
CTL Property Checking Based on a New High Level Model
Without Equation Solving

BIJAN ALIZADEH ZAINALABEDIN NAVABI

Electrical and Computer Engineering
University of Tehran

Building #2, North Kargar Ave, Faculty of Engineering
IRAN

Abstract: - This paper describes the use of linear taylor expansion diagrams for high level modeling digital
circuits for application of formal verification properties at this level. In our method, a behavioral state
machine is represented by a multiplexer based structure of linear integer equations, and RT level properties
are directly applied to this representation. This reduces the need for large BDD data structures and uses far
less memory. Furthermore, this method is applied to circuits without having to separate their data and
control sections. For this implementation, we use a canonical form of linear TED [1]. This paper compares
our results with those of the VIS verification tool that is a BDD based program.

Key-Words: - Symbolic Model Checking, Linear TED, Equation Solving, Canonical Form.

1 Introduction
On one hand, formal methods provide exhaustive
coverage of hardware behavior. On the other
hand the designer requires automated verification
tools at higher levels of abstraction [2, 3, 4] to
verify the design at the early stages of design
flow. So formal verification methods such as
symbolic model checking have become important
for RT or behavioral level verification.

Most of methods use BDDs to represent the set
of states and the state transition functions [5, 6,
7]. The BDD techniques may still suffer from the
memory explosion problem when the application
is a large datapath. Other high level data
structures have been proposed to check
equivalency of two circuits, but they have not
been used to do property checking [8].

Biere et al. [9] propose an alternative,
symbolic model checking approach by using the
Boolean satisfiability (SAT) techniques. Because
of the low abstraction level BDDs, processing
time of circuits represented as such becomes
forbiddingly high for large circuits.

Cheng et al. [10] propose a hybrid ATPG
modular arithmetic constraint solving technique
for assertion checking. However the arithmetic
constraint solver is limited to linear constraints

arising from adders, subtractors and multipliers
with one constant input.

Fallah [11] proposed a hybrid satisfiability
approach, HSAT, to generate functional test
vectors for RTL designs. This hybrid method
generates linear arithmetic constraints (LACs),
for arithmetic operators, and conjunctive normal
form clauses for Boolean logic.

Brinkmann et al. [12] use Fallah’s method and
propose a method for transforming conjunctions
of bitvector equalities and inequalities into
equivalent conjunctions of equations and
disequations in integer linear arithmetic. This
method is just applied to datapath and there is
necessary to use an ILP solver.

Instead of using FSMs as behavior and bit or
bit vectors as data, we present a high level model
based on linear integer equations that uses integer
numbers as data and is efficient to do symbolic
model checking algorithms with integer data. For
this work, we use VHDL to describe a design and
a subset of CTL format to describe properties [7,
13].

Steps involved are extraction of a Data Flow
Graph (DFG) of a design [14], converting the
DFG to linear TED (LTED), and then proving the
property. For evaluation of this work, we have

developed a Visual C++ program that uses a
VHDL front. The program uses the CHIRE
intermediate format [15].

The main advantages of our technique are as
follows. First, our technique uses a high level
model instead of FSM, so we are able to check
CTL based properties very efficiently in terms of
CPU time and memory usage, as compared with
the BDD based approaches. Second, our model
can be used as a suitable model in system level
verification to verify interconnection of macro
components. Third, our method does not need to
solve integer equations explicitly [9, 10, 12, 14].
Fourth, our technique can be applied to
behavioral level and therefore we do not have to
separate datapath and controller when the design
becomes large.

This paper describes our work in five sections.
Section 2 presents how to construct LTED as a
canonical representation of expressions and
Section 3 shows how to convert DFG to LTED
and then in Section 4 we show which subset of
CTL will be used as property. Section 5 presents
algorithms to check some basic properties in our
model. Section 6 gives experimental results for
some examples. Last section presents a short
conclusion of this work.

2 Linear TED
The LTED structure includes Variable, Constant,
Branch, Union and Intersect nodes.

In this representation the algebraic expression
F(x,y,…) will be represented by constant and
linear terms of Taylor series expansion [1],
Equation (1), where const is some parts of
F(x,y,…), which are independent of variable x
and linear is some parts of F(x,y,…) that depend
on variable x. The variable x is top variable of
F(x,y,…) [1].

