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Abstract: - This paper describes the use of linear taylor expansion diagrams for high level modeling digital 
circuits for application of formal verification properties at this level. In our method, a behavioral state 
machine is represented by a multiplexer based structure of linear integer equations, and RT level properties 
are directly applied to this representation.  This reduces the need for large BDD data structures and uses far 
less memory. Furthermore, this method is applied to circuits without having to separate their data and 
control sections. For this implementation, we use a canonical form of linear TED [1]. This paper compares 
our results with those of the VIS verification tool that is a BDD based program. 
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1 Introduction 
On one hand, formal methods provide exhaustive 
coverage of hardware behavior. On the other 
hand the designer requires automated verification 
tools at higher levels of abstraction [2, 3, 4] to 
verify the design at the early stages of design 
flow. So formal verification methods such as 
symbolic model checking have become important 
for RT or behavioral level verification.  

Most of methods use BDDs to represent the set 
of states and the state transition functions [5, 6, 
7]. The BDD techniques may still suffer from the 
memory explosion problem when the application 
is a large datapath. Other high level data 
structures have been proposed to check 
equivalency of two circuits, but they have not 
been used to do property checking [8]. 

Biere et al. [9] propose an alternative, 
symbolic model checking approach by using the 
Boolean satisfiability (SAT) techniques. Because 
of the low abstraction level BDDs, processing 
time of circuits represented as such becomes 
forbiddingly high for large circuits.   

Cheng et al. [10] propose a hybrid ATPG 
modular arithmetic constraint solving technique 
for assertion checking. However the arithmetic 
constraint solver is limited to linear constraints 

arising from adders, subtractors and multipliers 
with one constant input. 

Fallah [11] proposed a hybrid satisfiability 
approach, HSAT, to generate functional test 
vectors for RTL designs. This hybrid method 
generates linear arithmetic constraints (LACs), 
for arithmetic operators, and conjunctive normal 
form clauses for Boolean logic. 

Brinkmann et al. [12] use Fallah’s method and 
propose a method for transforming conjunctions 
of bitvector equalities and inequalities into 
equivalent conjunctions of equations and 
disequations in integer linear arithmetic. This 
method is just applied to datapath and there is 
necessary to use an ILP solver. 

Instead of using FSMs as behavior and bit or 
bit vectors as data, we present a high level model 
based on linear integer equations that uses integer 
numbers as data and is efficient to do symbolic 
model checking algorithms with integer data. For 
this work, we use VHDL to describe a design and 
a subset of CTL format to describe properties [7, 
13].  

Steps involved are extraction of a Data Flow 
Graph (DFG) of a design [14], converting the 
DFG to linear TED (LTED), and then proving the 
property. For evaluation of this work, we have 



developed a Visual C++ program that uses a 
VHDL front.  The program uses the CHIRE 
intermediate format [15]. 

The main advantages of our technique are as 
follows.  First, our technique uses a high level 
model instead of FSM, so we are able to check 
CTL based properties very efficiently in terms of 
CPU time and memory usage, as compared with 
the BDD based approaches. Second, our model 
can be used as a suitable model in system level 
verification to verify interconnection of macro 
components. Third, our method does not need to 
solve integer equations explicitly [9, 10, 12, 14]. 
Fourth, our technique can be applied to 
behavioral level and therefore we do not have to 
separate datapath and controller when the design 
becomes large. 

This paper describes our work in five sections.  
Section 2 presents how to construct LTED as a 
canonical representation of expressions and 
Section 3 shows how to convert DFG to LTED 
and then in Section 4 we show which subset of 
CTL will be used as property. Section 5 presents 
algorithms to check some basic properties in our 
model. Section 6 gives experimental results for 
some examples. Last section presents a short 
conclusion of this work. 
 
 
2 Linear TED 
The LTED structure includes Variable, Constant, 
Branch, Union and Intersect nodes.  

In this representation the algebraic expression 
F(x,y,…) will be represented by constant and 
linear terms of Taylor series expansion [1], 
Equation (1), where const is some parts of 
F(x,y,…), which are independent of variable x 
and linear is some parts of F(x,y,…) that depend 
on variable x. The variable x is top variable of 
F(x,y,…) [1].  

)(,...),( linearxconstyxF +=    (1) 
 
For representing relational expression, we 

have just added relational operators, including E 
(equal to zero), NE (not equal to zero) and GE 
(greater or equal to zero), to the LTED node. 
Each Variable node has a constraint field which 
indicates its range. For example consider variable 
X as a bit type, so its constraint field indicates 0 ≤ 
X ≤ 1. 

