N-Tier Distributed Computing Simulation

Hany Harb

Computer Science Department, Faculty of Science

Emirates University, AlAin, Emirates

ABSTRACT

 This paper presents the architecure and the implementation of an N-tier internet system model for locating objects distributed over the network. The model can be characterized as interoperable and scalable one. The model is implemented as a set of independent components spread across any number of computers around the world.. It also stisfies high standards of performance and reliability. A document case study is designed, implemented, and deployed as a COM or a CORPA based case study running on a single computer or multiple computers.

Key Words: Distributed objects, N-tier, MiddleWare, Application Server, COM, CORBA.

Table of Contents

1- INTRODUCTION:

 N-tier Model Architecure

2- DONT Model

3- N-tier programming environment and the Model Implementation

4- The Model Evaluation and A Case Study.

5- Conclusion

References.

1- INTRODUCTION:

 N-tier Model Architecure

 This paper describes the design and implementation of an n-tier Internet distributed objects model. The objects are distributed over the Internet or intranet environment. The client/server computing has greatly affected the distributed computing programming where the applications split across client and server rather than monolthic aproach. The monolthic approach may be considered as a single-tier model lacking the demands of the current sophisticated systems such as scalability, effiency, distribution, concurrency, faster and easier development process. The client typically provides the graphical user interface while the server provides access to shared resources. This model is typically referred to as a two-tier architecure where the client accepts the user requests and the server processes these service requests. In other words, the user interacts with the server through the client and the server serves the user requests and sends the response back to the client to be displayed on the client side. The client may also perform other processing such as user request validation to relieve the server which usually serves more than one concurrent client. The client usually presents GUI interface but it does not have to. This type of client may be referred to as a fat client because the majority of the application tasks run on the client side. Both of client and server may run on one or more machines. The server side usually hosts database shared by many clients providing a database connection for each client access to the database. Multiple database connections have to be managed carefully, otherwise the server gets overloaded. This mutiple connections phenomea puts constraints on two-tier model usage, so it may not be appropriate environment for complicated and critical applications.

The client/server application can be further divided into three tiers where the presentation and user interface is still the client tier, the server tier is also still the shared resources , and the middle tier (as a middle sofware layer between the client and the server tiers) represents the business logic. An internet (web based) application requires this type of model (at least three tiers applications). The client interacts with the server through this intermediate tier. This middle tier may be called the application server acting as a broker between the other two tiers. The middle tier typically contains the functionality related to the core purpose of the program (the business logic). Since part of the job of both the client and server may be shifted to a new tier (the middle tier), more load balance is achieved, especially if this tier is running on a separate machine. The client in this model may be referred to a thin client. As an advantage of introducing this middle tier, it manages the database connections more effieciently by reducing the number of connections has to be held by the server side. It means less database connections for more requests, for example if a client asks for already available data (requested by another client at earlier time) , this data may be offered to the currently requesting client without need of a database connection.

This model of computation may be further divided into more than three interacting tiers seeking more effiency. This constitues n-tier model where the business tier is usually the tier to be divided into more additional tiers but the other two tiers may also be divided. This division is mainly based on the services provided by the system to be modeled. The client may be divided into a tier to handle the user interface, a tier for communication with the middle tier. The middle tier may also be divided into at least three tiers, one to communicate with the client, another to communicate with server, and the other for business logic processing. This tier multiplicity allows any tier modification without affecting the others. There is no need for each tier to run on different machine (logical distribution), but the division can also be physical [6]. So, N-tier model is still based on some kind of middleware which connects two other software subsystems and passes data between them. It popuales the the back-end server data to its clients without client awaring of the server and the underlaying network details. This decreases the development time of this type of systems and it facilitates programming in case of different network communication protocols. This means that the middleware coordinates the functions of differents components of N-tier system which may run on hetrogeneous computing environments[2].

 CORPA (Common Object Request Broker Architecture) and COM (Component Object Model) are two common middlewares. Eiher one has to be selected according to the application types, the underlaying network, and other performance criteria [7]. The Middleware mainly adapts two different approaches for its processes to cooperate. The first is a message system where the processes communicate with each other (without resorting to shared variables) by providing send (message) and receive(message) operations. This message based communication can be directly or indirectly through ports. The other approach is done by issuing remote procedure calls (RPCs) where a component one machine can call other component on a different machine the same as local procedure calls. There is another way for components cooperation (in case of synchronized client and server) which acting as as conversation based on an Object Request Broker (ORB).

2. Distributed Object N-TIER (DONT) Model Architecture

The distributed object N-tier (DONT) model is designed to be applicable in internet-like environments. The model is a three dimensional model: the presentation dimension, Business logic dimension, and object dimension as shown in table 2. The objects are distributed over different sites. Each object has an object control block (ocb) and this ocb includes the objec id, object title, object description, object keywords, object last update time, object author, and other object state data as shown in table 1. The objects are stateless objects where objects are constantly being activated (on demand) and deactivated (when they are no longer needed). This leads to reduction of the communication overhead between the user and the sites on which the objects reside (server side).

