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Abstract: In this paper we apply multi-vector Hidden Markov Random Fields to tissue segmentation of
Magnetic Resonance (MR) breast images. Our proposed method performs segmentation using a stack of
3 MR breast slices 1mm apart. The approach takes into account neighborhood voxel information rather
than merely neighborhood pixel information and the results are anatomically more plausible in comparison
with standard two-dimensional segmentation techniques. The proposed algorithm incorporates an initial
correction of the bias field, and automatic background removal. The k-means algorithm is used to provide
an initial segmentation/classification. This classification allows for tissue parameter estimation, providing
an initialization of probabilistic moments that are incorporated into a Gaussian probability model for each
tissue class. The class labels follow a Gibbs distribution and the energy function is a sum of potentials taken
from a multilevel logistic model for Markov Random Fields. The segmentation is obtained via maximization
of the posterior probability distribution function and the solution is found by application of Besag’s Iterated
Conditional Modes (ICM) algorithm. After each ICM iteration, the tissue parameters are updated. The
process continues iteratively until convergence. The segmentation results demonstrate anatomically plausible
breast tissue segmentation and we expect the method to aid real time automatic segmentation of breast
tissue, particularly in diagnosis of pathology.
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1 Introduction

Segmentation of breast Magnetic Resonance (MR)
images into different tissue classes, such as fat,
healthy and malignant tissues is an important task
during the diagnostic process. Breast MR images
have a number of features. They are statistically
complex as they are not piecewise constant and they
possess a large number of classes. Moreover, MR
breast images do not have high contrast between dif-
ferent tissues. By carefully choosing pulse sequence
parameters and gradients, it is possible to highlight
different components in the object being imaged and
produce high-contrast images in order to facilitate

segmentation and classification. On the other hand,
ideal imaging conditions are never realized in prac-
tice. Electronic noise, the bias field (intensity inho-
mogeneities in the RF field) and the partial volume
effect (PVE) -multiple tissue class occupation within
a voxel- cause classes to overlap in the image intensity
histogram.

A wide variety of approaches have been proposed
for MR image segmentation and they may be roughly
divided into two categories: structural and statis-
tical. Structural methods include various edge de-
tection algorithms that have been applied to extract
boundaries between different tissues [1]. However,
such algorithms are vulnerable to artifacts and noise,
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and fail in breast imaging because of the anatomi-
cal tissue complexity. Region growing [2] is another
popular structural approach, in which an image is di-
vided into small regions, which can be considered as
“seeds” that grow under certain criteria; but it is not
considered robust. Statistical methods approach seg-
mentation/classification from a completely different
perspective. Such methods label pixels according to
probability values, usually determined by the inten-
sity distribution of the image. Thresholding meth-
ods are simple statistical methods that are unlikely
to produce reliable results for breast MR images since
they are not robust under the presence of noise and
have no way of incorporating discrepancies resulting
from PVEs. Depending on whether a specific func-
tional form for the density model is assumed or not,
a statistical approach can either be parametric or
non-parametric. Maximum a posteriori probability
(MAP) or maximum likelihood (ML) are the most
usually used principles for such attempts. In such
methods the probability density functions (pdfs) of
the different tissue classes need to be chosen very
carefully.

In contrast to conventional approaches for breast
MR segmentation, we perform tissue segmentation
into a set number of classes by applying Hidden
Markov Random Field - Maximum a posteriori
(HMRF-MAP) labelling to stacks of 3 consecutive
coronal axial MR breast slices that are 1mm apart.
We seek the labelling of an image that is considered
to be a realization of a MRF through minimizing the
risk of misclassification, which is equivalent to max-
imizing the posterior probability. The minimal risk
estimate is known as the MAP estimate. Under the
MRF model the MAP estimate may be found by min-
imizing the posterior energy function [3]. This min-
imization is achieved by applying the Iterated Con-
ditional Modes (ICM) algorithm proposed by Besag.
ICM converges to a local minimum in only a few it-
erations and has been shown to outperform global
methods when the image is of decent quality [3].