)(,...),(linearxconstyxF += (1)

For representing relational expression, we

have just added relational operators, including E
(equal to zero), NE (not equal to zero) and GE
(greater or equal to zero), to the LTED node.
Each Variable node has a constraint field which
indicates its range. For example consider variable
X as a bit type, so its constraint field indicates 0 ≤
X ≤ 1.

A Branch node has three fields, including
Select, InZero and InOne, where Select is a
relational expression, i.e. CLTED node, and other
fields are a LTED node. The functionality of a
Branch node is indicated by Equation (2).

InZeroSelectInOneSelectF && += (2)

A Union or Intersect node has two fields,

including Left child and Right child, where these
fields are LTED node.

2.1 Construction of the LTED
Our method needs two LTEDs called Original
LTED (OLTED) and Canonical LTED (CLTED).

OLTED and CLTED are directed acyclic
graphs (F, B, V, E, T) and (F, U, I, V, E, T)
respectively, representing a compound of
algebraic and relational expressions, where F is a
top function, B is a set of Branch nodes, U is a set
of Union nodes, I is a set of Intersect nodes, V is
a set of Variable nodes, E is a set of directed
weighted edges connecting the nodes, and T is a
set of Constant nodes. The next state and output
functions will be shown by OLTED. CLTED is
constructed when Branch nodes are converted to
Union and Intersect nodes based on Equation (2).
It happens when InOne and InZero fields have
been converted to relational expressions.

2.2 LTED operations
In this section we are going to describe how
addition, subtraction, multiplication, union and
intersection of two LTEDs are performed.

The addition and multiplication operators are
applied similar to TED’s ADD and MULT [1]
when two OLTEDs are not Branch nodes.
Otherwise InOne and InZero fields of Branch
node will be added to (multiplied by) another
node as InOne and InZero fields of result
respectively. At this point two Branch nodes with
same Select fields will be distinguished to make a
simpler LTED node.

The union and intersection operators are
defined for CLTED. So we suppose two CLTEDs
are algebriac expressions with two variables
including relational operators. We must consider
following cases:
Union:

1. None of nodes is Union or Intersect, u,v ∈ V.
We consider two LTEDs as two linear
equations. After that we consider different
conditions of two linear equations to
eachother. If two linear equations are parallel,
value of coefficients will specify which
equation is above or left hand side of the
other. Relational operator indicates direction
of two equations. At the end, we decide union
area based on relational operator. For
example consider two linear equations I:
X+2Y-1≥0 and II: 2X+4Y-4≥0. Two lines are
parallel, same directions, i.e. UP, and the
second one is below of the first one. So union
of them will be the second one.

2. Otherwise, this procedure is called
recursively to compute OR of two CLTED
nodes which can be Union or Intersect nodes.
This computation is the same as boolean
functions computation.

Intersect:
1. None of nodes is Union or Intersect, u,v ∈ V.

We consider two LTEDs as two linear
equations. After that we consider different
conditions of two linear equations to
eachother as explained in Union part. At the
end, we decide intersection area based on
relational operator. For example consider two
linear equations I: X+2Y-1≥0 and II: 2X+4Y-
4≥0 again. The Intersect of them will be the
first one.

2. Otherwise, this procedure is called
recursively to compute AND of two CLTED
nodes which are Union or Intersect nodes.

2.3 Canonical Form
In this section we want to specify why CLTEDs
are canonical.

If CLTED only includes Variable and Constant
nodes, canonicity of TED [1] is an evidence that
CLTED is canonical too. If we add relational
operators to CLTED node, it will remain
canonical yet, because we consider areas that are
covered by two CLTEDs to compare two CLTED
nodes. For example consider two LTED nodes X-
1 = 0 and X ≠ 0, where X is a bit. Constraint 0 ≤
X ≤ 1 will be considered because of bit type. On
the other hand X ≠ 0 shows (X > 0 or X < 0).

When constraint is applied to (X > 0 or X < 0),
we will have X-1 =0.