2.1 Distributed Objects
 As mentioned before, The distributed objects may reside in several different physical locations. These distributed objects are allowed to change their locations during runtime. This collection of objects acts as the server side or the object server tier may be considered as it is partitioned into sets of objects scattered over the internet.

2.2 The Middleware Tiers

 The middleware dimension in this model are divided into four tiers: client-middleware interface tier (CMT), middleware manager tier (MMT), object manager tier (OMT), and request validation tier (RVT). Any of these tiers may be duplicated on different machines for more load balance and more reliability. As shown in Fig. 1, each client is connected to one or more CMT. The client can send a request to any one of the CMT to which it is connected. The OMT may also be connected to any number of the object sites. The MMT coordinates the CMT and OMT. The CMT copy, which accepts the client request, passes this request to the MMT (to which it is connected) which in turn broadcastsit to the OMTs. Each OMT searches its internet zone (the set of object sites to which it is connected) for the objects satisfying the user request criteria. The search result of each OMT is passed back to the MMT (from which it accepted the request) which removes any object duplicates and then passes the final result to the CMT. The CMT sends this final result to the client which originally issues the request. The OMT keeps track of the statistical usage of each retrieved object (how many times an object is requested). Each OMT has its own ocb database where the ocb(s) of the most used objects are saved.

 A user (through a client) may submit a criteria and the system returns the objects ocb which satisfy the user criteria. A minimum and a maximum limits of the number of the returned objects may be specified by the client. The criteria can be an expression evaluates any of the object ocb attributes. The user may locate objects by id, name, dates, keywords, and/or locations. Once an object satisfying the criteria is located, its ocb is copied to OMT local database. This local ocb database speeds up the next search based on the same or even different evaluation criteria coming from the same or different user since the local ocb database is serached first. In other words, the middleware acts as an agent software or as a cache memory to be consulted first.

 The ocb local database attached to each OMT has to be updated if an object state attributes are modified, an object is deleted, or an object is migrated from site to another. This means that more local ocb database size leads to less search time, but more overhead update time. If an object is deleted, migrated, or modified, OMT object server (the object site) notifies the known OMT (may be more than one since the OMTs zone are interleaved). This notified OMT passes the ocb of the affected object to the MMT which in turn broadcasts it to all OMTs to update the local ocb database. Again, increasing the number of OMT duplicates decreases the search time (assuming they are running in parallel), but increases the overhead of the ocb databases updates.

2.3 The DONT Protocols

 Many DONT protocols may be suggested and evaluated. Just two are presented in this paper: broadcast protocol and cascade protocol. A DONT protocol is the rules and procedures followed by the middleware tiers to get the client back the final result. According to broadcast protocol, MMT sends a copy of the client request to each OMT where each OMT gets its own search result either locally or through its internet zone and sends back the result to its associated MMT. This protocol was assumed in the previous section. In the cascade protocol, the MMT sends the client request to just one OMT, waits for its search result. If the returned list is not sufficient, the MMT sends it to another OMT, and so on. The search result is not sufficient if the number of returned objects is less than a minimum value put by the user.

3. N-tier programming environment and the Model Implementation

 Object oriented languages can be considered as a good development tool for creating scalable, multi-tiered Client/Server applications. As mentioned before, N-Tier application functionality is divided into distinct service tiers including user, business and distributed objects services. While this division may be essentially considered as a logical model, N-tier application is usually compiled as multiple components, each emphasizing a particular service. Component based applications provide superior performance and they are easier to maintain and highly scalable.

 More than one tool ca be used to build the system where visual programming languages or JAVA can be used to develop the client tier with GUI interface as a stand alone application or Java applet, while the business and object services tiers may be developed as ActiveX DLL server components [3,5]. Client can be web browser, visual basic client, COM visual C++ client, CORBA (VisiBroker) java client, or CORBA (Orbix) visual C++ client. Any type of these clients can be connected to a web server, from web server to application server, and from the application server to the distributed objects servers. The functionalty of the web server and the application server may be divided into multiple tiers and these tiers can be replicated and distributed over multiple nodes for more reliability and load balance as explained in previous section.

 As the business logic dimension splits the two other dimensions, so some tiers of the business logic like client-middleware interafce may be compiled with the GUI client and other tiers like object-middleware server interface may be compiled with the distributed objects dimension tiers. The presentation tier is deployed on the client workstation and the DLLs may be distributed on multiple web, application, and object servers. Distributed objects, distributed database, or even just dedicated database may represent the the third dimension. In the next section an internet n-tier system as a case study is presented, PC usually hosts internet browser as the client applet container while the business services DLL are running on web servers and application servers and the objects are distributed on internet servers. The application server may host an object request broker such as COM or CORPA to manage the user requests to the business services.

