
 Several details about the training process are 
summarized in Table 1 for each modulation method 
in case of a two-path Rayleigh fading channel. 
 Actually, the proposed NN-receiver revealed a 
clear performance advantage over the classical CR-
receiver in the Rayleigh-2 simulation case (as 

shown in Figs. 3-6, where simulation results in case 
of fading absence are also included). Furthermore, 
as shown in Fig.7, the NN-receiver presents a 
smaller BER in the Rice simulation case for 

ob N/E  values ranging between 0–11 dB, only if 
ASK modulation is employed. Finally, as the LOS 
and one-path Rayleigh simulation cases are 
concerned, the NN-receiver achieves a comparable 
to the CR-receiver performance. 
 

 
Figure 5. Performance comparison for PSK 
modulation (two-path Rayleigh simulation case). 
 

 
Figure 6. Performance comparison for QPSK 
modulation (two-path Rayleigh simulation case). 
 
 
 
5   Conclusions and Further Work 
The simulation results presented in Section 4 show 
that for the ob N/E  values used, the NN-based 
receiver offers a better performance in comparison 
to that of the classical approach of a CR-receiver. 



This improved performance holds in case of a two-
path Rayleigh communication channel with AWGN 
and for all examined modulation schemes (ASK, 
FSK, PSK, QPSK). 
 

 
Figure 7. Performance comparison for ASK 
modulation (Rice simulation case). 
 
 Furthermore, additional advantages of our digital 
receiver include the elimination of need for a 
supervisory signal to probe the radio channel and for 
carrier recovery (as in the case of the coherent CR). 
 As the NN-receiver’s training is concerned, we 
should mention two issues for further examination 
[6]. The first issue is the use of continuous learning 
process, because this is the preferred way of 
learning, i.e. the receiver architecture’s parameters 
are adjusted continuously while detection is 
performed at the same time. Hence, the learning 
process never stops and the digital receiver has a 
built-in capability to track statistical variations of 
the communications environment. The second issue 
is about the criterion for optimizing the design of 
the receiver. Although for mathematical tractability 
we strived for the MSE minimization, such an 
approach does not guarantee BER minimization, 
which is of primary concern for a digital 
communication’s system performance.  
 In general, as many communication channels are 
inherently nonstationary of unknown statistics, our 
NN-based approach should incorporate a greater 
degree of adaptability to the receiver design. In 
particular, to deal with a nonstationary process using 
neural networks: the implicit effect of time has to be 
distributed inside the synaptic structure of the NN as 
described in [7], or a recurrent NN has to carry out 

the learning process in a dynamic way [8], or the 
approach described in [9] (where three functional 
blocks for time–frequency analysis, feature 
extraction and pattern classification are involved in 
receiver design) has to be followed. 
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