If CLTED includes Union and Intersect nodes,
It will be canonical yet, because we first transfer
Variable, Constant and Intersect nodes to leaves
of the tree and then transfer Union nodes to root
of tree. On the other hand, we transform Union
nodes to a unique form, which only includes
another Union node on its Left-Child sub term,
and there will be an Intersect, Variable or
Constant node on its Right-Child sub term. In the
other word, we will just have Union nodes in
Left-Child part of each Union node. Also
Variable nodes are ordered from LeftChild to
RightChild in each Union and Intersect nodes.
Therfore CLTEDs including Union and Intersect
nodes will be canonical.

Union

Union

Intersect

Z X

Intersect

Y X
Intersect

Intersect

Z Y X

Fig.1. Union and Intersect representation

For example, Fig.1 shows F= (Z ∧ Y ∧ X) ∨ (Z

∧ X) ∨ (Y ∧ X) as a formula, where ordering of
propositions is Z > Y > X.

3 DFG to LTED conversion
The first task is the DFG extraction [see 14].
After DFG extraction, we are ready to translate it
to LTED. In our method, the design to be
analyzed is represented as a system D = (I, PS,
NS, O, PF) with a set of inputs I, a set of present
states PS=(nvvv ,...,, 21), a set of next states

NS=(nvvv '
2

'
1
' ,...,,), a set of outputs

O=(mooo ,...,, 21), and a set of compound
algebraic and relational expressions which are
related to next state and output functions and are
shown as Equation (3).

CheckCombinational (LTED Q)
1. Replace intermediate variables in Q by their
value fields from list of TedState
2. Convert Q to CLTED and simplify it (Satisfy it)
3. Eliminate P part from CLTED in step 2
4. Return computed CLTED

),(),(
......

),(),(

),(),(

'

2222
'

1111
'

IPSfoIPSfv

IPSfoIPSfv

IPSfoIPSfv

ommnsnn

ons

ons

==

==

==
 (3)

Next state and output functions in DFG have

multiplexer based structure, which will be in one-
to-one correspondence with Branch node in
OLTED. Therefore we can make next state and
output functions according to LTEDs and called
them list of TedState. The list of TedState
includes Id of next state variable, Id of related
present state variable and value of next state
variable as a LTED node. The Id of present state
variable will be –1 if there is an output or
intermediate variable as next state variable.

As an example of our LTED, consider the
Greatest Common Divisor (GCD) example. The
GCD algorithm is very simple: two arguments are
mutually subtracted till they become equal each
other. Fig.2 shows LTED node, extracted for the
nxtX - 3 > 0. This relational expression, as a
OLTED node, can convert to a CLTED,
according to Equation (2).

nxtX

InOne

InZero

Select

InOne

InZero

Select

InOne

InZero

Select

InOne

InZero

Select EReset

-1 1
GEX

-1

1Y

-1

EX

-1

1Y

0

a

-3
1

X

-3
1

G

EStart

-1 1

G

X

-1

1Y

-3

G

Fig.2. LTED of (nxtX – 3 > 0)

4 CTL subset as property
We consider property as a general form of P =>
Q by the following grammer:
P ::= (P) | P ∧ P | ¬P | P = P | Variable | Integer Value
Q ::= P | EX(Q) | EG(Q) | EF(Q)

Where P is assumption part and Q is

commitment part. The most advantage of this
form of property is that there is not necessary to
take into account the reachable state space while
proving the existence of a path satisfying certain
conditions. This is because the designer specifies
some conditions as initial states in assumption

part of property and therefore each property will
be checked from initial conditions that were
specified explicitly. It is clear that if we can
check this subset of CTL, we will be able to
check CTL completely.

5 CTL Property Checking in
Design

An overall view of the CTL property checking is
shown in Fig.3. First, we extract LTEDs of next
state and output functions from a synthesized
design. On the other hand, we extract tree
structure of the Q part to specify what
verification procedures need to be called at each
level of the tree. We start satisfying a property set
from propositions or sub-formulas to the main
formula.

Four procedures, CheckCombinational,
CheckEX, CheckEG and CheckEF perform the
task of verification of this flowchart.