A Branch node has three fields, including 
Select, InZero and InOne, where Select is a 
relational expression, i.e. CLTED node, and other 
fields are a LTED node. The functionality of a 
Branch node is indicated by Equation (2). 

InZeroSelectInOneSelectF && +=   (2) 
 
A Union or Intersect node has two fields, 

including Left child and Right child, where these 
fields are LTED node. 
 
 
2.1 Construction of the LTED 
Our method needs two LTEDs called Original 
LTED (OLTED) and Canonical LTED (CLTED).  

OLTED and CLTED are directed acyclic 
graphs (F, B, V, E, T) and (F, U, I, V, E, T) 
respectively, representing a compound of 
algebraic and relational expressions, where F is a 
top function, B is a set of Branch nodes, U is a set 
of Union nodes, I is a set of Intersect nodes, V is 
a set of Variable nodes, E is a set of directed 
weighted edges connecting the nodes, and T is a 
set of Constant nodes. The next state and output 
functions will be shown by OLTED. CLTED is 
constructed when Branch nodes are converted to 
Union and Intersect nodes based on Equation (2). 
It happens when InOne and InZero fields have 
been converted to relational expressions.  

 
 

2.2 LTED operations 
In this section we are going to describe how 
addition, subtraction, multiplication, union and 
intersection of two LTEDs are performed.  

The addition and multiplication operators are 
applied similar to TED’s ADD and MULT [1] 
when two OLTEDs are not Branch nodes. 
Otherwise InOne and InZero fields of Branch 
node will be added to (multiplied by) another 
node as InOne and InZero fields of result 
respectively. At this point two Branch nodes with 
same Select fields will be distinguished to make a 
simpler LTED node. 

The union and intersection operators are 
defined for CLTED. So we suppose two CLTEDs 
are algebriac expressions with two variables 
including relational operators. We must consider 
following cases: 
Union: 



1. None of nodes is Union or Intersect, u,v ∈ V. 
We consider two LTEDs as two linear 
equations. After that we consider different 
conditions of two linear equations to 
eachother. If two linear equations are parallel, 
value of coefficients will specify which 
equation is above or left hand side of the 
other. Relational operator indicates direction 
of two equations. At the end, we decide union 
area based on relational operator. For 
example consider two linear equations I: 
X+2Y-1≥0 and II: 2X+4Y-4≥0. Two lines are 
parallel, same directions, i.e. UP, and the 
second one is below of the first one. So union 
of them will be the second one. 

2. Otherwise, this procedure is called 
recursively to compute OR of two CLTED 
nodes which can be Union or Intersect nodes. 
This computation is the same as boolean 
functions computation.  

Intersect: 
1. None of nodes is Union or Intersect, u,v ∈ V. 

We consider two LTEDs as two linear 
equations. After that we consider different 
conditions of two linear equations to 
eachother as explained in Union part. At the 
end, we decide intersection area based on 
relational operator. For example consider two 
linear equations I: X+2Y-1≥0 and II: 2X+4Y-
4≥0 again. The Intersect of them will be the 
first one. 

2. Otherwise, this procedure is called 
recursively to compute AND of two CLTED 
nodes which are Union or Intersect nodes. 

 
  
2.3 Canonical Form 
In this section we want to specify why CLTEDs 
are canonical. 

If CLTED only includes Variable and Constant 
nodes, canonicity of TED [1] is an evidence that 
CLTED is canonical too. If we add relational 
operators to CLTED node, it will remain 
canonical yet, because we consider areas that are 
covered by two CLTEDs to compare two CLTED 
nodes. For example consider two LTED nodes X-
1 = 0 and X ≠ 0, where X is a bit. Constraint 0 ≤ 
X ≤ 1 will be considered because of bit type. On 
the other hand X ≠ 0 shows (X > 0 or X < 0). 

When constraint is applied to (X > 0 or X < 0), 
we will have X-1 =0. 

If CLTED includes Union and Intersect nodes, 
It will be canonical yet, because we first transfer 
Variable, Constant and Intersect nodes to leaves 
of the tree and then transfer Union nodes to root 
of tree. On the other hand, we transform Union 
nodes to a unique form, which only includes 
another Union node on its Left-Child sub term, 
and there will be an Intersect, Variable or 
Constant node on its Right-Child sub term. In the 
other word, we will just have Union nodes in 
Left-Child part of each Union node. Also 
Variable nodes are ordered from LeftChild to 
RightChild in each Union and Intersect nodes. 
Therfore CLTEDs including Union and Intersect 
nodes will be canonical. 
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Fig.1. Union and Intersect representation 

 
For example, Fig.1 shows F= (Z ∧ Y ∧ X) ∨ (Z 

∧ X) ∨ (Y ∧ X) as a formula, where ordering of 
propositions is Z > Y > X.  