Our breast MR image segmentation algorithm is
based on the algorithm developed by Petroudi and
Brady [4] where texture feature vectors are used
to represent each pixel in an image. Multi-vector
Gaussian Hidden Markov Random Fields (GHM-

RFs), based on feature vectors incorporate neigh-
borhood information and achieve tissue segmentation
as the result of applying iterations of Expectation-
Maximization (EM) followed by ICM until a conver-
gence criterion is met. The paper is organized in
the following way. Section 2 provides background
on HMRFs and multi-vector image segmentation, fol-
lowed by formulation of the problem for breast MR
image segmentation. Section 3 provides the complete
algorithm for the proposed setup and the segmenta-
tion. Finally, Section 4 demonstrates results from
application of the method to real datasets and dis-
cusses the performance of the proposed method as
well as future research directions.

2 Segmentation using parametric and
non-parametric MRFs

The objective of our work is segmenta-
tion/classification of MR breast images into
different types of tissues. Automatic classification
results, based only on the one-dimensional (1-D)
intensity image, whether they take into account the
pixel’s neighborhood or not, have been shown to
be inferior to the segmentation of corresponding
vector images [5]. Filter banks can be used to
provide a multi-vector feature representation of an
image. However, it has been shown that using non-
parametric representation of MRFs achieves similar
and even superior results in material classification
[4].

A MRF is a collection of random variables which
are defined on a finite lattice, and where each variable
interacts with some subgroup of that lattice termed
its neighborhood [6]. In modelling the interaction
between data and model, certain parameters are re-
quired. Depending upon whether these are known or
not, two paradigms result. MRF is the paradigm cor-
responding to a priori known statistical parameters.
HMRF is the paradigm where statistical parameters
are not known and need to be estimated. A HMRF
is a stochastic process generated by a MRF whose
state sequence cannot be observed directly but only
through a field of observations. By imposing con-
textual constraints, we expect neighboring pixels to
have the same class labels (in the case of piecewise
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constant images) or similar intensities (in the case
of piecewise continuous images). This is achieved
through characterizing mutual influences among pix-
els using conditional MRF distributions [3].

MRI is a 3-D imaging modality with quite good
plane spatial resolution, in the range 1 to 3 mm and
with slice thickness in the range of 1 to 2 mm with
no gap. These resolutions allow us to take advantage
of the information available in the 3-D neighborhood
corresponding to each point. To achieve this we em-
ploy MRFs in 2 directions (in the plane of the image
and also in the direction of the slice acquisitions: per-
pendicular to the plane of the image) as well as in 2
settings: a parametric and a non-parametric. Each
MRI slice is segmented into different classes using
a statistical method based on HMRFs, that incorpo-
rate neighborhood information in the direction of the
image plain. However, instead of using a scalar value
to represent each point, we use a vector, consisting
of the intensity at that location in the previous and
following slice, hence incorporating a non-parametric
local MRF in the direction of slice acquisition. Seg-
mentation becomes a matter of multi-vector image
classification into a set number of tissue classes with
the use of HMRFs.

The procedure of estimating the unknown param-
eters for the HMRFs is known as model fitting. As
we have introduced the idea of segmenting an image
by segmenting a multi-vector representation of the
image using HMRFs we need to introduce and make
the assumption of a multivariable Gaussian emission
function [3]. To fit the GHMRF at each iteration, we
need an estimate of the means and covariances of the
vector classes. For computational efficiency, we eval-
uate the means and covariances using their general
statistical definition. Segmentation/classification of
the image is the result of MAP estimation of the
tissue labels by application of the ICM. We show
that by incorporating, a multi-vector representation
of a breast MR image using the non-parametric local
MRF in the direction perpendicular to the plane of
the image, a parametric GHMRF in the direction of
the plane, an initial class estimation using k-means
and iterative MAP estimation using ICM and mean
and covariance updates, an accurate and robust seg-
mentation of MR breast images is achieved.