V H D L C o d e
C T L P r o p e r t y

(P = > Q)

D F G T o L T E D

E x t r a c t P a r s e
T r e e o f Q

C a l l P r o c e d u r e i n
F i g u r e s 4 , 5 , 6 , 7

D F G E x t r a c t i o n

C o n v e r t io n t o
L T E D

Fig.3. Flowchart of our work

Fig.4 shows the CheckCombinational

procedure in the flowchart of Fig.3. When the Q
part of a property is combinational, i.e. without
state operators, we must replace intermediate
variables by their value specified in list of
TedState, and then convert it to CLTED. After
that P part of property will be eliminated from
computed CLTED. At the end of the procedure,
CLTED equations that indicate conditions needed
to satisfy the property will be returned.

Fig.4. Combinational part

CheckEG (P,Q: CLTED , Limitation: int)

iZ = Q (i = 1)

For (i=0 ; i < Limitation ; i++)
exZi = CheckEX(iZ);

if (i == 0 && P!=NULL)
if (P is not subset of exZi)
return 0;
Eliminate Inputs from exZi;

1+iZ = exZi AND Q;

if (1+iZ ==
iZ)

return 1;

iZ = 1+iZ ;
retrun 0;

CheckEX (LTED Q)
1. Replace present state and intermediate variables
in Q by their value fields from list of TedState
2. Convert new Q to CLTED and simplify it
3. Check P part is subset of CLTED from step 2
4. Return computed CLTED

To eliminate one CLTED, e.g. u, from another
CLTED, e.g. v, we recursively perform this
procedure till both of them become Variable
nodes. At this point, if intersection of u and v is
one of them, 1 will be returned. Otherwise
intersection result will be returned. If u is
Intersect or Union node, this procedure is called
recursively for u.Left and u.Right.

Fig.5 shows the CheckEX procedure in the
flowchart of Fig.3. When the Q part of a
property only uses the next-state operator (X),
correctness of the property is checked in three
major steps.

 Fig.5. Next State(X) operator

These steps are current state variables to next

state variables converting, next state variables
replacing and simplifying. Simplification is
performed based on Intersect and Union
operators which were described in section 2.2. If
P part is subset of result, this part of verification
is O.K. and return result as a CLTED node. Else
verification has been failed.

To specify if one CLTED, e.g. u, is subset of
another CLTED, e.g. v, we perform this
procedure recursively until u and v become
Variable nodes. Under this condition, if union of
them is the second one, i.e. v, it means that u is
subset of v. If u is Intersect node and u.Left and
u.Right are subset of v, then u will be subset of v.
If u is Union node and u.Left or u.Right is subset
of v, then u will be subset of v.

Fig.6 illustrates the CheckEG procedure in the
flowchart of Fig.3. When the Q part of a
property only uses all states operator (G) we
should compute Equation (4).

QZZEXQZ ii =∧=+ 11);((4)

In each iteration we will compute EX(iZ) in

three major steps as previously described.
Completion of the procedure is indicated by

1+= ii ZZ . When this happens, equations will be
returned that indicate conditions needed to satisfy
the property being verified. The Limitation

parameter is number of states of the design. The
first important point in this algorithm is that

1+iZ
are computed by the intersection of Q and

iZ .
We can define the intersection of Q and iZ ,
because they are both in terms of CLTEDs.
Another important point in this algorithm is that
if P part exists, it must be subset of the first
CheckEX(

iZ) to continue algorithm.

Fig.6. All States (G) operator

Fig.7 illustrates the CheckEF procedure in the
flowchart of Fig.3. When the Q part of a property
only uses eventually state operator (F) we should
compute Equation (5).