 
 

3 DFG to LTED conversion 
The first task is the DFG extraction [see 14]. 
After DFG extraction, we are ready to translate it 
to LTED. In our method, the design to be 
analyzed is represented as a system D = (I, PS, 
NS, O, PF) with a set of inputs I, a set of present 
states PS=( nvvv ,...,, 21 ), a set of next states 

NS=( nvvv '
2

'
1
' ,...,, ), a set of outputs 

O=( mooo ,...,, 21 ), and a set of compound 
algebraic and relational expressions which are 
related to next state and output functions and are 
shown as Equation (3). 



CheckCombinational (LTED Q) 
1. Replace intermediate variables in Q by their 
value fields from list of TedState 
2. Convert Q to CLTED and simplify it (Satisfy it) 
3. Eliminate P part from CLTED in step 2 
4. Return computed CLTED 
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Next state and output functions in DFG have 

multiplexer based structure, which will be in one-
to-one correspondence with Branch node in 
OLTED. Therefore we can make next state and 
output functions according to LTEDs and called 
them list of TedState. The list of TedState 
includes Id of next state variable, Id of related 
present state variable and value of next state 
variable as a LTED node. The Id of present state 
variable will be –1 if there is an output or 
intermediate variable as next state variable.  

As an example of our LTED, consider the 
Greatest Common Divisor (GCD) example. The 
GCD algorithm is very simple: two arguments are 
mutually subtracted till they become equal each 
other. Fig.2 shows LTED node, extracted for the 
nxtX - 3 > 0. This relational expression, as a 
OLTED node, can convert to a CLTED, 
according to Equation (2).  
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Fig.2. LTED of (nxtX – 3 > 0) 

 
 

4 CTL subset as property 
We consider property as a general form of P => 
Q by the following grammer: 
P  ::=  (P) | P ∧ P | ¬P | P = P | Variable | Integer Value  
Q  ::=   P | EX(Q) | EG(Q) |  EF(Q) 

 
Where P is assumption part and Q is 

commitment part. The most advantage of this 
form of property is that there is not necessary to 
take into account the reachable state space while 
proving the existence of a path satisfying certain 
conditions. This is because the designer specifies 
some conditions as initial states in assumption 

part of property and therefore each property will 
be checked from initial conditions that were 
specified explicitly. It is clear that if we can 
check this subset of CTL, we will be able to 
check CTL completely. 

 
 

5 CTL Property Checking in 
Design 

An overall view of the CTL property checking is 
shown in Fig.3.  First, we extract LTEDs of next 
state and output functions from a synthesized 
design.  On the other hand, we extract tree 
structure of the Q part to specify what 
verification procedures need to be called at each 
level of the tree. We start satisfying a property set 
from propositions or sub-formulas to the main 
formula. 

Four procedures, CheckCombinational, 
CheckEX, CheckEG and CheckEF perform the 
task of verification of this flowchart.   

V H D L  C o d e
C T L  P r o p e r t y

( P = > Q )

D F G   T o  L T E D

E x t r a c t  P a r s e
T r e e  o f  Q

C a l l  P r o c e d u r e  i n
F i g u r e s  4 ,  5 ,  6 ,  7

D F G  E x t r a c t i o n

C o n v e r t io n  t o
L T E D

 
Fig.3. Flowchart of our work 

 
Fig.4 shows the CheckCombinational 

procedure in the flowchart of Fig.3.  When the Q 
part of a property is combinational, i.e. without 
state operators, we must replace intermediate 
variables by their value specified in list of 
TedState, and then convert it to CLTED. After 
that P part of property will be eliminated from 
computed CLTED. At the end of the procedure, 
CLTED equations that indicate conditions needed 
to satisfy the property will be returned. 