4. The internet Document Search Case Study

 This section presents an internet document search case study as an implementation of the DONT model. The object is a document which can be a book, article, sppech, movie, and/or any other multimedia document. The model as mentioned before is a three dimensional model: the presentation dimension, the business logic dimension supported by three subpackages, and the object dimension. These dimensions provide services which are distributed as N tiers.

4.1 Distributed Document Design

 The documents are scattered over distributed sites of an internet. The system is implemented in object oriented programming language under windows 2000 environment where object server tier is a collection of documents stored in one or more than one node. A request made by a client (through presentation tier) to search for documents satisfying certain criteria. This tier is implemented as java applets running on web browser such as Netscape and MS Explorer . It also allows the client to put an order to purchase a document (book or CD for example) if it is available for sale on internet. It presents to the user the documents retrieved list (if any).

 The business logic dimension services are carried by multiple tiers. These tiers constituting the business logic may be located in one or multiple computers. The RVT business logic tier validates the users requests. The user request may be canceled or its evaluation criteria be modified according to the implemented business rules. For example the RVT has a dictionary of keywords and its synonums, so evaluation criteria keywords (if any) may be replaced by other more common synonums. Besides its aaaociated keyword dictionary, the RVT keeps the keyword usage statistics to indicate how often a keyword is used in the user requests. The dictionary entry consists of three fields: the keyword, the keyword synonum, the keyword usage statistics. The OMT business logic tier keeps track of the most visited documents. The number of these cached documents may be determined by the adminstrator if other than default value is desired. This caching is implemented to satisfy the same user requests (coming from either the same or different user) locally from cached documents. The ocb of every located object of any request is saved in ocb database attached to the the OMT business logic tier, so even a new user request can be satisfied locally using the ocb database, unless the user is not satisfied with the retrieved list, then the internet is searched. Only when the OMT decides to serach the internet and after the request is validated, object access protocol ia applied. The OMT implements more than one protocol to connect with the internet and collect the objects satisfying the criteria.

4.2 Distributed Document Implementation
 The model is implemented as three major packages Client Tier, Businesss logic Tiers and Object Server Tier. Document as the main identified business objects represents a document with attribustes (ocb attributes) such as id, title, keywords and with methods such as load, save, delete. Collection of Document is also defined with its attributes and methods.
 The Business Tiers are implemented as three subpackage (implemented as Active X DLL) where each contains more than one class. The three business subpackages (libraries) are WebServer, ApplicationServer, and ObjectServer. WebServer subpackage provides public functions to support the client interface and other security issues. The ApplicationServer subpackage update ocb database, manipulate and maintain the distributed objects and its collections. The ObjectServer provides the classes to support the distributed objects interface and implement the object access protocols.

5. Conclusion

 This paper presented N-tier model architecure and its implementation achieving high standards of performance and reliability. The functionality of the model is divided into three distinct dimensions which are distibuted over many tiers. The presentation dimension handles all direct interaction with the user.The business logic dimension acts as a middleware between the client and the ditributed objects servers. An internet document search is implemented as a case study. This case study demonstrates many features like object distribution, and clients being run locally and remotely. Two different distributed object access protocols were presented. Other protocols will be suggested and evaluated in the future.

References

[1] J. Pritchard, COM and CORPA side by side, Addison Wesley, 1999.

[2] H. Jeffery, Understanding Object Relationships, VB online magazine, October 1998.

[3] J. Edward, 3-Tier Client/Server At Work, 1999.

[4] J. Hassan, Introduction To Active Server Pages Object Model, Client/Server specialists, May 1999.

[5] H. Jeffery, A Practical Introduction To Active X Data Objects (ADO), June 1999.

[6] R. Ash, M. Tony, Building N-Tier Application With COM and Visual Basic 6, 1999.

[7]http://www.openvms.compaq.com/openvms/whitepapers/3tier_client-server2/3tier_client-server.html

[8] http://www.javaworld.com/javaworld/jw-12-2000/jw-1201-weblogic_p.html

[9]http://www.cswl.com/whiteppr/tech/J2EETtechnote.html

 Figure 1: The DONT Model Architecture

 Table 1: The Object Control Block Attributes
	Id
	Title
	Author
	Location
	Last update date
	Keywords (up to six)

 Table 2: The DONT Model Architecture

	Dimension

	Tier
	Attached Data Structure

	Presentation Dimension

	GUI client
	

	Business Logic Dimension
	· clint-middleware tier (CMT)

· middleware management tier (MMT)

· object-middleware tier (OMT)

· request validation tier (RVT)
	Local ocb database

Keywords dictionary

	Object Dimension
	· Object server
	

MMT

CMT

CMT

CMT

OMT

OMT

OMT

OMT

CMT

MMT

RVT

Web browser client

Visual Basic client

COM visual client

CORBA (Visi Broker) Java client

CORBA (Orbix) Visual C++ client

Distributed

Objects

RVT

1