3 Methodology

The first step in any MR breast image segmenta-
tion consists of bias field and background pixel re-
moval. The bias field correction follows the scheme
proposed in [7], where intensity inhomogeneities are
assumed to form a continuous field in the image and
are approximated by Legendre polynomials. The as-
sociated parameters are computed via the solution
of a non-linear energy minimization problem, com-
puted from the distance of pixel values and class
means. We thus remove the frequency artifact due
to inhomogeneities in the radio-frequency field. Au-
tomatic background removal is achieved by Otsu’s
thresholding method. Background intensities have
a much lower value than breast intensities and the
global threshold found by Otsu’s method minimizes
the intra-class variance. Automatic background re-
moval is performed to speed up further processing of
the images.

In what follows, we establish the multi-vector im-
age to be used for segmentation by stacking the 3
consecutive MR slices, with the breast MR slice to be
classified, occupying the middle position. This is the
representation that incorporates the non-parametric
MRF in the direction of slice acquisition. For seg-
mentation of the multi-vector image using GHMRFs
and ICM we adopt the same notation as in [5]. Let
X be a realization of a random field X defined on a
2-D lattice S, where X is the set of class labels on the
underlying image of a p-dimensional random field Y
on S. We suppose that X is comprised of pixels which
belong to one of the m classes. For the purposes of
the present paper we define a set number of tissue
classes. The statistical parameters representing each
class are unknown and need to be established at each
iteration. Let c denote a clique and C be the set of all
cliques on S. According to the Hammersley-Clifford
Theorem, the joint pdf of X is a Gibbs distribution
of the form

f(X) =
1
Z

e−U(X) (1)

where
Z =

∑

X

e−U(X) (2)

is the partition function and U(X) is an energy func-
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tion defined by:

U(X) =
∑

c∈C
Vc(X) =

∑

s∈S

∑

j∈Ns

β(1− δ(xs − xj)),

∀s, s′ ∈ c, s 6= s′ (3)

with Vc(X) being the potential function whose argu-
ment, X, is an element of the clique. Ns denotes the
neighborhood pixels of xs in the associated clique.
The MRF we consider here is a multilevel logistic
model that has a second order neighborhood system
with pairwise cliques: where xs is the realization of
the 1-D random field X on S. β can be interpreted
as edge penalty. The observed image ys is obtained
when the noise ws is superimposed on the signal
g(xs):

ys = g(xs) + ws (4)

where g(xs) is a function that maps the underlying
label xs to its associated attribute µ

xs
and Σxs . The

wss’ are independently distributed Gaussian random
vectors with zero mean and unknown covariance ma-
trix, which is class conditional. Therefore, the den-
sity of Y, given the underlying true image X = X,
is

f(Y |X) =
∏

s∈S
f(y

s
|xs). (5)

Based on the observed image Y , the problem is to
classify the observed random vector y

s
into one of the

m different classes, subject to iteratively estimated
parameters for the multivariable Gaussian distribu-
tion of the conditional pdf at every position. Based
on the assumption that the pixel intensity ys follows a
Gaussian distribution with parameters θs = {µ`, σ`},
given the class label xs = `,

p(ys|xs) = g(ys; θ`) =
1√
2πσ2

`

exp
(
− (ys − µ`)2

2σ2
`

)
.

(6)
and the conditional independence assumption of y,
equation (5), the joint likelihood probability used for
segmentation becomes:

f(Y |X) =
1

(2π)Np/2

·e
− 1

2

P
s∈S

[(ys−µxs )T (Σxs )−1(ys−µxs )+ln(‖Σxs‖)]
(7)

where y
s
and µ

xs
are p-dimensional vectors while Σxs

is a p x p matrix and N is the total number of pixels
in the image. µ

xs
, Σxs are the mean and covariance

associated with each class. Equation (7) can be writ-
ten in the form f(Y |X) = 1

Z′ e
−U(Y |X) with likelihood

energy

U(Y |X) =
∑

s∈S
U(ys|xs)

=
1
2

∑

s∈S
[H(ys, xs) + ln(‖Σxs‖)] (8)

where

H(ys, xs) = (ys − µxs)
T (Σxs)

−1(ys − µxs). (9)