 
 
 
 
 
 
 

Fig.4. Combinational part 
 



CheckEG (P,Q: CLTED , Limitation: int) 

iZ = Q (i = 1) 

For ( i=0 ;  i < Limitation ; i++ ) 
exZi = CheckEX( iZ ); 

if ( i == 0  &&  P!=NULL ) 
if (P is not subset of exZi) 
return 0; 
Eliminate Inputs from exZi; 

1+iZ  =  exZi   AND   Q; 

if ( 1+iZ ==
iZ ) 

return 1; 

iZ  = 1+iZ ; 
retrun 0; 

CheckEX (LTED Q) 
1. Replace  present state and intermediate variables 
in Q by their value   fields from list of TedState 
2. Convert new Q to CLTED and simplify it 
3. Check P part is subset of  CLTED from step 2  
4. Return computed CLTED 

To eliminate one CLTED, e.g. u, from another 
CLTED, e.g. v, we recursively perform this 
procedure till both of them become Variable 
nodes. At this point, if intersection of u and v is 
one of them, 1 will be returned. Otherwise 
intersection result will be returned. If u is 
Intersect or Union node, this procedure is called 
recursively for u.Left and u.Right. 

Fig.5 shows the CheckEX procedure in the 
flowchart of Fig.3.  When the Q part of a 
property only uses the next-state operator (X), 
correctness of the property is checked in three 
major steps.  
    

 
 
 
 
 

 Fig.5. Next State(X) operator 
 
These steps are current state variables to next 

state variables converting, next state variables 
replacing and simplifying. Simplification is 
performed based on Intersect and Union 
operators which were described in section 2.2. If 
P part is subset of result, this part of verification 
is O.K. and return result as a CLTED node. Else 
verification has been failed. 

To specify if one CLTED, e.g. u, is subset of 
another CLTED, e.g. v, we perform this 
procedure recursively until u and v become 
Variable nodes. Under this condition, if union of 
them is the second one, i.e. v, it means that u is 
subset of v. If u is Intersect node and u.Left and 
u.Right are subset of v, then u will be subset of v. 
If u is Union node and u.Left or u.Right is subset 
of v, then u will be subset of v. 

Fig.6 illustrates the CheckEG procedure in the 
flowchart of Fig.3.  When the Q part of a 
property only uses all states operator (G) we 
should compute Equation (4).  

QZZEXQZ ii =∧=+ 11 );(    (4) 
 
In each iteration we will compute EX( iZ )  in 

three major steps as previously described.  
Completion of the procedure is indicated by 

1+= ii ZZ .  When this happens, equations will be 
returned that indicate conditions needed to satisfy 
the property being verified. The Limitation 

parameter is number of states of the design. The 
first important point in this algorithm is that 

1+iZ  
are computed by the intersection of Q and 

iZ . 
We can define the intersection of Q and iZ , 
because they are both in terms of CLTEDs. 
Another important point in this algorithm is that 
if P part exists, it must be subset of the first 
CheckEX(

iZ ) to continue algorithm. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. All States (G) operator 
 

Fig.7 illustrates the CheckEF procedure in the 
flowchart of Fig.3. When the Q part of a property 
only uses eventually state operator (F) we should 
compute Equation (5).  

QZZEXQZ ii =∨=+ 11 );(    (5) 
 

 
Fig.7. Eventually State (F) operator 

 

CheckEF (P,Q: CLTED , Limitation: int) 

iZ = Q (i = 1) 

For ( i=0 ;  i < Limitation ; i++ ) 
exZi = CheckEX(

iZ ); 

Eliminate Inputs from exZi; 

1+iZ =  exZi   OR   Q; 

if ( P != NULL ) 
 if (P is subset of

1+iZ ) 

  return 1; 
else if (

1+iZ == iZ ) 

 return 1; 

iZ =
1+iZ ; 

retrun 0; 



In each iteration we will compute EX( iZ )  in 
three major steps as previously described.  
Completion of the procedure is indicated by 

1+= ii ZZ  or P ⊂ 1+iZ .  When this happens, 
CLTED equations will be returned that indicate 
conditions needed to satisfy the property being 
verified. Important point in this algorithm is that 

1+iZ  are computed by the union of Q and iZ . 
Another important point in this algorithm is that 
if P part exists, completion of the procedure will 
be specified by P ⊂

1+iZ . 
 
 

6 Experimental Results 
We will verify different properties on five 
examples including the Traffic Light Control 
(TLC), Greatest Common Divisor (GCD), 
Elevator(EL), 2-Client Arbiter(2CA) and a 
Special Counter (SC). The SC example is a 3-bit 
counter but there is a feedback from state 5 to 
state 4 when input I is 1. 

 
TLC Properties: 
1. start = 0 => EX(hwy_light = GREEN).  This property means 

that if start is zero, then a path exists where hwy_light will be 
green at the next state. 