QZZEXQZ ii =∨=+ 11);((5)

Fig.7. Eventually State (F) operator

CheckEF (P,Q: CLTED , Limitation: int)

iZ = Q (i = 1)

For (i=0 ; i < Limitation ; i++)
exZi = CheckEX(

iZ);

Eliminate Inputs from exZi;

1+iZ = exZi OR Q;

if (P != NULL)
 if (P is subset of

1+iZ)

 return 1;
else if (

1+iZ == iZ)

 return 1;

iZ =
1+iZ ;

retrun 0;

In each iteration we will compute EX(iZ) in
three major steps as previously described.
Completion of the procedure is indicated by

1+= ii ZZ or P ⊂ 1+iZ . When this happens,
CLTED equations will be returned that indicate
conditions needed to satisfy the property being
verified. Important point in this algorithm is that

1+iZ are computed by the union of Q and iZ .
Another important point in this algorithm is that
if P part exists, completion of the procedure will
be specified by P ⊂

1+iZ .

6 Experimental Results
We will verify different properties on five
examples including the Traffic Light Control
(TLC), Greatest Common Divisor (GCD),
Elevator(EL), 2-Client Arbiter(2CA) and a
Special Counter (SC). The SC example is a 3-bit
counter but there is a feedback from state 5 to
state 4 when input I is 1.

TLC Properties:
1. start = 0 => EX(hwy_light = GREEN). This property means

that if start is zero, then a path exists where hwy_light will be
green at the next state.

2. start = 0 => EG(hwy_light = GREEN). This property will not
be passed.

3. EG(hwy_light = GREEN & farm_light = GREEN). This
property will be failed.

4. farm_light = RED => EF(farm_light = GREEN).

GCD Properties:
1. Reset = 0 & X = 3Y => EF(X = Y).
2. X = 2Y => EG(X < Y). This property indicates that if X = 2Y

then a path exists that X will always becomes less than Y. This
property is not correct and will not be passed.

3. Reset = 0 & X = 2Y => EX2(Reset = 1).
4. Reset = 0 & X > 2Y => EX(X > Y).

SC Properties:
1. Count = 7 => EX(Count > 7). This property will be failed.
2. Count = 6 => EX2(Count = 0). This says that if Count is 6

then a path exists that Count will be zero two states later.
3. Count = 5 => EF(Count = 6).
4. Count = 3 => EG(Count > 3).

EL Properties:
1. EG(door = OPEN). This property will be failed.
2. EG(direction = UP).
3. EF(door = CLOSED).
4. inb1 = 1 => EF(open_next = 1). This property means that if

button of first floor has been pushed, a path exists that signal
open_next will eventually become active. This signal shows that
elevator must be stopped at the next location.

2CA Properties:
1. EF(ack1 = 1). This property means that a path exists where

acknowledgement of first client will eventually become active.
2. req1 = 0 => EG(cntl1 = BUSY). This property will be failed.
3. EF(cntl1 = BUSY & cntl2 = BUSY). This property is not

correct.
4. cntl2 = IDLE => EX(cntl2 = READY).

Table 1 compares our results with those of the

VIS verification tool [16]. As shown in the table,
we have achieved less memory usage and CPU
time. In TLC example, Property1 consumed 0.01
second in comparison of 0.1 second by VIS on a
Pentium III system with 256MB RAM. Also
memory usage in our method is 5.3MB that is
less than 10.1MB used by VIS. In example GCD,
none of properties can be checked because VIS
does not support them. In example EL the last
property is not supported (NS in Table 1) by VIS
because it includes condition on input signal.

Table 1. Comparison with VIS

Circuit TLC GCD SC EL 2CA
Our Method 0.01 0.04 0.01 0.3 0.3 Cpu Time Property1 (second)
VIS 0.1 Not Supported 0.12 2.1 1.5
Our Method 0.65 0.1 0.01 0.9 0.4 Cpu Time Property2 (second)
VIS 1.2 NS 0.15 3.4 1.5
Our Method 12.1 0.03 0.1 0.21 0.1 Cpu Time Property3 (second)
VIS 19.2 NS 0.9 4.7 0.9
Our Method 0.4 0.03 0.15 0.2 0.01 Cpu Time Property4 (second)
VIS 0.9 NS 0.56 NS 0.1
Our Method 60 32 6 87 62 Number of Nodes(LTED,BDD)
VIS 974 968442 91 20418 39381
Our Method 5.3 4.5 4.4 4.1 5.1 Memory Usage (MegaByte)
VIS 10.1 36 4.7 5.2 5.5

The GCD example shows important results
which is an evidence that our method work on
datapath applications very well. Table 1 shows
that a BDD based approach, i.e. VIS, uses 36MB
memory and generates 968442 BDD nodes for 8
bit input numbers, but our method uses 4.5MB
memory and generates 32 LTED nodes. It seems
to be clear that our method can accept word level
properties, but BDD based approach can not.