Since ln f(x|y) = −U(x|y) + C for some constant C,
according to the MAP criterion the segmentation is
given as:

x̂ = arg max
x∈X

f(x|y) = arg min
x∈X

(U(y|x) + U(x))

= arg min
x∈X

∑

s∈S

[
1
2
H(ys, xs)

+ ln(‖Σxs‖) +
∑

j∈Ni

β(1− δ(xs − xj))


. (10)

Segmentation/classification is the result of mini-
mizing the solution of equation (10) iteratively. Our
solution is given via the ICM method that requires
an initial segmentation of the image, which we estab-
lish by application of the k-means algorithm. The
ICM algorithm uses the “greedy” strategy in the it-
erative local minimization and convergence is guar-
anteed after only a few iterations. Given the data y
and the other labels x

(k)
S−{s}, the algorithm sequen-

tially updates each x
(k)
s into x

(k+1)
s by minimizing

U(xs|y, xS−{s}), the conditional posterior probabil-
ity, with respect to xs. After the initial classification
we evaluate the class means and covariances needed
for the ICM optimization method using the following
equations:

µ̂l =
1
rl

∑

s∈S
ys, xs = l (11)

Σ̂l =
1
rl

∑

s∈S
(ys − µl)(ys − µl)T , xs = l (12)
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where l = 1, . . . , m and rl is the number of points
in class l. The method continues by iterating the
ICM algorithm followed by parameter updating us-
ing equations (11) and (12) until the segmentation
converges.

4 Results Discussion and Conclusion

We have applied the presented local MRF multi-
vector HMRF breast MR segmentation algorithm to
12 sets of images with excellent results. Two such
segmentation examples are shown in Figures 1 and
2. As it can be seen, choosing 6 tissue classes re-
sults in good correspondence with breast anatomy.
In our examples these tissue classes are subsets of
the more general categories of fibroglandular tissue
and fat. A larger number of classes may be useful in
better classification of PVE voxels, in the direction
perpendicular to the image acquisition. As the set
number of tissue types increases it is more probable
that such points will create their own class, leading
us to overcome any difficulties arising due to PVE.
The segmentation results will be even better when
the algorithm is applied to Contrast Enhanced MR
images of the breast as tissue differentiation will be
superior.

This paper presents a new approach in segmenta-
tion of breast MR images using multi-slice intensity
information, utilizing local non-parametric MRFs
combined with GHMRFs to impose contextual con-
straints on image voxels. Moreover, it incorporates
information from neighboring slices to assign a tissue
class. Segmentation is the result of a MAP estimation
applied on the multi-vector image and obtained using
ICM. Such a segmentation approach achieves a more
physiologically plausible characterization of contex-
tual constraints between neighboring voxels and as
a result it is more reliable in real time segmenta-
tion than conventional 2-D segmentation methods.
The illustrated results, obtained after applying the
method to 4 patients, capture reliably the anatomi-
cal information contained in the original images and
demonstrate that the method works in practice. The
algorithm is fast and the segmentation steps are com-
pletely automated. We are now evaluating a version
of this algorithm where the number of tissue classes is

a.

b.

c.

d.

Figure 1: (a) A breast MR slice. (b) The segmentation result
using 6 tissue classes and the k-means clustering algorithm. (c)
The segmentation result of the new method, after 10 iterations
using 6 tissue classes. d) The segmentation result of the new
method, after 10 iterations using 10 tissue classes.
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a.

b.

c.

d.

Figure 2: (a) A breast MR slice. (b) The segmentation result
using 6 tissue classes and the k-means clustering algorithm. (c)
The segmentation result of the new method, after 10 iterations
using 6 tissue classes. d) The segmentation result of the new
method, after 10 iterations using 10 tissue classes.

allowed to change and where the GHMRF parameters
are updated using an EM method. Our approach will
be used in 3-D registration and reconstruction of the
breast. In the future, we plan to evaluate a larger
set of features for each point in our segmentation.
We also intend to incorporate the corresponding T1

value, as we aim to create statistical models of T1 for
healthy, malignant and fat tissues.
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