2. start = 0 => EG(hwy_light = GREEN). This property will not 
be passed. 

3. EG(hwy_light = GREEN & farm_light = GREEN). This 
property will be failed. 

4. farm_light = RED => EF(farm_light = GREEN).  
 
GCD Properties: 
1. Reset = 0 & X = 3Y => EF(X = Y).  
2. X = 2Y => EG(X < Y). This property indicates that if X = 2Y 

then a path exists that X will always becomes less than Y. This 
property is not correct and will not be passed. 

3. Reset = 0 & X = 2Y => EX2(Reset = 1).   
4. Reset = 0 & X > 2Y => EX(X > Y).   

 
SC Properties: 
1. Count = 7 => EX(Count > 7). This property will be failed. 
2. Count = 6 => EX2(Count = 0).  This says that if Count is 6 

then a path exists that Count will be zero two states later. 
3. Count = 5 => EF(Count = 6).   
4. Count = 3 => EG(Count > 3).   
 
EL Properties: 
1. EG(door = OPEN). This property will be failed. 
2. EG(direction = UP).  
3. EF(door = CLOSED).  
4. inb1 = 1 => EF(open_next = 1). This property means that if 

button of first floor has been pushed, a path exists that signal 
open_next will eventually become active. This signal shows that 
elevator must be stopped at the next location. 

 
2CA Properties: 
1. EF(ack1 = 1). This property means that a path exists where 

acknowledgement of first client will eventually become active.  
2.  req1 = 0 => EG(cntl1 = BUSY). This property will be failed. 
3. EF(cntl1 = BUSY & cntl2 = BUSY). This property is not 

correct. 
4. cntl2 = IDLE => EX(cntl2 = READY).  

 
Table 1 compares our results with those of the 

VIS verification tool [16]. As shown in the table, 
we have achieved less memory usage and CPU 
time. In TLC example, Property1 consumed 0.01 
second in comparison of 0.1 second by VIS on a 
Pentium III system with 256MB RAM. Also 
memory usage in our method is 5.3MB that is 
less than 10.1MB used by VIS. In example GCD, 
none of properties can be checked because VIS 
does not support them. In example EL the last 
property is not supported (NS in Table 1) by VIS 
because it includes condition on input signal. 
 

Table 1. Comparison with VIS  

Circuit TLC GCD SC EL 2CA 
Our Method 0.01 0.04 0.01 0.3 0.3 Cpu Time Property1 (second) 
VIS 0.1 Not Supported 0.12 2.1 1.5 
Our Method 0.65 0.1 0.01 0.9 0.4 Cpu Time Property2 (second) 
VIS 1.2 NS 0.15 3.4 1.5 
Our Method 12.1 0.03 0.1 0.21 0.1 Cpu Time Property3 (second) 
VIS 19.2 NS 0.9 4.7 0.9 
Our Method 0.4 0.03 0.15 0.2 0.01 Cpu Time Property4 (second) 
VIS 0.9 NS 0.56 NS 0.1 
Our Method 60 32 6 87 62 Number of Nodes( LTED,BDD) 
VIS 974 968442 91 20418 39381 
Our Method 5.3 4.5 4.4 4.1 5.1 Memory Usage (MegaByte) 
VIS 10.1 36 4.7 5.2 5.5 

 
 



The GCD example shows important results 
which is an evidence that our method work on 
datapath applications very well. Table 1 shows 
that a BDD based approach, i.e. VIS, uses 36MB 
memory and generates 968442 BDD nodes for 8 
bit input numbers, but our method uses 4.5MB 
memory and generates 32 LTED nodes. It seems 
to be clear that our method can accept word level 
properties, but BDD based approach can not. 

Notice we have used Windows-based VIS and 
CPU time in VIS is just related to some parts of 
VIS that calls EX, EG or EF functions and is not 
CPU time of all parts of VIS. In order to compute 
these times, we have added appropriate VIS 
functions to VIS source codes to report execution 
time of EX, EG or EF function calls.  

 
 

7 Conclusion 
In order to overcome problems related to the use 
of BDDs and other representations [8], we use a 
high level of representation instead of FSMs.  As 
the result, we are able to manipulate complex 
designs in much less time and memory than FSM 
models using BBDs.  Unlike FSM models, our 
representation treats data and control units 
together and is not limited to controller circuits or 
datapath circuits individually [8]. Also our model 
does not need to solve integer equations or to do 
satisfiability checking as some people have done 
[9, 10, 12, 14]. 
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