Notice we have used Windows-based VIS and
CPU time in VIS is just related to some parts of
VIS that calls EX, EG or EF functions and is not
CPU time of all parts of VIS. In order to compute
these times, we have added appropriate VIS
functions to VIS source codes to report execution
time of EX, EG or EF function calls.

7 Conclusion
In order to overcome problems related to the use
of BDDs and other representations [8], we use a
high level of representation instead of FSMs. As
the result, we are able to manipulate complex
designs in much less time and memory than FSM
models using BBDs. Unlike FSM models, our
representation treats data and control units
together and is not limited to controller circuits or
datapath circuits individually [8]. Also our model
does not need to solve integer equations or to do
satisfiability checking as some people have done
[9, 10, 12, 14].

Reference:
[1] M. Ciesielski, P. Kalla and Z. Zeng, Taylor

Expansion Diagrams: A Compact Canonical
Representation for Arithmetic Expressions, in
DATE 2002.

[2] M.C. McFarland. Formal Verification of
Sequential Hardware. IEEE Transactions On
Computer- Aided Design of Integrated circuits
and systems Vol. 12, No. 5, page 633, May 1993.

[3] C. Kern and M.R. Greenstreet. Formal
Verification In Hardware Design. ACM
Transactions on Design Automation of
Electronic Systems, Vol. 4, No. 2, April 1999,
page 123.

[4] S. Devadas, H.T. Ma and A.R. Newton. On The
Verification of sequential machines at differing
levels of abstraction. 24th ACM/IEEE Design
Automation Conference 1987, page 271.

[5] H. Touati, H. Savoj and B. Lin. Implicit State
Enumeration of Finite State Machines Using

BDD’s. IEEE Transactions on Computer 1990,
page 130.

[6] G. Cabodi, P. Camurati and F. Corno. Sequential
Circuit Diagnosis based on Formal Verification
Techniques. International Test Conference 1992,
page 187.

[7] K. McMillan. Symbolic Model Checking.
Kluwer Academic Publishers, Boston, 1993.

[8] R. Drechsler. Formal Verification of Circuits.
Kluwer Academic Publishers, 2000.

[9] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita and
Y. Zhu. Symbolic Model Checking Using SAT
Procedures Instead of BDDs. In Proceedings
DAC, June 1999, pages 317-320.

[10] C.-Y. Huang and K.-T. Cheng. Assertion
Checking by Combined Word-level ATPG and
Modular Arithmetic Constraint-Solving
Techniques. In Proceedings of DAC’00, pages
118-123, 2000.

[11] F. Fallah, S. Devadas and K. Keutzer. Functional
Vector Generation for HDL Models Using Linear
Programming and 3-Satisfiability. In Proceedings
of 35th DAC-98, p.p 528.

[12] R. Brinkmann and R. Drechsler. RTL-Datapath
Verification using Integer Linear Programming.
In Proceedings of IEEE VLSI Design’01 & Asia
and South Pacific Design Automation
Conference, pages 741-746, Bangalore, 2002.

[13] E. Clarke, R. Enders, and T. Filkorn. Exploiting
Symmetry in Temporal Logic Model Checking.
Formal Methods in System Design 9, 77-104
(1996).

[14] B. Alizadeh and M.R. Kakoee, Using Integer
Equations for High Level Formal Verification
Property Checking, in ISQED 2003.

[15] M.H. Reshadi, A.M. Gharehbaghi and Z. Navabi,
Intermediate Format Standardization:
Ambiguities, Deficiencies, Portability issues,
Documentation and Improvements,
HDLCon2000, March 2000.

[16] Robert K. Brayton, A. Sangiovanni, A. Aziz and
et al. VIS: A system for Verification and
Synthesis. Proceedings of the Eighth
International Conference on Computer Aided
Verification, 1996.

